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The relativistic Boltzmann equation

0F + 5 .V, F=Q(F,F), xeQ, peR? t>0
p

F = F(t,x, p): probability density in (position,velocity)
Q c R3: domain in space

% - VxF: free transport term

p=(p*, p* p®) € R, p" = (p° p) where p° = \/1+ |p|? is
the energy of a relativistic particle with momentum p.

Q(F, F) is the, local in (t,x), “collision operator”:

Q.0 = [ da [ du wole.OlF)NG) - F(p)A(a)),

where vz = vg(p, q) is the M¢ller velocity given by
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Quantities in the collision operator

The post-collisional momentum are written for w € S? as

,_Ptq g (p+q) w
P= +2( +(5—1)(P+Q)W)a

,_Ptq g (p+q) w
q —T—E(WﬂL(f—l)(PﬂLQ)W)

where p° = \/1+ [p|? and ¢° = \/1+[q[2, £ = ”*" . The

scattering angle, cos#, is defined as

g(p,p')?

cosf=1-2 .
g(p.q)?

Known to be a well defined angle. The relative momentum g is

gzg(p,q)Z\/2(P°q°—p-q—1)20'

And s = g2 + 4.



Hypothesis on the collision kernel

o(g,0) = ®(g)oo(0), ®(g) =0, oo(f) =0,
where
(D(g) = C¢’gp7 C¢ > 0.
Additionally 6 +— o¢(0) is not locally integrable:

oo(/) =672, ~y€(0,2), VOe(0,7/2).

We allow that

3
2 2
51 <p<

where p + v > 0 are called hard potentials,
and p + v < 0 are called soft potentials.
® This full set of physical assumptions on the collision kernel
proposed by Dudynski and Ekiel-Jezewska in 1988 in CMP.
® This collision kernel makes the relativistic Boltzmann equation
into a non-local fractional diffusion equation.



Examples of relativistic kernels from physics literature

Maller Scattering: de Groot, van Leeuwen, van Weert (1980).

This is an approximation of electron-electron scattering.

1 Qu?—-1)> 2 —v?>-1/4 1

2 2 2
= - S -1
7= u?(u?2 —1)2  sin*f sin6 + 4(u )
where u = z—‘fc and rg = #{:CQ.

Israel, J. Math. Phys. (1963)

Other example kernels such as Short range interactions, Compton
Scattering (de Groot, van Leeuwen, van Weert (1980)), and
Neutrino Gas (Dijkstra, van Leeuwen (1978)).



Relativistic Maxwellian equilibrium: Juttner Solutions

The equlibrium states are characterized as a particle distribution
which maximizes the entropy subject to constant mass,
momentum, and energy. They are given by

cp0

e_ kgT

- 47I'CkB TKz(k;—zT),

J(p)

where kg is Boltzmann constant, T is the temperature, and K>
. 2 3
stands for the Bessel function Kp(z) = & [[° dt e #(t? — 1)z.

The Juttner solution with normalized constants is




(short incomplete) list of Relativistic Boltzmann results

® Bichteler (1967 local wellposedness for a bounded cross-section)

® Dudyriski and Ekiel-Jezewska (1988-89 L? solutions to linearized equation)
® Glassey and Strauss (1993 smooth solutions on T? for the hard potentials)
® Glassey and Strauss (1995 whole space result for hard potentials)

® Strain (2010 global existence and stability for soft potentials, T%)

® Strain (2010 global Newtonian limit near vacuum)

® Speck and Strain (2011, Hilbert expansion to relativistic fluids)

® Guo and Strain (2012 two-species Vlasov-Maxwell-Boltzmann near eq.)

® Strain and Zhu (2012 soft potentials in R?)

® Lee and Rendall (2013 global existence for spatially homogeneous and
hard potentials, both Minkowski and Robertson-Walker spacetime)

® Duan and Yu (2017 global existence and stretched exponential decay for
soft potentials, T%)

® Wang (2018, initial smallness in L}L5° and mass, energy, entropy)
® Nishimura (2018, initial smallness in L;?"L},Joc and mass, energy, entropy)
® Bae, Jang, and Yun (2021, global wellposedness for quantum statistics)

® Jang and Strain (2022, global wellposedness without angular cutoff)



The (Newtonian) Boltzmann equation (1872)

OF +v-ViF=Q(F,F), xeQ, veR3 t>0

Q c R3: domain in space
v - V4 F: free transport term

Q(F, F): collision operator, local in (t,x), quadratic operator
Q(F, G)(v):/ dv*/ doB(v—vi,o)[F(V.)G(V)—F(v)G(Vv)].
R3 S2

Pre-post collisional velocities (v, vi) and (V/, v}) satisfy

S v+ v, ]v—v*\a
2 2 ’
R e A

T 2



Newtonian “cancellation lemma”

Collision kernel: B(v — vy, 0) = |v — v, |*0~27" for a > —3 and
v € (0,2). Alexandre-Desvillettes-Villani-Wennberg (2000):

/ dv | do B(v— vy, 0)(F(V') = F(v)) = (F * S)(w)

S(z) = G|z|¥, 0< G5 < 0.
This holds for a general class of functions F(v). This is based
upon the change of variables v/ — v with Jacobian determinant
av’

1 s 1 T
= — > — << —=
| = (cos(6/2))? > = >0 (0_9_ 2)

This was a big part of the foundation for estimates of the non-local
fractional diffusion of the Newtonian Boltzmann equation.



Newtonian “cancellation lemma” in general

® Consider the difference
u=9+(1-9)v, 9e][0,1].

® The change of variable u — v has Jacobian determinant:

() () s (o 3) o

since cosf > 0on 0<6 <7/2.

® Various versions of this change of variables has served as the
foundation for virtually all estimates of the non-local
fractional diffusion for the Newtonian Boltzmann equation.

@
dv

® \We show in the special relativistic situation that this
analogous change of variables is generally not well defined.



Relativistic Carleman representation

For G = G(p,q,p’,q") we have

dp’
/R /R3 Pso(g, )5 (" + ¢* — p* — q)G
/ / LT, (£,0)G,
R3 EY, 8zq°

where G has a sufficient vanishing condition so that the integrals
are well-defined. Here E;’,_p is the two-dimensional hypersurface
for relativistic collisions which is defined as

El_,={qeR: (p" - p")(pu+qu) =0}
And the measure is defined by

M _
drq = dg u(p® + q° — p°)é <g + M) )
2 g
Here u(x) =0if x <0, and u(x) =1if x > 0. Also g = g(p, p')

measures the difference between p and p’.



Proof of the lack of a relativistic “cancellation lemma”

Formally write down the following relativistic quantity:
[ da [ der vaorle. o)) = ) = E(p) ~ o)

Here CE(p) and (B (p) are written in a relativistic Carleman
representation. Recall the relativistic Maxwellian (a Schwartz
function) is

Merely assuming the collision kernel: o(g, ) = constant. Then
CP(p) < oo, but (F(p)=cc.

We conclude that there is no such “cancellation lemma” for the
relativistic Boltzmann equation, and this statement is independent
of the coordinates choosen. (Jang and S, 2022, Ann. PDE,
10.1007/s40818-022-00137-2)


http://doi.org/10.1007/s40818-022-00137-2

Linearization of relativstic Boltzmann equation

We consider the time evolution of perturbations

F(t,x,p) = J(p) + VI(p)f(t,x,p).

The perturbation f = f(t, x, p) evolves via the equation
Oef + % Af + L = T(f,f),
where the non-linear collision operator is
[(f,h) = J~2Q(VIF,VIh),

and the linearized collision operator is given by

—T(f,VJ) =T (VJ,f).



Global wellposedness nearby equilibrium without cutoff

Theorem (Jang and S, Ann. PDE (2022))

Fix N > 2, which represents the total number of spatial derivatives. Fix
~v € (0,1). Choose

fo = fo(x, p) € HY(T® x R)

for any fixed | > O which satisfies the conservation laws.
There is a small no > 0 such that if

||f0||H,’V(1r3xR3) < 7o,

then there exists a unique global solution, f(t,x, p), to the relativistic
Boltzmann equation which satisfies

F(t,x, p) € L ([0, 00); HI'(T* x B%)) 1 L3((0, 00): 5 (T° x ).

Non-negativity of F?




Non-negativity and local wellposedness theorems

Theorem (Jang and S, Non-negativity)

Fix an integer N > 2. Let F = J + V/Jf be a solution of the relativistic
Boltzmann equation under the non-cutoff hypothesis with initial condition
1ol v 2 that is sufficiently small. (Such a solution exists locally-in-time by the

theorem below.) Suppose Fo = J + \/Jfy > 0 initially on T3 x R3. Then, we
have F >0 on [0, T] x T} x R3.

Theorem (Jang and S, Local wellposedness)

For any sufficiently small My > 0, there exists a time To = To(Mo) > 0 and
My > 0 such that if ||f5||2n,2 < My, then there exists a unique solution
x “p

F = J 4+ V/Jf to the relativistic Boltzmann equation on [0, To) x T> x R® such

that
sup M(f(t)) < My,

0<t<Tp

where the energy norm is defined as

def

M(F()) Z [1F(t)llpez +/O [E{Coll"Pes




Sequence of approximated solutions

® For the proofs of both non-negativity and local-wellposedness,
we consider the solution to the Boltzmann equation as a limit
of approximate solutions {F"},>¢ of the form

OF™ +p -V, F"+1 Q(F", Fr+1y,
0

FO(t,x,p) = J(p) = e P,
F’H_l’t:O = FO > 0.

® This construction of the sequence of approximated solutions is
slightly different from that of Jang-S (Ann. PDE, 2022), and
we need a proof for the local existence again using this
sequence.

® \Want to emphasize that a lot of computations that are
“trivial” in the Newtonian case become very serious
challenging algebraic and conceptual difficulties in the special
relativistic situation.



For the proof of non-negativity

® Fix any A > 0. Taking a sufficiently large x > 0 such that
% > T, we define for n > 0

h(t,x, p) = J-EF"(t, x, p),

with
J = Ju(t,p) & e”OrOP,

® Then a sequence of approximated solutions {h"},>¢ satisfies
atthrl + ﬁ . vxthrl + Kpothrl — I—ﬁ(hn’ hn+1)

where
F5(f, h) = Jo(t) "2 QU (t)F, Ju(t)h).

® This uses the maximum principle approach of Alexandre,
Morimoto, Ukai, Xu and Yang from (ARMA, 2010)



Main strategy for the proof of non-negativity

® Consider the convex function
1 1
B(s) = 5(5—)2 = 55(5—)7

with s_ = min{s, 0}.
® Our goal is to prove B(h™™) = 0 under the following
induction hypothesis:

@ Suppose that there exists a A > 0 such that, for all n € N, we
have

supHeApoF”(t,x, p)H

<
neN Loo ([0, TIXTE:L2(RE))

where M > 0 is independent of n.
® Suppose that F" > 0.



[2-type energy inequality for h™!

Obtain with algebraic weight function ¢(x) that

d
— / / B(h™ Y p(x) 2 dxdp+r / / p°B(h" ) (x) "2 dxdp
dt Jgr3 JT3
< / / F=(h", A" YA o(x) "2 dxdp
R3 JT3

/T3dx/R3dp/R3dq/ dw veo(g, 0) Jult, GV AL (P)ep(x) 2

x (h"(g)hH(p') = h"(q )h"“(p))

+C / / B(h™ Y p(x) 2 dxdp

= A1+ A + C/ 6 (h™1Yp(x) 2 dxdp.



Further decompositions

A1 can further be decomposed into Ay = By + B>

5% [ o [ db [ da [ deveole.0)t QR (@K (p)
T3 R3 R3 S?
x (hIFH(P') — W (p))
and

BQdef/de/Radp/qu/ deo vr(g,0) (Jult, @) — Jult, @)

< W(q)h (P)RL(P).



New representation and decomposition of 5,

Bi=3 [ o [ op [ da [ dovole.0r(e () gL,
x (W3 (p') = he (p))?
_Z /1r3 dx /]R3 dp/R3 dq/ dw veo(g,0)Js(t, q)h"(q)

(o B o

+/T3 dX/Rs dp/Ra dq/ dw veor(g, 0) Ju(t, a)h"(q)

(o o

CJ_EfBla+Blb+Blc-

® 31, is non-positive.

¢ (1 - iiﬁgj ) > 0 always pointwise.

® Thus B, < 0 since [} (p)[> > 0 and by assumption h” > 0.




The goal is to prove the following inequalities:
® Ay, Bya, B <0.

© Bie S Jrad [H2PR, [0,
2

® For any € € (0,1 — v), we have

< n+12 n
B 5 [ I, W,



® The previus inequalities will lead us to obtain

= /R i / B(h"™ ) (x) "2 dxdp
/1%3 /T3 hn+1 )72dxdp

<cC B )p(x) 2 dxdp,
R3 JT3

where the constant C now depends on M, 6, p,~, and ¢, if we
choose § > 0 sufficiently small.

® Then by the Gronwall inequality, we have

[ [ o e 2o < 0
R3 JT3

since B(hg*l) =0.
® Thus B(h"+1) = 1(h™™)2 = 0 which implies A"+ > 0.



® Derive the Carleman dual representation for B;.

® QObtain the following equivalent center-of~momentum
representation

Blz/dx/ dp/ dq/dw
T3 R3 R3 S2

vso(g,0)Je(t, q)h"(q)h2T1 (P)

50(8)g 1 56(8)8*
X | = h"Jr + h"Jrl 1- .
[5¢(g)g (he) = h5" () (°) sd(g)g*
® Sum this representation with the original representation.

® Use the dyadic decomposition of the region near the angular
singularity g = 0 for both B; and B>.



Non-negativity lemma

Let {F"}en be a sequence of the approximated solutions.
Suppose that there exists a A > 0 such that for all n € N we have

supH Ap° F"(t,x p)H

neN Loo([0, TIXTEL2(R3))

where M > 0 is independent of n. Suppose that F" > 0. Then, we
have F™1 >0 on [0, T] x T3 x R3 if F"*(0,x,v) > 0 on
T3 x R3.

v

® This lemma implies our non-negativity theorem as long as the
solution F in the strong pointwise limit F" — F exists.



Local existence and uniqueness of such a solution F

® Further consider the perturbation around the relativistic Maxwellian J as
F'=J+VIf"

® Obtain the following linearized system for f” (slightly different from that
of Jang-Strain (Ann. PDE, 2022):

atfnJrl +I3 . fo"+1 — r(/:n7 \/j) + r(\/j’ fn+1) 4 F(f”, f'nJrl)7
f'o(t7X’ p) = 0’
fn+l|t:0 — fb

® QOperators are defined as:
r(f, h) & J7V2Q(VIf, VIh).
Kf = ¢e(p)f — T(F,VJ),

N = —T(/3,1) = ep)f
=@ = [ da [ do vole. )7 () ~ () VIV T@).

® Then the weights satisfy the following asymptotics; for any ¢ € (0,+/2),
there exists a finite constant C; > 0 such that we have

G (p)] S C(p°)

Pty

and  ((p) =~ (p°) * .

L
5te



Preliminary estimates for the operators I', IC, N/

Lemma (Jang-S (Ann. PDE, 2022))

Suppose that |a| < N with N > 2 and | > 0. Then we have the estimate
| (w0 (F, 1), 0%0) | < 1F Loz 1Al g 10z

where (-, ) is the L* inner product in both x and p.

Lemma (Jang-S (Ann. PDE, 2022))

For any fixed e > 0 small enough, we have that

(P VI, W S Fllz , Nhllgs
P37

—€

where (-,-) is the L? inner product in p.




Preliminary estimates for the operators I', IC, N/

Lemma (Jang-S (Ann. PDE, 2022))

We have the uniform coercive lower bound estimate:
2
NEE) 2 Il

where (-,-) is the L? inner product in p.

A direct consequence:

We have the uniform coercive lower bound estimate. For any € € (0, ), there
exists a finite constant C. > 0 such that

N+ Cef, f) 2 Ifllipr — CIIFIZ
p, G +e




Main energy estimates for the local wellposedness

Let {f"} be the sequence of iterated approximate solutions for the linearized
relativistic Boltzmann equation. Then there exists a short time T > 0 such
that for Hng?_,NLZ sufficiently small, there exist uniform-in-n constants Cp > 0

and 8 > 0 such that

sup sup M(F"(t)) < 2Go||fol[Fmize” ",
n>00<t<T x P

where the energy norm is defined as

MF(2) = I1F(0) sz + / 1) g

.

® This uniform bound and compactness will establish the local existence of
a strong solution.

® The uniqueness also follows, since the strong limit solves the same
linearized Boltzmann equation as Jang-Strain, Ann. PDE (2022).
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