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Goal : use Stein's method to study stability of optimizers in variational

problems over spaces of probability measures.

Consider

F ∗ := inf F (µ), µ ∈ A ⊂ P(E ).

Optimizer : measure µ such that F (µ) = F ∗. F∗ : set of minimizers

Near-optimizer : F (µ) ≤ F∗ + ε.
Question : when are near-optimizers close to actual minimizers ?
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Goal : estimates of the form

d(µ,F∗) ≤ C (F (µ)− F ∗)α.

d is a distance on the space of probaility measures. It will typically be here

the L1 Wasserstein distance

W1(µ, ν) = inf
f 1−lip

∫
fdµ−

∫
fdν.

C and α are constants, which hopefully behave nicely with respect to the

parameters of the problem. Here, we will often care about dimension-free

estimates.

12 avril 2022 3 / 23



The general philosophy in what follows is that for many variational

problems over spaces of probability measures, the Euler-Lagrange equation

takes the form of an integration by parts formula.

We can then expect near-minimizers to almost satisfy the same formula.

If yes, can try to use Stein's method to compare near-minimizers to

minimizers. Idea appears in works of Utev (1989).
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If we look at a function of the form

F (µ) = sup
f ∈H

∫
H(f ,∇f )dµ

the Euler Lagrange equation for an optimal function f0 is∫
h∂1H(f0,∇f0) +∇h · ∇2H(f0,∇f0)dµ = 0

for all h ∈ H.
Can derive for optimal measures an integration by parts formula, that

depends on the optimal function f0. Need information on f0 to characterize

the measure, will be possibel for the results presented today.
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An arti�cial example

Consider the SDE

dXt = −∇V (Xt)dt +
√
2dBt .

Markov process, with generator

L f = ∆f −∇V · ∇f

and invariant probability measure µ = e−V dx .
Expect ν to be close to µ if

∫
L fdν ≈ 0 for a large enough class of test

functions.
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The relative Fisher information of a probability measure ν = ρµ is

I (ν) =
∫
|∇ log ρ|2dν.

µ is trivially the unique global mnimizer of the Fisher information. What

about near-minimizers ? Can we control W1(µ, ν) by the Fisher

information ?

Variational viewpoint :

I (ν) =

(
sup

{∫
∇ log ρ · ∇gdν;

∫
|∇g |2dν ≤ 1

})2

=

(
sup

{∫
L gdν;

∫
|∇g |2dν ≤ 1

})2

≥
(

sup

{∫
L gdν; ||∇g ||∞ ≤ 1

})2

.

This is the kind of quantities that we use to control distances when

applying Stein's method.
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Rigorous result :

Theorem (Guillin, Leonard, Wu and Yao 2009, Mijoule, Reinert and
Swan 2019)

Assume that solutions to the Poisson equation L f = g with g a

1-Lipschitz function are α-Lipschitz. Then for any ν we have

W1(ν, µ)2 ≤ α2I (ν).

Can be adapted to other types of Markov generators (discrete spaces,

non-constant di�usion matrices, Riemannian manifolds...).

This inequality implies Gaussian concentration for µ.
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An aside : why Fisher information ?

The evolution of the law of Xt can be viewed as the gradient descent of the

relative entropy Entµ(ν) =
∫
ρ log ρdµ with respect to the Wasserstein

distance W2.

The Fisher information, as the derivative of the entropy along the �ow, can

be re-interpreted as the squared norm of the gradient.

Transport-information inequality interpreted as

d(ν, µ)2 ≤ C |∇F (ν)|2.

Classical tool for gradient descent (Lojasiewicz-type inequality).
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Outcome 1

Consider a uniformly log-concave measure on Rd , that is µ = exp(−V )dx
with HessV ≥ Id .
Gaussian concentration : for any 1-lipchitz funciton f ,∫

eλf dµ ≤ exp

(
λ2/2 + λ

∫
fdµ

)
.

Implies deviation estimates via Cherno�'s inequality.

Applications in statistics, geometry, information theory...
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Theorem (Courtade & F., 2020)

Assume that the convexity condition holds, and that there exists f
1-lipschitz and λ > 0 such that∫

eλf dµ ≥ exp

(
(1− ε)λ2/2 + λ

∫
fdµ

)
.

Then, up to a translation and rotation,

W1(µ, γ1 ⊗ µ′) ≤ C (λ)
√
ε

where γ1 is a one-dimensional standard gaussian measure.
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Outcome 2

Classical topic in geometry : optimizing a geometric quantity subject to a

constraint.

Eg. : Isoperimetric problem. Among all shapes with �xed volume the sphere

minimizes the perimeter.

We consider a smooth N-dimensional Riemannian manifold (M, g) whose

Ricci curvature tensor satis�es

Ric ≥ (N − 1)g .

The constant is chosen so that the sphere with unit radius satis�es this

bound.
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Bonnet-Myers Theorem : the diameter is maximized by the sphere.

Obata ('62) : this bound is rigid : among all smooth N-manifolds with

Ric ≥ N − 1, the sphere is the only equality case.

Anderson ('90) : this characterization is unstable.

Many works in geometry (Cheeger & Colding, Cheng, Croke, Ketterer,

Petersen, Aubry, Cavaletti, Mondino & Semola...)
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Theorem (F., Gentil & Serres, 2021)

Assume the curvature condition holds, and that the diameter is greater

than π − ε for some ε small enough. Then there is an eigenfunction of the

Laplacian f such that W1(f #Vol ,Z−1N (1− x2)N/2−1) ≤ C (N)ε1/N .

The symmetrized beta distributions is the distribution of a coordinate on a

sphere, which is an eigenfunction.

Fully quantitative statement for almost minimal spectral gap, with sharp

dimension-free exponent. Cheng, Croke : spectral gap almost minimal i�

diameter almost maximal.
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Stability of Poincaré inequalities

Consider an isotropic centered probability measure µ on Rd . Its Poincaré

constant is the smallest constant CP such that

∀f , Varµ(f ) ≤ CP

∫
|∇f |2dµ.

Testing a linear function, we see that CP ≥ 1.

For the standard Gaussian measure, CP = 1. Simplest proof : L2

decomposition along Hermitte polynomials.

Chen & Lou (1987) : CP = 1 i� µ is a standard Gaussian measure.
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Theorem (Utev 1989, Courtade, F. & Pananjady 2019)

For an isotropic centered probability measure µ, we have

CP ≥ 1 +
W2(µ, γ)2

d
.
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Scheme of proof in dimension one : expanding

CP

∫
(f ′)2dµ− Varµ(f )

for f = x + εh and h centered, get

2ε

∫
(CPh

′ − xhdµ+ ε2
∫

CP(h′)2 − h2dµ ≥ 0.

Considering bounded lipschitz test functions and optimizing in ε gives

sup
||h||∞,||h′||∞≤1

∫
h′ − xhdµ ≤

√
CP − 1.

Applying Stein's lemma concludes the proofs.
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Other results

Stability of Poincaré constants : Poisson distributions (Utev), stable

laws (Arras-Houdré), general targets in dimension one (Serres), free

probability (Cébron, F. & Mai).

Higher eigenvalues (Serres)

Log-Sobolev constants (Courtade & F.)

Generalized Cauchy distributions for geometric problems (F., Gentil &

Serres)
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Question 1 : stability of the optimizer for in�nite-width

two-layer neural networks

Neural network with two layers : given a target function g , �nd parameters

(w ,A, b) ∈ (Rd+2)N such that

fw ,A,b(x) =
1

N

N∑
i=1

wiρ(Aix + bi ) ≈ g .

Loss function R(w ,A, b) = E[(fw ,A,b(X )− g(X ))2].
Can run gradient descent to approximate optimal parameters. Problem :

many local minimizers.

Chizat & Bach 2018 (and many others) : Embed

(w ,A, b) −→ 1
N

∑
δwi ,Ai ,bi ∈ P(Rd+2). fw ,A,b can be written as an integral

w.r.t. this measure, so R extends to a function over P(Rd+2).
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Lift the gradient descent to the gradient descent of R in P(Rd+2) with

respect to W2. At most one local minimizer.

Minimizer might be at in�nity, so add a penalization R(mu) + εEntdx(µ).
Nice e�ect on the gradient descent. Other types of penalizations, such as

Renyi entropy or Dirichlet forms.

Is the minimizer stable ? Or when viewed as a minimizer of the energy

dissipation along the gradient descent ?
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Question 2 : Stein's method as a tool for Lojasiewicz

inequalities ?

Gradient Lojasiewicz inequality : if f is an analytic function on a compact

set, for any critical point x0 there are constants C , θ such that

(f (x)− f (x0))θ ≤ C |∇f (x)|.

Equivalent to dist(x ,Zf )α ≤ C |f (x)|. Applications to convergence to

equilibrium of gradient descent.

Can we use Stein's method as a tool to prove such inequalities over spaces

of probability measures ?
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Question 3 : Stein's method for shapes ?

Many geometric problems take the form of optimizing a geometric quantity

over sets of �xed volume (isoperimetry,...)

Stability : if A is a shape that minimizes some functional F , do we have

|A∆B|α ≤ C (F (B)− F (A))?

If A an B have same volume,

|A∆B| = dTV (1A,1B).

Examples : stability for isoperimetric inequalities, Faber-Krahn inequality,

etc...

Can Stein's method �nd a use here ? Problem : natural integration by parts

formulas have boundary terms.
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Thanks !
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