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CHARLES STEIN AND PAUL MALLIAVIN

In 2009, together with I. Nourdin, we discov-
ered a way of combining Stein’s method for
probabilistic approximations (Stein, 1972) ...

... with the Malliavin calculus of variations
on a Gaussian space (Malliavin, 1978).

Crucial notion: integration by parts formulae
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WHERE IT ALL STARTED

Initial motivation: quantitative fluc-

tuations of functionals of infinite-

dimensional Gaussian fields, like e.g.
| a (fractional) Brownian motion {X;}.
Key notion: Breuer-Major CLTs.

Typical examples:

*x Power variations:

n
Z ‘sz‘ - Xfi—1|pf n — oo,
i=1

* Centered empirical moments:
m

T T
/ <Xt—/ Xudu) dt, T — oo,
0 0
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DISTINGUISHED APPLICATIONS/ EXTENSION

Level /excursion sets of random fields
on manifolds (Marinucci and Peccati,
2011, Nourdin, Peccati & Rossi, 2017, ...)

Phase transitions in sparse recovery prob-
lems (Goldstein, Nourdin & Peccati, 2014).

Random geometric graphs (Reitzner
& Schulte, 2010, Last, Peccati & Schulte,
2016, Lachieze-Rey, Peccati & Yang, 2022,
Schulte & Yukich, 2021, ...)
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* Main focus on normal approximations, with usual notation:

e ¥ (u,0?) (1-dimensional)
e 4;(a,C) (d-dimensional).

+x Form > 1,

8n = (g1/ "'/gm)

indicates a vector of i.i.d. .#7(0,1) random variables.
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SETTING, II

*x We write

W = {Wt te [O,l]}

for a standard Brownian motion on [0, 1]:

e W is Gaussian,
Wo =0,
E[W;] =0,

W is continuous.

Cov(Ws, W) =sAt,

x Porall h € L2([0,1]) (deterministic)

W(h) :

1
/ h(s)dWs ~ A (0,||1]*) (jointly Gaussian)
0
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THE PROBLEM, I

* Consider a square integrable random variable F = F(W)
such that E[F] = 0, EF? = 1.

* Goal: compare the distribution of F and that of

Z ~ ¥ (0,1).

* Tool: the 1-Wasserstein distance:

Wi(F,Z):= inf E|A—B|= sup [Eh(F)—Eh(Z).
A~E,B~Z heLip(1)

* Remark: the analysis extends to the Kolmogorov, total varia-
tion, bounded Wasserstein (Fortet-Mourier) (...) distances.
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THE PROBLEM, 11

* For a smooth ¢ : R — IR, introduce the operator
Tg(x) = xg(x) — g'(x)
(adjoint of g — ¢’ in L2(R,e **/2/\/277)).

* Stein’s method: W (F, Z) is actually bounded by a discrep-
ancy:

Wi(F,Z) <S(F,T,G) := sup [E[Tg(F)l,
g€

where G := {g € C': ||¢'|| < V2/7, |g"]] <2}
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* Fix g € G: how to (uniformly) bound

[E(Ta(F)]| = [EFg(P) — Elg'(F)]| 2

* Idea: Assume that F = F(W) belongs to the domain of some
Malliavin-type operators.
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THE ORNSTEIN-UHLENBECK SEMIGROUP

* Fort > 0and F = F(W) integrable, set

PF = PF(W) i= B [F(e™'W + V1 — e W)

wl,
where W' = independent copy of W.

* {P;: t > 0} = “Ornstein-Uhlenbeck semigroup” (Mehler’s
form).

* One has that

Po)F =F and PsF = EJ[F].
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SOME FACTS, I

x For n > 1 and a symmetric (deterministic) f € L?([0,1]"),
define the Wiener-Ité multiple stochastic integral of order
n:

t by
_ n'/ /1 1f () oo b ) AW, AW, - - AW,

x Fort > 0, the eigenspaces of P; : L?(c(W)) — L?(c(W)) are
the spaces {C,, : n > 0} defined as: Cj := R, and

Cu:={I,(f) : f € L*([0,1]"), symmetric}, n > 1.

* C,, := “nth Wiener Chaos of W” (=~ infinite-dimensional coun-
terpart of Hermite polynomials of degree n)
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SOME FACTS, 11

* Foreveryn >1andt >0,
Pil,(f) = e ™1.(f), VfeL*([0,1]").

x [Wiener Chaos Expansion] for every F € L2(c(W)), 3! {f, :

n > 1} such that
F— E[F] + f;lzn(fn) (in L)
e
* As a consequence, for every F € L2(c(W)),
P.F = E[F] + i e Iy (f).
n=1

* Using It6’s isometry,

EF? = E*F + Y nl|fal*
n=1
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* The generator L of {P;} is given by

[ee)

LF = — Y nl(fs), Fe€domlL.

n=1
x The pseudo-inverse L' of L is given by: forall F € L?(c(W))

L7'F=— il%In(fn)

* One has that

LL'F=L"'LF=F—EF.
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MALLIAVIN DERIVATIVES, I
* For F = f(Wy,..., Wy,), (f smooth) define the Malliavin
derivative of F as
4.9
DiF:=)_ gf(wtl,..., Wi )1, (x),  x € [0,1].
i=1 9t

x The random element DF takes values in L?([0, 1]).
* By density and closability, the definition of D can be ex-
tended to the class

D2 .= {F : Znn!anHz < oo},
n
in which case
D.F =Y nl,_1(fu(x,)).
n
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MALLIAVIN DERIVATIVES, 11

* Chain Rule: for ¢ smooth

* Write ¢ for the adjoint of D (the “Skorohod integral”). It
verifies: for all u € dom 6 and all F € D12,

E[F5(u)] = E [/01 1(x) Dy F dx} .— E(DF, u)

(“integration by parts”).

* Key relation: F € dom L if F € D2 and DF € dom§, in
which case
LF = —6DF.
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REMARKS

* When W is replaced by g, = (g1, ..., §m) ~ #m(0,1,,), Malli-
avin operators boil down to familiar objects:

e Df(gm) = Vf(gm)
o 5(f1(8m), s fn(8m)) = LiZq &ifi(8m) — Zi,j %fi(gnl)/’
e [ = —)V is a second-order differential operator;

e =T form=1.
* In general, for F, G sufficiently smooth,
(DF,DG) = % [L(FG) — FLG — G LF] := “Carré du champ”
See: Ledoux, 2012; Azmoodeh, Campese & Poly, 2013; Nourdin,

Peccati & Swan, 2014; Nourdin, Ledoux & Peccati, 2016.
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CrucIiAL COMPUTATION

% For F = F(W) such that EF = 0 and [EF? = 1, we want to
bound

[E(Tg(F)]| = [ElFg(F)] — E[g'(F)]|,

for all g such that [¢'| < v/2/71.
x Assume F € D2, Then:

E[Fg(F)] = E[LL™'Fg(F)] = —E[6(DL™'F)g(F)]
~E(Dg(F),DL™'F) = E[¢/(F)(DF, —DL™'F)].

x Finally, writing Hr := (DF, —DL"'F)
\/f ’IE[Tg(F)]‘ < E|1 — Hg| < Var'/2(H).

17/27



BASIC BOUND

Let Z ~ .4(0,1).

Theorem (Nourdin & Peccati, 2009)
Let F = F(W) € D2 be such that EF = 0 and EF? = 1. Then,

Wi(F,Z) <4/ % Var!/2((DF, -DL"'F)).
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FOURTH MOMENT THEOREM

Let Z ~ .#(0,1).

Theorem (Nourdin, Peccati & Reinert, 2010)
Forq = 2,3, ..., assume that F € C, has variance one. Then,

Wi(F,Z) < \/ Zznqz(lEF‘l EZ4) (: \/ Zg’mz(l‘EP4 3)) .

Remark: recovers Nualart & Peccati, 2005.
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SECOND ORDER INEQUALITIES
* The relation
E[Fg(F)] = E[¢'(F)(DF, ~DL™'F)],

is also the crucial identity leading to second order Poincaré
inequalities (Chatterjee, 2007, Nourdin, Peccati & Reinert,
2010).

* In our setting, such a result reads : for a smooth F,

Wi(F, Z) S E[|D*Fl[,)“E[| DF|*]/%.

* Compare with the usual Poincaré inequality:

Var(F) < E||DF|%
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MULTIDIMENSIONAL EXTENSIONS

* Multidimensional bounds in the 1-Wasserstein distance:
Nourdin, Peccati and Réveillac, 2008. In the convex distance:
Nourdin, Peccati & Yang, 2021.

* Bounds on relative entropy (any dimension): Nourdin, Pec-
cati & Swan, 2014.

* Application to functional inequalities (entropy and trans-
port): Ledoux, Nourdin and Peccati, 2016

* Characterization of convergence on Wiener chaos: Nourdin
and Poly, 2014, and Nourdin, Nualart & Peccati, 2015.

21/27



POISSON MEASURES

* Let (A, o7, i) be a Polish space endowed with a locally finite
Borel measure p.

* We denote by 17 a Poisson measure with intensity y. Recall
that: (i) 7(B) ~ Po(u(B)), and (ii) VB,C € &/ s.t. BNC = Q,
7(B) and 1(C) are independent.

* Standard arguments yield that 7 is indeed a random point
measure such that

H’{iy({x}) €{0,1}, Vx € A} =1

* Here, the role of D is played by the “add-one cost operator”
D¥F(y) = F(i1 +6x) = F(1),

(NB: this is not a derivation).
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TYPICAL STATEMENTS

* Peccati, Solé, Utzet & Taqqu, 2010: for Z ~ .#°(0,1) and F
“regular” and such that EF = 0, EF? =1

1/2

Wi (F,Z) < \/Var(XF) + </Z(D;FF)4;¢(dx)> ,

where Xp := — [, DYF (D L7'F) p(dx).
* Second order Poincaré inequalities are available also in this
framework (Last, Peccati & Schulte, 2016): for Z, F as before,

Wi(F, 22 SE | [(DLF) uld)

+E | (PR p(an)| <E | [ [ (02D} PP udntay)],

yielding that normality arises from “small local contribu-
tions”, and “vanishing second order interactions”.
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POT-POURRI

* Fourth moment theorems on the Poisson space: Dobler &
Peccati, 2018; Dobler, Vidotto & Zheng, 2019.

* Second-order inequalities and “geometric stabilization”:
Lachiéze-Rey, Schulte & Yukich, 2017; Schulte & Yukich,
2018-2021 (multidimensional convex distance).

* Geometric stabilization without Poincaré: Lachieze-Rey,
Peccati & Yang, 2022

* Stable convergence on the Poisson space: Herry, 2021.
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A WEBPAGE

https://sites.google.com/site/malliavinstein ‘

Malliavin-Stein approach

A webpage maintained by lvan Nourdin

Why this webpage?
= Inaseminal paper of 2005, Nualart and Peccati discovered a surprising central limit theorem (called the “fourth moment theorem" in the sequel; alternative proofs can be found
here, here and here) for sequences of multiple stochastic integrals of a fixed order: in this context, convergence in distribution to the standard normal law is actually equivalent
to convergence of just the fourth moment! Shortly afterwards, Peccati and Tudor gave a multidimensional version of this characterization.

= Since the publicati ‘these two ing paper i d this theme have b idered. Among them is the work by Nualart and

Ortiz-Latorre, giving a new proof only based on Malliavin calculus and the use of integration by parts on Wiener space. A second step s my joint paper “ Stein's method on

Wiener chaos" written in collaboration with Peccati in which, by bringing together Stein's method with Malliavin calculus, we were able (among other things) to associate

quantitative bounds to the fourth moment theorem.
= It turns out that Stein's method and Malliavin calculus fit together admirably well, and that their interaction has led to some remarkable new results involving central and non-
central limit theorems for functionals of infinite-dimensional Gaussian fields.
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| THANK YOU! |
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