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Introduction



Operator matrices

Damped wave equations

D2u(x, t) + 2a(x)dru(x, t) = (Ax — q(x))u(x,t), x€QCRY t>0
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Operator matrices

Damped wave equations

D2u(x, t) + 2a(x)dru(x, t) = (Ax — q(x))u(x,t), x€QCRY t>0
transformation to first order (in time) problem
P ur(t,x) \ 0 1 u(t, x)
‘ Uz(t,X) - Ay — CI(X) _23(X) U2(t,X)
=A
v
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Operator matrices

Damped wave equations

D2u(x, t) + 2a(x)dru(x, t) = (Ax — q(x))u(x,t), x€QCRY t>0
transformation to first order (in time) problem
P ur(t,x) \ 0 1 u(t, x)
‘ Uz(t,X) - Ay — CI(X) _23(X) U2(t,X)
=A
v
implement A as linear operator matrix in product Hilbert space
H=H1DH>
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Operator matrices

Damped wave equations
D2u(x, t) + 2a(x)dru(x, t) = (Ax — q(x))u(x,t), x€QCRY t>0

transformation to first order (in time) problem
P ur(t,x) \ 0 1 u(t, x)
‘ U2(t7X) - Ay — CI(X) —23(X) U2(t,X)

implement A as linear operator matrix in product Hilbert space

H=H1DH>

e dense domain, non-empty resolvent set
e structure and location of spectrum
e norm of resolvent
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Lax-Milgram theorem A=—A+VinH=1%Q)
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Lax-Milgram theorem A=—A+VinH=1%Q)

e bounded form a "= (A-, )" on Hilbert space V

a(f,g) = [, Vf Vgdx + [, Vfgdx, V= H}(Q)Ndom|V|z
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Lax-Milgram theorem A=—A+VinH=1%Q)

e bounded form a "= (A-,-)%" on Hilbert space V
a(f,g) = [, Vf Vgdx + [, Vfgdx, V= H}(Q)Ndom|V|z
e distributional operator

Ae BV, V*), Af:=a(f,")
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Lax-Milgram theorem A=—A+VinH=1%Q)

e bounded form a "= (A-,-)%" on Hilbert space V
a(f,g) = [, Vf Vgdx + [, Vfgdx, V= H}(Q)Ndom|V|z
e distributional operator
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e )V C H dense, continuously embedded
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Lax-Milgram theorem A=—A+VinH=1%Q)

e bounded form a "= (A-,-)%" on Hilbert space V
a(f,g) = [, Vf Vgdx + [, Vfgdx, V= H}(Q)Ndom|V|z
e distributional operator
Ae B(V,V"), Af:=a(f,-)
e )V C H dense, continuously embedded

e A defined as maximal restriction of A in H

VCH~H CV*, A:=Algoma domA:=A1H
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Lax-Milgram theorem A=—A+VinH=1%Q)

e bounded form a "= (A-,-)%" on Hilbert space V
a(f,g) = [, Vf Vgdx + [, Vfgdx, V= H}(Q)Ndom|V|z
e distributional operator
Ae B(V,V"), Af:=a(f,-)
e )V C H dense, continuously embedded
e A defined as maximal restriction of A in
VCHH" CV, A= 2\|domA7 dom A := A~1%
Theorem (Lax-Milgram)

Am>0 VFeV : |a(f,f)>m|fl}
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Lax-Milgram theorem A=—A+VinH=1%Q)

e bounded form a "= (A-,-)%" on Hilbert space V
a(f,g) = [, Vf Vgdx + [, Vfgdx, V= H}(Q)Ndom|V|z
e distributional operator
Ae B(V,V"), Af:=a(f,-)
e )V C H dense, continuously embedded
e A defined as maximal restriction of A in
VCHH" CV, A= 2\|domA, dom A := A~1%
Theorem (Lax-Milgram)

Am>0 VFeV : |a(f,f)>m|fl}

= A~! € B(H) and dom A dense in H

Borbala Gerhat (CTU Prague) Schur complement dominance July 11, 2022 2/12



Lax-Milgram theorem A=—A+VinH=1%Q)

e bounded form a "= (A-,-)%" on Hilbert space V

a(f,g) = [, Vf Vgdx + [, Vfgdx, V= H}(Q)Ndom|V|z
e distributional operator
Ae BV, V*), Af:=a(f,")
e )V C H dense, continuously embedded
e A defined as maximal restriction of A in
VCH~H CV*, A:=Algoma domA:=A1H

Theorem (Lax-Milgram)

Im>0 VFfeV : |a(f,f)>m|f|3

— AleB(V,V) = AleB(H)and domA dense in H
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Schur complements

Az(é g):%gdomA—VHzﬂl@Hz J
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Schur complements

A B
A= <C D) :HDODdomA—H="H1DH>

e naive domain (typically too small)

dom A = (dom AN dom C) @ (dom BN dom D)
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Schur complements

A B
A= <C D) :HDODdomA—H="H1DH>

e naive domain (typically too small)
dom A = (dom AN dom C) @ (dom BN dom D)
e use (first) Schur complement

S\=A-X—B(D-\)"'C, XepD)
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Schur complements

A B
A= <C D) :HDODdomA—H="H1DH>

e naive domain (typically too small)
dom A = (dom AN dom C) & (dom BN dom D)
e use (first) Schur complement
S\=A-X—B(D-\)"'C, XepD)

e Frobenius-Schur factorisation of resolvent

(ANt = St - S'B(D—- )1
e =xtesit (D=2t (D—A)IC S B(D - M)
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Schur complements

A B
A= <C D) :HDODdomA—H="H1DH>

naive domain (typically too small)

dom A = (dom AN dom C) @ (dom BN dom D)

use (first) Schur complement
S\=A-X—B(D-\)"'C, XepD)
Frobenius-Schur factorisation of resolvent

(ANt = St - S'B(D—- )1
e =xtesit (D=2t (D—A)IC S B(D - M)

works with suitable relative boundedness within entries
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Schur complements

A B
A= <C D) :HDODdomA—H="H1DH>

naive domain (typically too small)

dom A = (dom AN dom C) @ (dom BN dom D)

use (first) Schur complement
S\=A-X—B(D-\)"'C, XepD)
Frobenius-Schur factorisation of resolvent

(ANt = St - S'B(D—- )1
e =xtesit (D=2t (D—A)IC S B(D - M)

works with suitable relative boundedness within entries

equivalence between spectra of Schur complement and matrix
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Schur complement dominance
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Ideas

forlz( O — 571 B(D—A)! )

—(D=-NCcSt (D-N)TH(D-N)TICS T B(D—N)T
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Ideas

for1=< St — 571 B(D—A)! )

—~(D-N)"CSt (D-N)"tH(D-NCS T B(D - M)

e enough if Schur complement dominates neighbouring factors in
formula [Freitas-Siegl-Tretter'18]
[Ibrogimov-Siegl-Tretter-"16, lbrogimov'17, Ibrogimov-Tretter'17]
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Ideas

MeAY1=< St — 571 B(D—A)! )

—~(D-N)"CSt (D-N)"tH(D-NCS T B(D - M)

e enough if Schur complement dominates neighbouring factors in
formula [Freitas-Siegl-Tretter'18]
[Ibrogimov-Siegl-Tretter-"16, lbrogimov'17, Ibrogimov-Tretter'17]

e define entries as distributional operators in suitable triplets and
restrict to maximal domain in underlying space [Ammari-Nicaise'15]
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Ideas

forlz( St ~ S B(D - AT )

—(D-XN)7CSt (D-N)T+(D-XN)CSB(D— M)

e enough if Schur complement dominates neighbouring factors in
formula [Freitas-Siegl-Tretter'18]
[Ibrogimov-Siegl-Tretter-"16, lbrogimov'17, Ibrogimov-Tretter'17]

e define entries as distributional operators in suitable triplets and
restrict to maximal domain in underlying space [Ammari-Nicaise'15]

e very "non-linear" approach, dominance of Schur complement
encoded in spaces of test functions and distributions

Borbala Gerhat (CTU Prague) Schur complement dominance July 11, 2022 4/12



Ideas

St ~ St B(D— )t

(A-XN71 =
—(D=N7tcSst (D=NTTH(D-N)TICS P B(D - )T

e enough if Schur complement dominates neighbouring factors in
formula [Freitas-Siegl-Tretter'18]
[Ibrogimov-Siegl-Tretter-"16, lbrogimov'17, Ibrogimov-Tretter'17]

e define entries as distributional operators in suitable triplets and
restrict to maximal domain in underlying space [Ammari-Nicaise'15]

e very "non-linear" approach, dominance of Schur complement
encoded in spaces of test functions and distributions

e previous works on (abstract) Dirac operators
[Esteban-Loss'07, Esteban-Loss'08, Schimmer-Solovej-Tokus'20]
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Setting

e dense, continuously embedded triples of Hilbert spaces

DsCH1CD s, D2CHCD,
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Setting
e dense, continuously embedded triples of Hilbert spaces
DsCH1CED_s, DyCH2CD,
e operator matrix with distributional entries

-

) € B(Ds ® D3, D_s ® D_»)

o) D)
o
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Setting

e dense, continuously embedded triples of Hilbert spaces
DsCHi1CD_s, Dy CH,CD

e operator matrix with distributional entries

- A B

e distributional Schur complement

Sy =A—X—B(D-)\)"'CeB(Ds,D_s), XepD)
p(D):={AeC: (D-\)"'eB(D_, D)}
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Setting

e dense, continuously embedded triples of Hilbert spaces
DsCHi1CD_s, Dy CH,CD

e operator matrix with distributional entries

- A B

e distributional Schur complement

Sy =A—X—B(D-)\)"'CeB(Ds,D_s), XepD)
p(D):={AeC: (D-\)"'eB(D_, D)}

e matrix A := .,Z\domA and Schur complement S, = S\dom S, On
dom A := ﬁ_l(H) ., domS§, = A,\_I(Hl)
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Spectral equivalence

Theorem [G'22]
If for all A € © C p(D) there exists zy € C such that

(Sx— )7t € B(D_s,Ds) (*)
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Spectral equivalence

Theorem [G'22]
If for all A € © C p(D) there exists zy € C such that

(52— 21) 7" € B(D_s, Ds) ()
then
oc(A)NO =0(S)NO
op(A)NO =0,(S)NO
Uess(A) ne = UesS(S) no
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Spectral equivalence

Theorem [G'22]
If for all A € © C p(D) there exists zy € C such that

(5x—2) ! € B(D-s, Ds) (*)
then
oc(A)NO =0(S)NO
op(A)NO =0,(S)NO
Uess(A) ne = UesS(S) no
If moreover p(S) N © # ) then p(A) # () and dom A is dense in H.
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Spectral equivalence

Theorem [G'22]
If for all A € © C p(D) there exists zy € C such that
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then
oc(A)NO =0(S)NO
op(A)NO =0,(S)NO
Uess(A) ne = UesS(S) no
If moreover p(S) N © # ) then p(A) # () and dom A is dense in H.

e condition (x) established e.g. by form representation theorem

Borbala Gerhat (CTU Prague) Schur complement dominance July 11, 2022 6/12



Spectral equivalence

Theorem [G'22]
If for all A € © C p(D) there exists zy € C such that

(5x—2) ! € B(D-s, Ds) (*)
then
oc(A)NO =0(S)NO
op(A)NO =0,(S)NO
Uess(A) ne = UesS(S) no
If moreover p(S) N © # ) then p(A) # () and dom A is dense in H.

e condition (x) established e.g. by form representation theorem

e generalises standard patterns like e.g. diagonal dominance

[Nagel’89, Tretter'08]
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Damped wave equations
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Non-negative distributional dampings

. 0 / B 5 1
A_<A—q _2a>’ H_W(Q)@L(Q)7 q€L|OC(Q), g>0
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Non-negative distributional dampings

. 0 / B 5 1
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e damping a non-negative form on C5°(2)
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Non-negative distributional dampings

. 0 / B 5 1
A_<A—q _2a>7 H_W(Q)@L(Q)7 q€L|OC(Q), g>0

e damping a non-negative form on C5°(2)
— a = a > 0 locally integrable

a(f,g) = /Q afg dx
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Non-negative distributional dampings

. 0 / B 5 1
A_<A—q _2a>’ H_W(Q)@L(Q)7 q€L|OC(Q), g>0

e damping a non-negative form on C5°(2)
— a = a > 0 locally integrable
a(f,g) :/ afg dx
Q

— Dirac delta type [Krej&itik-Kurimaiova'20, Krejéifik-Royer'22]

[Ammari-Nicaise'15]

a(f,g) = /rafgda, aclh (), a>0
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Non-negative distributional dampings

. 0 / B 5 1
A_<A—q _2a>’ H_W(Q)@L(Q)7 q€L|OC(Q), g>0

e damping a non-negative form on C5°(2)
— a = a > 0 locally integrable
a(f,g) :/ afg dx
Q

— Dirac delta type [Krej&itik-Kurimaiova'20, Krejéifik-Royer'22]

[Ammari-Nicaise'15]
a(f,g) :/afgda, aclp (N, a>0
r
e (second) Schur complement

SA:—i(—A+q+ 22a +A?), A#0
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Non-negative distributional dampings

e Ds closure of C5°(2) w.r.t.

1
IF13 = IVFI1Z2 + la2 fII* +a(f, ) + [|f]17:
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Non-negative distributional dampings

e Ds closure of C5°(2) w.r.t.
1
115 = IVFIIZ + a2 FII* + a(f, f) + [If]172

SA:f%(fA+q+2)\a+)\2)
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Non-negative distributional dampings

e Ds closure of C5°(2) w.r.t.
1
115 = IVFIIZ + a2 FII* + a(f, f) + [If]172

SA:f%(fA+q+2)\a+)\2)

e remaining spaces are

D1 =D_1=H1=W(Q), D_s=Di
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Non-negative distributional dampings

e Ds closure of C5°(2) w.r.t.
1
115 = IVFIIZ + a2 FII* + a(f, f) + [If]172

SA:fi (-A+qg+2xa+ )%
e remaining spaces are
D1 =D_1=H1=W(Q), D_s=Dsg
e domains of A and S, read
dom A = {(f,g) e W(Q) x Ds : (A — q)f —2a(g,-) € L>(Q)}

dom Sy = {f € Ds : (A + q)f +2)a(f,") € L*(Q)}
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Non-negative distributional dampings

Theorem [G22]

—A is m-accretive ( = strongly continuous contraction semigroup ) and
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U(p/ess)(A) \ (_007 O] = U(p/ess)(s) \ (—OO, 0]

Borbala Gerhat (CTU Prague) Schur complement dominance July 11, 2022 9/12
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e Schur complement implemented by Lax-Milgram theorem
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Non-negative distributional dampings

Theorem [G22]

—A is m-accretive ( = strongly continuous contraction semigroup ) and

U(p/ess)(A) \ (_007 O] = U(p/ess)(s) \ (—OO, 0]

e Schur complement implemented by Lax-Milgram theorem

e full equivalence on C\ {0} if a is relatively bounded w.r.t. A —gq

with bound zero (in sense of forms)
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Non-negative distributional dampings

Theorem [G22]

—A is m-accretive ( = strongly continuous contraction semigroup ) and

U(p/ess)(A) \ (_007 O] = U(p/ess)(s) \ (—OO, 0]

e Schur complement implemented by Lax-Milgram theorem

e full equivalence on C\ {0} if a is relatively bounded w.r.t. A —gq
with bound zero (in sense of forms)
e previously implemented under more restrictive assumptions
— 3 1
a=ac W™@Q), |Va<ea>+ C(q7+1)

[Freitas-Siegl-Tretter'18]
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Accretive differential dampings in weighted spaces

0 I
A= (A —2(a—-V- I\/IV)) - M= W@ e L) J
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Accretive differential dampings in weighted spaces

0 /
A:(A —2(a—V-MV)>’ Hi = Wa(Q) & L2,(Q)

e structural assumptions

w>0, Rea>0, M>0
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Accretive differential dampings in weighted spaces

0 /
A:(A —2(a—V-MV)>’ Hi = Wa(Q) & L2,(Q)

e structural assumptions
w>0, Rea>0, M2>0

e Schur complement

1
Su =5 (=V: (lea +22M) V + 202 + %), A #0
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Accretive differential dampings in weighted spaces

0 I
A= (A —2(a—-V- I\/IV)) - M= W@ e L) J

e structural assumptions

w>0, Rea>0, M2>0

e Schur complement

1
Su =5 (=V: (lea +22M) V + 202 + %), A #0

e implement suitable Schrédinger operator [G-Siegl'22]

Ty=-V-PV+ V in  L[2(Q)
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Accretive differential dampings in weighted spaces

0 I
A= (A —2(a—-V- I\/IV)) - M= W@ e L) J

e structural assumptions

w>0, Rea>0, M>0

e Schur complement

1
Su =5 (=V: (lea +22M) V + 202 + %), A #0

e implement suitable Schrédinger operator [G-Siegl'22]
Ty=-V-PV+ V in  L[2(Q)

w

e use generalised Lax-Milgram theorem [Almog-Helffer'15]
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Accretive differential dampings in weighted spaces

Theorem [G-Siegl'22]

There exists u > 0 such that —A + u is m-accretive ( = strongly

continuous semigroup )
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Accretive differential dampings in weighted spaces

Theorem [G-Siegl'22]

There exists u > 0 such that —A + u is m-accretive ( = strongly

continuous semigroup )

e Rea, M locally integrable and
w, Ima e Wh>(Q)

loc
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Accretive differential dampings in weighted spaces

Theorem [G-Siegl'22]

There exists u > 0 such that —A + u is m-accretive ( = strongly

continuous semigroup )

e Rea, M locally integrable and
w, Ima e W>(@Q)
e there exists C > 0 with
(s + M)2V(Im 2)| < C(1+ |Imal®)(Ja]2 +1)

IV(w?)| < Cw?(|a]? +1)

Borbala Gerhat (CTU Prague) Schur complement dominance July 11, 2022

11/12



Accretive differential dampings in weighted spaces

Theorem [G-Siegl'22]

There exists u > 0 such that —A + u is m-accretive ( = strongly

continuous semigroup )

e Rea, M locally integrable and
w, Ima e W>(@Q)
e there exists C > 0 with
(s + M)2V(Im 2)| < C(1+ |Imal®)(Ja]2 +1)

V(w?)| < Cw?(jalz +1)
e there exist g9 € (0,2) and Cp > 0 with

IM2V(w?)| < v2zow?(Re a + Gy)2
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Further applications



Further applications [G'22]
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Further applications [G'22]
e second order matrix differential operators

A= —-A+qg V-b [Ibrogimov-Siegl-Tretter-'16,
~\ ¢V d

Ibrogimov'17, Ibrogimov-Tretter'17,
Konstantinov'98, Kurasov-Lelyavin-Naboko'08]
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Further applications [G'22]

e second order matrix differential operators

A= —-A+qg V-b [Ibrogimov-Siegl-Tretter-'16,
| ¢V d

Ibrogimov'17, Ibrogimov-Tretter'17,
Konstantinov'98, Kurasov-Lelyavin-Naboko'08]

e Klein-Gordon operators with purely imaginary potentials
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Further applications [G'22]

e second order matrix differential operators

A= —-A+qg V-b [Ibrogimov-Siegl-Tretter-'16,
| ¢V d

Ibrogimov'17, Ibrogimov-Tretter'17,
Konstantinov'98, Kurasov-Lelyavin-Naboko'08]

e Klein-Gordon operators with purely imaginary potentials

— empty spectrum for V(x) = ix
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Further applications [G'22]

e second order matrix differential operators

A= —-A+qg V-b [Ibrogimov-Siegl-Tretter-'16,
c-V d Ibrogimov'17, Ibrogimov-Tretter'17,
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Further applications [G'22]

e second order matrix differential operators

A= —-A+qg V-b [Ibrogimov-Siegl-Tretter-'16,
c-V d Ibrogimov'17, Ibrogimov-Tretter'17,
Konstantinov'98, Kurasov-Lelyavin-Naboko'08]
e Klein-Gordon operators with purely imaginary potentials
— empty spectrum for V(x) = ix
e Dirac operators with Coulomb type potentials using Hardy-Dirac
inequality [Dolbeaut-Esteban-Loss-Vega'04, Dolbeaut-Esteban-Séré'00]

— extend abstract setting by larger space D_; D D_g

AcB(Ds, D-1), BeB(Dy, D_1), S\€B(Ds, D_s)

— generalise / recover previous results from symmetric setting

[Esteban-Loss'07, Esteban-Loss'08, Schimmer-Solovej-Tokus'20]
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Thank you for your attention!
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