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Reconfiguration Problems

Reconfiguration problems arise when we wish to find a step-by-step
transformation between two feasible solutions of a problem such that
all intermediate results are also feasible.

[Independent Set Reconfiguration under Token Sliding rule]

Input:

A graph G and vertex sets S and T of G.

Question:

Is there a TS-sequence between S and T?

Token Sliding rule: A token can be moved to only an adjacent vertex
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Regular Induced Subgrapns

« We denote by G[U] the subgraph of G induced by U.

« We say that a vertex subset U of a graph G is a d-regular
set of G it G[U] is d-regular.

Vertex subsets §,,5,,5; € U ’. 1
3-regular Induced subgraph G[U] 51 ‘ -
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Regular induced subgrapn

d =0
Independent set

d =1
Induced matching

d =2
Induced cycle
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Regular Induced Subgraph Reconfiguration

d-Regular Induced Subgraph Reconfiguration under R (RISR;)

Input:

A graph G and d-regular set U® and U? of G.

Question:

|s there an R-sequence between U’ and U*?

Reconfiguration rule (R € TJ,TS)
« TJ:Token Jumping
« TS:Token Sliding
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Reconfiguration Rule

TJ(Token Jumping)
U, o U qunder T)if U\ Ujpq| = Uiz, \ U;| = 1

L7 =Lz =L

TS(Token Sliding)
e U; & U, under TS if U; \ Ujyq = {v}, Uis1 \ U; = {w}, and vw € E(G)
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Regular Induced Subgraph Recontfiguration

d-Regular Induced Subgraph Reconfiguration under R (RISR,;)

Input:

A graph G and d-regular set U® and U® of G

Question:

|s there an R-sequence between U® and Ut?

Example

Reconfiguration rule TJ (Token Jumping)
d=1, RISR,

—

TJ-sequence
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d-Regular Induced Subgraph Reconfiguration under R (RISR,;)
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d-Regular Induced Subgraph Reconfiguration under R (RISR,;)

Input: | A graph G and d-regular set US and U* of G
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RISR,

d-Regular Induced Subgraph Reconfiguration under R (RISR;)

Input:

A graph G and d-regular set U® and U® of G

Question:

|s there an R-sequence between U® and Ut?

Reconfiguration rule (R € TJ,TS)
« TJ:Token Jumping
« [S:Token Sliding
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RISR,

d-Regular Induced Subgraph Reconfiguration under R (RISR,;)

Input: | A graph G and d-regular set US and U* of G
Question: | Is there an R-sequence between U® and Ut?
Example

Reconfiguration rule TS (token Sliding)
d=1, RISR,

—

|s there a TS-sequence ?




RISR,

d-Regular Induced Subgraph Reconfiguration under R (RISR,;)

Input: | A graph G and d-regular set US and U* of G
Question: | Is there an R-sequence between U® and Ut?
Example

Reconfiguration rule TS (token Sliding)
d=1, RISR,

—

There is no TS-sequence !




RISR,

d-Regular Induced Subgraph Reconfiguration under R (RISR,;)

Input: | A granh G and d-raaular cat U® and U* of G

Question: |1/’ Wween U and Ut?
Example

Recor liding)

d=1, .
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RISR,

d-Regular Induced Subgraph Reconfiguration under R (RISR,;)

Input: | A graph G and d-regular set US and U* of G

Question: | Is there an R-sequence between U® and Ut?

Reconfiguration rule (R € TJ,TS)

« TJ:Token Jumping
« TS:Token Sliding

|s there a R-sequence ?

—
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Related work

Independent set reconfiguration = RISR,

XZI»XZI» R )

k-clique reconfiguration is a k-1 regular induced subgraph reconfiguration

g » X » X
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Graph class

Bipartite graph Chordal graph
General graph A graph is bipartite if its A graph is chordal if
vertex set can be every cycle of length at
partitioned into 2 least 4 has a chord.
Perfect graph independent sets.
Bipartite Chordal
graph graph
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Related work and Our Results

General graph

/

Perfect graph

/7 \

Bipartite Chordal
graph graph

RISR,
TS T]
Chordal | [Belmonte et al., 2021] [Kaminski et al., 2012]
graphs |d = 0: PSPACE-c d = 0:P
Bipartite | [Lokshtanov et al., 2019] [Lokshtanov et al., 2019]
graphs |d = 0: PSPACE-c d =0:NP-c

33




Related work and Our Results

RISR,
TS T]
|[Belmonte et al.,, 2021] |[Kaminski et al.,, 2012]
Chordal |d = 0: PSPACE-c d = 0:P
graphs | [Our Results] |Our Results]
d > 1:PSPACE-c d > 1:PSPACE-c
[Lokshtanov et al., 2019] [Lokshtanov et al., 2019]
Bipartite |d = 0: PSPACE-c d = 0: NP-c
graphs | [Our Results] [Our Results]

d>1:P

d > 1:PSPACE-c
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RISR,

TS

]

Bipartite
grapgh

|Lokshtanov et al.,, 2019] |Lokshtanov et al.,, 2019]

d = 0: PSPACE-c

[Our Results]

d>1:P

d =0: NP-c
[Our Results]
d > 1:PSPACE-c
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RISR,

TS

]

Bipartite
grapgh

|Lokshtanov et al.,, 2019] |Lokshtanov et al.,, 2019]

d = 0: PSPACE-c

[Our Results]

d>1:P

d =0: NP-c
[Our Results]
d > 1:PSPACE-c

Example

Reconfiguration rule TJ (Token Sliding)

d=1, RISR,

Tokentq,t,
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Related work and Our Results

RISR,
TS TJ
|[Belmonte et al.,, 2021] |[Kaminski et al.,, 2012]
Chordal |d = 0: PSPACE-c d = 0:P
graphs | [Our Results] |Our Results]
d > 1:PSPACE-c d > 1:PSPACE-c
[Lokshtanov et al., 2019] [Lokshtanov et al., 2019]
Bipartite |d = 0: PSPACE-c d = 0: NP-c
graphs | [Our Results] [Our Results]

d>1:P

d > 1:PSPACE-c
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Chordal graph

« Every connected regular induced subgraph in a chordal graph
is a complete graph [Asahiro et al., 2014].
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Chordal graph

« Every connected regular induced subgraph in a chordal graph
is a complete graph [Asahiro et al., 2014]

RISR,

TS

Tj

[Belmonte et al., 2021]
Chordal | d = 0: PSPACE-c

graphs |[Our Results]
d > 1:PSPACE-c

d=0:P

[Kaminski et al., 2012]

[Our Results]
d > 1:PSPACE-c
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RISR,
TS T]
[Belmonte et al., 2021] [Kaminski et al.,, 2012]
Chordal |d = 0: PSPACE-c d = 0:P
graphs [Our Results] [Our Results]
d > 1:PSPACE-c d > 1:PSPACE-c

« We give a reduction from independent set reconfiguration on chordal graph

under TS.
« Foreachv e V(H), we take a set X,, of d + 1 vertices.

Example, d=3

°

v X,
Graph H = (V(H), E(H)) New graph G = (V(G), E(6)4(



RISR,

TS

]

Chordal
graphs

[Belmonte et al., 2021]
d = 0: PSPACE-c
[Our Results]

d > 1:PSPACE-c

d = 0:P

[Kaminski et al.,, 2012]

[Our Results]
d > 1:PSPACE-c

« We add all possible edges between X,, and X, if {u,v} € E(H)

Example, d=3

Graph H = (V(H),E(H))

o—O

u
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N /

X, X,

New graph ¢ = (V(G), E(G))
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Example, d=3
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RISR,
TS T]
[Belmonte et al., 2021] [Kaminski et al.,, 2012]
Chordal |d = 0: PSPACE-c d = 0:P
graphs [Our Results] [Our Results]
d > 1:PSPACE-c d > 1:PSPACE-c

If token t move in graph H, then 3-regular set R, from X,to X,

Example, d=3 R,
t —>
u (%

Xy Xy
Graph H = (V(H), E(H)) New graph G = (V(G),E(G)) 48
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Related work and Our Results

RISR, CRISRy (d = 2)
TS T] TS T]
[Belmonte et al.,, 2021] | [Kaminski etal., 2012]
Chordal |d = 0: PSPACE-c d = 0:P [Ito et al., 2015]
graphs | [Our Results] |Our Results] P
d > 1:PSPACE-c d > 1:PSPACE-c
|Lokshtanov et al,, |Lokshtanov et al,,
Bipartite 20_19(}_ PSPACE 20_19(}_ NP [Our Results] | [Our Results]
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d=>1:P d > 1:PSPACE-c

56



CRISR,

Connected d-Regular Induced Subgraph Reconfiguration under R (CRISR;)

Input: | A graph G and connected d-regular set U* and U* of G

Question: |Is there an R-sequence between US and Ut?

Reconfiguration rule (R € TJ,TS)
 TJ:Token Jumping
« TS:Token Sliding

0 -9 - 0

N J U Y
U*® Ut

oy



