# RATIONAL HOMOTOPY, SMALL COCHAIN MODELS AND THE TORAL RANK **CONJECTURE**

### **BERNHARD HANKE**

ABSTRACT. We develop the part of rational homotopy theory due to Sullivan which is required to compute the (stable) free rank of symmetry of products of spheres.

### 1. Overview

Let  $G = (S^1)^r$  and let X be a finite free G-CW complex. Halperin's toral rank conjecture predicts dim  $H^*(X;\mathbb{Q}) \geq 2^r$ . One appraoch to this question is as follows: Since G acts freely, we get  $X_G = EG \times_G X \simeq X/G$ , which is a finite CW complex. In particular, dim  $H^*(X_G; \mathbb{Q}) < \infty$ . The cohomology  $H^*(X_G;\mathbb{Q})$  can be studied by means of the Leray-Serre spectral sequence for the fibration  $X \hookrightarrow X_G \to BG$ . We have  $E_2 \cong H^*(X;\mathbb{Q}) \otimes \mathbb{Q}[t_1,\ldots,t_r]$  and dim  $E_{\infty}^{*,*} < \infty$ , which might imply the predicted lower bound for  $H^*(X;\mathbb{Q})$ . However, in general one does not have enough control of the differentials in the spectral sequence in order resolve the Halperin conjecture in this way. So we need a more precise understanding how  $H^*(X_G;\mathbb{Q})$  and  $H^*(X;\mathbb{Q})$  are related.

For this aim let us rethink the following basic problem in algebraic topology:

Given a topological space X, compute its cohomology ring  $H^*(X; \mathbb{Q})$ .

If X is a CW complex, then the additive, but not the multiplicative structure, of  $H^*(X;\mathbb{Q})$  can be computed from the cellular cochain complex of X. In order to compute the multiplicative structure as well, we apply a different approach which closely reflects the homotopy type of X.

If  $\pi$  is a group  $\pi$  and  $k \ge 1$ , let  $K(\pi, k)$  denote an Eilenberg-MacLane space of type  $(\pi, k)$ , i.e.,  $K(\pi,k)$  is a path connected CW-complex with  $\pi_i(K(\pi,k))=0$  for  $i\neq k$  and  $\pi_k(K(\pi,k))\cong\pi$ . The space  $K(\pi, k)$  is unique up to homotopy equivalence. For consecutive k, these spaces are related by a path loop fibration with contractible total space

(1.1) 
$$K(\pi, k) = \Omega K(\pi, k+1) \to PK(\pi, k+1) \to K(\pi, k+1).$$

Assume that X is a simple topological space, that is, X is path connected,  $\pi_1(X)$  is abelian and  $\pi_1(X)$  acts trivially on the higher homotopy groups  $\pi_k(X)$  for  $k \geq 2$ . The homotopy type of X can then be described by its Postnikov tower  $(X_k, p_k, \phi_k)_{k\geq 0}$ , that is,  $X_0 = *, p_k \colon X_k \to X_{k-1}$ ,  $k \ge 1$ , and  $\phi_k \colon X \to X_k$ ,  $k \ge 0$ , are continuous maps such that

- (i) each  $\phi_k$  is a k-equivalence, i.e., the induced maps  $\pi_i(X) \to \pi_i(X_k)$  are bijections for  $0 \le \infty$  $i \le k$  and a surjection for i = k + 1,
- (ii)  $p_k \circ \phi_k = p_{k-1}$  for  $k \geq 1$ ,

Date: September 13, 2022;

(iii) each  $p_k$  fits into a pull back of fibrations

$$X_{k} \longrightarrow PK(\pi_{k}(X), k+1)$$

$$\downarrow^{p_{k}} \qquad \downarrow$$

$$X_{k-1} \stackrel{f_{k}}{\longrightarrow} K(\pi_{k}(X), k+1)$$

In other words,  $p_k \colon X_k \to X_{k-1}$  is a fibration with fibre  $K(\pi_k(x), k)$  and classified by  $f_k$ . The space  $X_k$  can be constructed, up to homotopy equivalence, by attaching cells of dimension  $\geq k+2$  to X in order to kill  $\pi_i(X)$ ,  $i \geq k+1$ .

Let us now assume that  $\pi_*(X)$  is finitely generated in each degree. By a theorem of Serre, this is equivalent to  $H_*(X; \mathbb{Z})$  being finitely generated in each degree, compare [9, Thm. 5.7].

The rational cohomology rings of  $K(\pi, k)$  with finitely generated abelian  $\pi$  were computed by Cartan and Serre. If V is a rational vector space and  $k \geq 0$ , we denote by  $V^{(k)}$  the graded vector space V concentrated in degree k.

**Proposition 1.2.** Let  $\pi$  be a finitely generated abelian group. Then, for each  $k \geq 1$ , there exists an isomorphism of  $\mathbb{Q}$ -algebras

$$H^*(K(\pi, k); \mathbb{Q}) \cong \Lambda^*(\operatorname{Hom}(\pi, \mathbb{Q})^{(k)}).$$

In degree k it restricts to the identity  $H^*(K(\pi, k); \mathbb{Q}) = \operatorname{Hom}(\pi_k(K(\pi, k), \mathbb{Q})) = \operatorname{Hom}(\pi, \mathbb{Q})$ .

*Proof.* Write  $\pi \cong T \oplus \mathbb{Z}^r$  for some  $r \geq 0$  where T is a finitely generated torsion abelian group. We have

$$\tilde{H}^*(K(T,k);\mathbb{Q}) = 0, \qquad H^*(K(\mathbb{Z},k);\mathbb{Q}) = \Lambda^*(\mathbb{Q}^{(k)}).$$

Both assertions are clear for k=1 and for higher k follow by analysing the Leray-Serre spectral sequence, including its multiplicative properties, for the path loop fibration (1.1) for  $\pi=T$  and  $\pi=\mathbb{Z}$ .

From this the assertion of Proposition 1.2 follows from the Künneth theorem.  $\Box$ 

We can now try to compute the cohomology rings  $H^*(X;\mathbb{Q})$  inductively along a Postnikov decomposition of X. For this aim, it remains to resolve the following problem. Let  $\pi$  be a finitely generated abelian group, let  $k \geq 1$  and let  $p \colon E \to B$  be a fibration fitting into a pull back diagram

(1.3) 
$$E \longrightarrow PK(\pi, k+1)$$

$$\downarrow^{p} \qquad \downarrow$$

$$B \xrightarrow{f} K(\pi, k+1)$$

Problem 1.4. Compute the cohomology ring  $H^*(E;\mathbb{Q})$  in terms of  $H^*(B;\mathbb{Q})$ ,  $H^*(K(\pi,k);\mathbb{Q}) = \Lambda^*(\operatorname{Hom}(\pi,\mathbb{Q})^{(k)})$  and the map f.

We will present an efficient solution of this problem going back to Dennis Sullivan [13] and use this to verify the Halperin conjecture if X is a product of spheres.

### 2. SULLIVAN-DE RHAM THEOREM

Recall that given a smooth manifold M, the real cohomology ring  $H^*(M; \mathbb{R})$  can be computed by means of the cochain complex  $\Omega^*(M)$  of smooth differential forms on M. The ring structure on

 $H^*(M;\mathbb{R})$  is induced by the wedge product of differential forms which makes  $\Omega^*(M)$  a real differential graded commutative algebra (DGCA). Dennis Sullivan in [13] generalized this construction to arbitrary topological spaces.

If V is a graded vector space we denote by  $\Lambda^*(V)$  the free rational GCA generated by V. Consider the free rational DGCA

$$\Lambda^*(t_0,\ldots,t_n,dt_0,\ldots,dt_n) := \Lambda^*(\operatorname{Span}(t_0,\ldots,t_n,dt_0,\ldots,dt_n))$$

with generators  $t_0, \ldots, t_n$  in degree 0 and  $dt_1, \ldots, dt_n$  in degree 1 and coboundary given by  $t_i \mapsto dt_i, dt_i \mapsto 0$ . We obtain the DGCA

$$T_n^* := \Lambda^*(t_0, \dots, t_n, dt_0, \dots, dt_n)/(t_0 + \dots + t_n - 1, dt_0 + \dots + dt_n)$$

which we regard as the algebra of rational polynomial forms on the n-simplex

$$\Delta^n := \{ (t_0, \dots, t_n) \in \mathbb{R}^{n+1} \mid 0 \le t_i \le 1, t_0 + \dots + t_n = 1 \}.$$

The inclusion of the i-th face into  $\Delta^n$  and the i-th collapse onto  $\Delta^n$ ,  $0 \le i \le n$ , are given by

$$\Delta^{n-1} \to \Delta^n$$
,  $(t_0, \dots, t_{n-1}) \mapsto (t_0, \dots, t_{i-1}, 0, t_{i+1}, \dots, t_{n-1})$ ,  
 $\Delta^{n+1} \to \Delta^n$ ,  $(t_0, \dots, t_{n+1}) \mapsto (t_0, \dots, t_{i-1}, t_i + t_{i+1}, t_{i+2}, \dots, t_{n+1})$ .

Via pullback of forms, these maps induce DGCA maps  $\partial_i:T_n^*\to T_{n-1}^*$  and  $s_i:T_n^*\to T_{n+1}^*$  that satisfy the simplicial identities. In other words,  $T^*:=(T_n^*)_{n\in\mathbb{N}}$  is a simplicial rational DGCA.

**Definition 2.1.** Let X be a topological space and let Sing(X),

$$(\mathsf{Sing}(X))_n = \mathsf{Mor}_{\mathsf{Top}}(\Delta^n, X),$$

be the simplicial set of singular simplices in X. The rational GCDA

$$\mathcal{A}^*(X) := \operatorname{Mor}_{\mathsf{SimplSet}}(\mathsf{Sing}(X), T^*)$$

is called the Sullivan-de Rham cochain algebra of X.

We think of  $\mathcal{A}^k(X)$  as compatible polynomial k-forms with rational coefficients on the simplices of a triangulation of X.

Let  $\xi \in \mathcal{A}^k(X)$  and let  $\sigma \colon \Delta^n \to X$  be a singular simplex. Then  $\xi(\sigma) \in T_n^k$  is a rational polynomial k-form  $\omega$  on the geometric n-simplex  $\Delta^n \subset \mathbb{R}^{n+1}$  and we set

$$\Psi_{\xi}(\sigma) := \int_{\Delta^n} \omega \in \mathbb{Q}.$$

This is zero for  $k \neq n$ . We can thus regard  $\Psi_{\xi} \in C^k_{\text{sing}}(X;\mathbb{Q})$  and hence obtain a  $\mathbb{Q}$ -linear map  $\Psi^k \colon \mathcal{A}^k(X) \to C^k_{\text{sing}}(X;\mathbb{Q})$ ,  $\xi \mapsto \Psi_{\xi}$ . Stokes' theorem implies that  $\Psi^* \colon \mathcal{A}^*(X) \to C^*_{\text{sing}}(X;\mathbb{Q})$  is a cochain map.

**Theorem 2.2** (Sullivan-de Rham comparison theorem). *The map*  $\Psi^*$  *induces a multiplicative isomorphism* 

$$H^*(\mathcal{A}^*(X)) \cong H^*(C^*_{\mathrm{sing}}(X;\mathbb{Q})) = H^*_{\mathrm{sing}}(X;\mathbb{Q}).$$

For a proof see [2, Sections 2 and 3] and [6, Section 9].

### 3. HIRSCH LEMMA

We will now come back to Problem 1.4. Let

$$f^{\sharp} \colon H^{k+1}(K(\pi, k+1); \mathbb{Q}) = \operatorname{Hom}(\pi, \mathbb{Q}) \to \mathcal{A}^{k+1}(B)$$

be cochain representative of  $f^*$  in degree k+1. It is uniquely determined up to cochain homotopy, that is, a linear map  $\operatorname{Hom}(\pi,\mathbb{Q}) \to \mathcal{A}^{k+1}(B)$  with values in the coboundaries of  $\mathcal{A}^{k+1}(B)$ .

**Definition 3.1.** Let  $(B^*, d_B)$  be a rational GCDA, let V be a vector space which is concentrated in degree  $k \ge 1$  and let  $\tau \colon V \to B^{k+1}$  be a  $\mathbb{Q}$ -linear map with  $d_B \circ \tau = 0$ .

The free Hirsch extension<sup>1</sup>  $(B^* \otimes_{\tau} \Lambda^*(V), d)$  is the rational DGCA equal to  $B^* \otimes \Lambda^*(V)$  as a GCA and equipped with the differential d which acts as a derivation and satisfies

$$d(b \otimes 1) = d_B(b) \otimes 1, \qquad d(1 \otimes v) = \tau(v) \otimes 1.$$

If two maps  $\tau, \tau' \colon V \to B^{k+1}$  with  $d_B \circ \tau = 0 = d_B \circ \tau'$  induce the same maps  $V \to H^{k+1}(B^*)$ , then there exists a DGCA isomorphism  $B^* \otimes_\tau \Lambda^*(V) \cong B^* \otimes_{\tau'} \Lambda^*(V)$  which restricts to the identity on  $B^* \otimes 1$ . In particular, if  $\tau$  induces the zero map  $V \to H^{k+1}(B^*)$ , then  $B^* \otimes_\tau \Lambda^*(V)$  is isomorphic to  $(B^*, d_B) \otimes \Lambda^*(V)$  with the zero differential on  $1 \otimes \Lambda^*(V)$ .

The following result gives a satisfactory answer to Problem 1.4.

**Theorem 3.2** (Hirsch lemma). There is a DGCA map

$$\Gamma_f \colon \mathcal{A}^*(B) \otimes_{f^{\sharp}} \Lambda^*(\operatorname{Hom}(\pi, \mathbb{Q})^{(k)}) \to \mathcal{A}^*(E)$$

which induces an isomorphism in cohomology.

*Proof.* The trickiest part is the construction of  $\Gamma_f$ . Diagram 1.3 induces a pull-back square of simplicial Kan fibrations

Given a cochain complex  $V^*$  we define the simplicial abelian group

$$\|V^*\| := \operatorname{Mor}_{\mathsf{CochainCompl}}(V^*, T^*),$$

called the *simplicial realisation* of  $V^*$ . For each topological space X, we obtain a canonical bijection

(3.4) 
$$\operatorname{Mor}_{\mathsf{SimplSet}}(\mathsf{Sing}(X), \|V^*\|) \approx \operatorname{Mor}_{\mathsf{CochainCompl}}(V^*, \mathcal{A}^*(X))$$

which is natural in X and  $V^*$  and preserves homotopies. This will help us to construct the map  $\Gamma_f$ . The right hand vertical map in (3.3) is a simplicial analogue of the path look fibration  $PK(\pi,k+1) \to K(\pi,k+1)$ . After replacing  $\pi$  by  $\pi \otimes \mathbb{Q}$  we will now construct an especially convenient model for this fibration.

Let  $V^* := \operatorname{Hom}(\pi,\mathbb{Q})^{(k)}$ , let  $\Sigma V^*$  with  $(\Sigma V)^i = V^{i-1}$  be the suspension of  $V^*$  and let  $\operatorname{cone} V^* = (V^* \oplus \Sigma V^*, d(v,w) := (0,v))$  be the cone of  $V^*$ , which has vanishing cohomology. We obtain a short exact sequence of cochain complexes

$$0 \longrightarrow \Sigma V^* \stackrel{v \mapsto (0,v)}{\longrightarrow} \operatorname{cone} V^* \stackrel{(v,w) \mapsto v}{\longrightarrow} V^* \longrightarrow 0.$$

<sup>&</sup>lt;sup>1</sup>Named after Guy Hirsch (1915–1993) who also appears in the Leray-Hirsch theorem

Passing to simplicial realisations, we obtain a Kan fibration of simplicial groups

$$||V^*|| \hookrightarrow ||\operatorname{cone} V^*|| \to ||\Sigma V^*||$$

which is a model for the simplicial path-loop fibration

$$\hat{K}(G,k) \to P\hat{K}(G,k+1) \to \hat{K}(G,k+1)$$

where  $G = \operatorname{Hom}(\operatorname{Hom}(\pi,\mathbb{Q}),\mathbb{Q}) = \pi \otimes \mathbb{Q}$  and where  $\hat{K}$  denotes simplicial Eilenberg-MacLane complexes. Here we use the fact that the map of simplicial abelian groups  $\|\operatorname{cone} V^*\| \to \|\Sigma V^*\|$  is surjective, hence a principal Kan fibration by [11, Lemma 18.2] whose kernel can be identified with the simplicial abelian group  $\|V^*\|$  by an explicit calculation. Furthermore,  $\|V^*\| = \hat{K}(G,k)$  since  $(\pi \otimes \mathbb{Q}) \otimes T^*$  is a cohomology theory with coefficients  $\pi \otimes \mathbb{Q}$  in the sense of Cartan [3] and by the inductive argument in the proof of [3, Théorème 1]. A similar argument shows that  $\|\Sigma V^*\| = \hat{K}(G,k+1)$ .

The canonical inclusion  $\pi \to \pi \otimes \mathbb{Q}$  combined with diagram (3.3) induces a commutative diagram

$$Sing(E) \longrightarrow \| \operatorname{cone} V^* \|$$

$$\downarrow^p \qquad \qquad \downarrow$$

$$Sing(B) \xrightarrow{f} \| \Sigma V^* \|$$

and applying (3.4) to this diagram, we obtain the commutative diagram

(3.5) 
$$A^{*}(E) \longleftarrow \operatorname{cone} V^{*}$$

$$\uparrow^{p^{\sharp}} \qquad \uparrow$$

$$A^{*}(B) \longleftarrow^{f^{\sharp}} \Sigma V^{*}$$

where addig to  $f^{\sharp}$  a linear map with values in the coboundaries  $\mathcal{A}^{k+1}(B)$  amounts to replacing f by a homotopic map. In particular, we obtain an induced grading preserving linear map

$$\phi \colon \operatorname{Hom}(\pi, \mathbb{Q})^{(k)} \stackrel{v \mapsto (v,0)}{\longrightarrow} (\operatorname{cone} V)^k \longrightarrow \mathcal{A}^k(E)$$

which satisfies (since the upper horizontal map in (3.5) is a cochain map)

$$d_{\mathcal{A}^*(E)} \circ \phi = p^{\sharp} \circ f^{\sharp}.$$

Now the maps  $p^{\sharp}$  and  $\phi$  induce the required DGCA map

$$\Gamma_f \colon \mathcal{A}^*(B) \otimes_{f^{\sharp}} \Lambda^*(\operatorname{Hom}(\pi, \mathbb{Q})^{(k)}) \to \mathcal{A}^*(E).$$

It remains to show that it induces an isomorphism in cohomology. We may assume without loss of generality that B is a CW complex.

In a first step, we show that  $\Gamma_f$  induces an isomorphism in cohomology if f is constant. In this case, we have commutative diagram

$$K(\pi, k) \xrightarrow{=} K(\pi, k)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$E = B \times K(\pi, k) \longrightarrow PK(\pi, k+1)$$

$$\downarrow^{p} \qquad \qquad \downarrow$$

$$B \xrightarrow{\text{const.}} K(\pi, k+1)$$

and  $\phi \colon \operatorname{Hom}(\pi,\mathbb{Q}) \to \mathcal{A}^k(E)$  factors as  $\operatorname{Hom}(\pi,\mathbb{Q}) \to \mathcal{A}^k(K(\pi,k)) \to \mathcal{A}^k(E)$ , where the first map induces the isomorphism  $\operatorname{Hom}(\pi,\mathbb{Q}) \cong H^k(K(\pi,k),\mathbb{Q})$  and the second map is induced by the projection  $E \to K(\pi,k)$ . Hence the claim follows from the Künneth formula and Proposition 1.2.

In a next step, we show that  $\Gamma_f$  induces an isomorphism in cohomology if  $f \simeq \text{const.}$  In order to prove this, let  $H \colon B \times [0,1] \to K(\pi,k+1)$  be a homotopy from f to const. and notice that the restrictions of  $\mathcal{A}^*(B \times [0,1]) \otimes_{H^{\sharp}} \Lambda^*(\text{Hom}(\pi,\mathbb{Q})^{(k)})$  to  $\mathcal{A}^*(B) \otimes_{f^{\sharp}} \Lambda^*(\text{Hom}(\pi,\mathbb{Q})^{(k)})$  and  $\mathcal{A}^*(B) \otimes_0 \Lambda^*(\text{Hom}(\pi,\mathbb{Q})^{(k)})$  induce isomorphisms in cohomology. Thus we are reduced to the case f = const..

We now show that  $\Gamma_f$  induces an isomorphism in cohomology by induction on dim B. If dim B=0, then  $f\simeq {\rm const.}$  and hence this case is clear. In the induction, step we write

$$B^k = B^{k-1} \bigcup_{\alpha_i} \coprod_{i \in I} D^k$$

with attaching maps  $\alpha_i \colon \partial D^k \to B^{k-1}$ . Let  $A_i \colon D^k \to B^k$  be the induced characteristic maps. Then  $\Gamma_{\tilde{t}}$  induce isomorphisms for

ho  $\tilde{f}=f|_{B^{k-1}}\colon B^{k-1}\to K(\pi,k+1)$ , by the induction hypothesis,

 $ightharpoonup \tilde{f} = f \circ A_i \colon D^k \to K(\pi, k+1)$  which is homotopic to a constant map,

 $ightharpoonup \tilde{f} = f \circ \alpha_i \colon S^{k-1} \to K(\pi, k+1) \text{ since } \dim S^{k-1} = k-1.$ 

Hence,  $\Gamma_f$  is an isomorphism by a Mayer-Vietoris argument and the five lemma, keeping in mind that our construction of  $\Gamma_f$  is natural with respect to precomposing  $f \colon B \to K(\pi_k(X), k+1)$  with maps  $B' \to B$ . This finishes the proof of Theorem 3.2.

Our exposition is inspired by [6]. However, the Hirsch lemma in [6, Section 16] is proven in a different and, in our opinion, less conceptual way.

# 4. MINIMAL MODELS VIA POSTNIKOV DECOMPOSITIONS

Assume that X is a path connected simple topological space such that  $\pi_*(X)$  is finitely generated in each degree. Using the Postnikov decomposition  $(X_k, p_k, \phi_k)_{k \geq 0}$  of X (see Section 1) and the Hirsch lemma, we will replace the Sullivan-de Rham algebra  $\mathcal{A}^*(X)$  by a smaller DGCA which closely reflects the homotopy type of X.

For  $k \geq 1$  we will construct a finitely generated free rational DGCA  $\mathcal{M}_k^*$  together with a DGCA map

$$\psi_k \colon \mathcal{M}_k^* \to \mathcal{A}^*(X_k)$$

with  $\mathcal{M}_0^* := \mathbb{Q}$  and the following properties for  $k \geq 1$ :

 $\triangleright \psi_k$  induces an isomorphism in rational cohomology,

 $\triangleright \mathcal{M}_k^* = \mathcal{M}_{k-1}^* \otimes_{\tau_k} \Lambda^*(\operatorname{Hom}(\pi_k(X), \mathbb{Q})^{(k)})$ , where the twisting map  $\tau_k$  is induced by  $f_k$ ,

▶ the following diagram commutes:

$$\mathcal{M}_{k-1}^* \otimes_{\tau_k} \Lambda^*(\operatorname{Hom}(\pi_k(X), \mathbb{Q})^k) \xrightarrow{\psi_k} \mathcal{A}^*(X_k)$$

$$\downarrow^{\zeta \mapsto \zeta \otimes 1} \qquad \qquad \downarrow^{p_k^*} \qquad$$

Assume that  $\psi_{k-1} \colon \mathcal{M}_{k-1}^* \to \mathcal{A}^*(X_{k-1})$  has been constructed. The Hirsch lemma gives a DGCA map

$$\Gamma_{f_k} = \mathcal{A}^*(X_{k-1}) \otimes_{f_k^{\sharp}} \Lambda^*(\operatorname{Hom}(\pi_k(X), \mathbb{Q})^{(k)}) \to \mathcal{A}^*(X_k)$$

which induces an isomorphism in cohomology.

Since  $\psi_{k-1} \colon \mathcal{M}_{k-1}^* \to \mathcal{A}^*(X_{k-1})$  induces an isomorphism in cohomology, there is (possibly after replacing  $f^{\sharp}$  by a cochain homotopic map) a  $\mathbb{Q}$ -linear map

$$\tau_k \colon \operatorname{Hom}(\pi_k(X), \mathbb{Q}) \to \mathcal{M}_{k-1}^{k+1}$$

whose image lies in the cocycles of  $\mathcal{M}_{k-1}^{k+1}$  and such that  $\psi_{k-1} \circ \tau_k = f_k^{\sharp}$ . We now set

$$\mathcal{M}_k^* := \mathcal{M}_{k-1}^* \otimes_{\tau_k} \Lambda^*(\operatorname{Hom}(\pi_k(X), \mathbb{Q})^{(k)})$$

and  $\psi_k = \Gamma_{f_k} \circ (\psi_{k-1} \otimes \operatorname{id}) \colon \mathcal{M}_{k-1}^* \otimes_{\tau_k} \Lambda^*(\operatorname{Hom}(\pi_k(X), \mathbb{Q})^{(k)}) \to \mathcal{A}^*(X_k)$ . A spectral sequence argument shows that  $\psi_{k-1} \otimes \operatorname{id}$  induces an isomorphism in cohomology and hence the same is true for  $\psi_k$ .

We finally set

$$\mathcal{M}^*(X) := \operatorname{colim}_k \mathcal{M}_k^*, \qquad \psi := \operatorname{colim}_k \psi_k \colon \mathcal{M}^*(X) \to \mathcal{A}^*(X).$$

By construction, the map  $\psi$  induces an isomorphism in cohomology.

**Definition 4.1.** We call  $\psi \colon \mathcal{M}^*(X) \to \mathcal{A}^*(X)$  the *Sullivan minimal model* of  $\mathcal{A}^*(X)$ .

Remark 4.2.  $\triangleright$  The Sullivan model of X determines the rational homotopy groups  $\pi_*(X) \otimes \mathbb{Q}$ .  $\triangleright$  The Sullivan minimal model of X can be characterised in an axiomatic way and is determined up to isomorphism by  $\mathcal{A}^*(X)$  alone. In particular,  $\mathcal{A}^*(X)$  determines  $\pi_*(X) \otimes \mathbb{Q}$ .

Example 4.3. Applying the procedure from the previous section to the *n*-sphere  $S^n$  and (only) using the known cohomology computation for  $H^*(S^n; \mathbb{Q})$ , we obtain

- (a)  $\mathcal{M}^*(S^n) \cong \mathbb{Q}[\tau] \otimes \Lambda^*(\eta)$  where  $\deg(\tau) = n$ ,  $\deg(\eta) = 2n 1$ ,  $d_{\mathcal{M}}(\eta) = \tau^2$ , for even n,
- (b)  $\mathcal{M}^*(S^n) \cong \Lambda^*(\sigma)$  where  $\deg(\sigma) = n$ , for odd n.

For  $X = BS^1$  we have  $\mathcal{M}^*(X) = \mathbb{Q}[t]$  with  $\deg(t) = 2$ , hence  $\mathcal{M}^*(B((S^1)^r)) = \mathbb{Q}[t_1, \dots, t_r]$ .

# 5. SMALL COCHAIN MODELS FOR TORUS ACTIONS

Let  $G = (S^1)^r$  and let X be a finite connected G-CW complex which is a simple topological space. Let  $X \hookrightarrow X_G \to BG$  be the Borel construction. Note that  $X_G$  is simple and  $\pi_*(X_G) \otimes \mathbb{Q}$  is finitely generated in each degree.

By attaching G-cells to X for killing homotopy groups of X, we obtain the Postnikov decomposition of  $X_G$  relative to BG, leading to a commutative diagram



where for all  $k \ge 1$ , the complexes  $X_k$  and  $(X_G)_k$  are k-th stages of the Postnikov decompositions of X and  $X_G$ , each row is a fibration with fibre  $X_k$  and the vertical maps  $p_k$  and  $P_k$  are fibrations whose fibres are Eilenberg-MacLane complexes of type  $(\pi_k(X), k)$ .

Carrying out the previous construction in this relative situation and using Example 4.3 we obtain a commutative diagram of rational DGCAs

Furthermore, we have

$$\mathcal{M}_k^* = \mathcal{M}_{k-1}^* \otimes_{\tau_k} \Lambda^*(\operatorname{Hom}(\pi_k(X), \mathbb{Q})^{(k)}), \qquad \mathcal{E}_k^* = E_{k-1}^* \otimes_{\tau_k} \Lambda^*(\operatorname{Hom}(\pi_k(X), \mathbb{Q})^{(k)})$$

where the twisting map  $\tau_k$  are induced by the map  $X_k \to (X_G)_k \to K(\pi_k(X), k+1)$  classifying the fibrations  $p_k$  and  $P_k$ . We also have DCGA maps  $\psi_k : \mathcal{M}_k \to \mathcal{A}^*(X_k)$  and  $\Psi_k : \mathcal{E}_k \to \mathcal{A}^*((X_G)_k)$  which induce isomorphisms in cohomology and fit into commutative diagrams



Setting  $\mathcal{M}^* := \operatorname{colim}_k \mathcal{M}_k^*$  and  $\mathcal{E}^* := \operatorname{colim}_k \mathcal{E}_k^*$ , we arrive at the following theorem:

**Theorem 5.1.** There are rational DGCAs  $(\mathcal{E}^*, d_E)$  and  $(\mathcal{M}^*, d_M)$  with the following properties:

- 1)  $\mathcal{E}^* = \mathbb{Q}[t_1, \dots, t_r] \otimes \mathcal{M}^*$  as graded algebras where  $\deg(t_i) = 2$ ,
- 2)  $d_E$  is zero on  $\mathbb{Q}[t_1,\ldots,t_r]$  and the map  $\mathcal{E}^* \to \mathcal{M}^*$ ,  $t_i \mapsto 0$ , is a cochain map,
- 3)  $\mathcal{M}^*$  is free as a graded algebra. As generators in degree  $k \geq 1$  we can take the elements of a basis of the  $\mathbb{Q}$ -module  $\operatorname{Hom}(\pi_k(X), \mathbb{Q})$ .,
- 4) there is a commutative diagram

$$\mathcal{M}^* \longrightarrow \mathcal{A}^*(X)$$

$$\uparrow_{t_i \mapsto 0} \qquad \uparrow_{p^*}$$

$$\mathcal{E}^* \longrightarrow \mathcal{A}^*(X_G)$$

and the horizontal maps induce isomorphisms in cohomology.

Example 5.2. Let  $X = S^{2n-1}$  with the standard free  $S^1$ -action,  $n \geq 1$ . Then  $\mathcal{M}^* = \Lambda^*(\sigma)$ ,  $\deg(\sigma) = 2n - 1$  and  $\mathcal{E}^* = \mathbb{Q}[t] \otimes \Lambda(\sigma)$ ,  $d_E(\sigma) = t^n$ .

### 6. THE TORAL RANK OF PRODUCTS OF SPHERES

We apply Theorem 5.1 to verify the toral rank conjecture for products of spheres.

**Theorem 6.1.** Let  $r \geq 1$ , let  $n_1, \ldots, n_k \geq 1$ , let  $G = (S^1)^r$  and let X be a finite free G-CW complex homotopy equivalent to  $S^{n_1} \times \cdots \times S^{n_k}$ . Then  $r \leq \sharp \{n_i \text{ odd}\}$ .

We denote by  $X_G = EG \times_G X$  the Borel construction of X. Since G acts freely, we have  $X_G \simeq X/G$ . In particular  $H^*(X_G; \mathbb{Q})$  is a finite dimensional vector space. Let  $k_o$  denote the number of odd  $n_i$  and  $k_e$  denote the number of even  $n_i$ .

Using Theorem 5.1 and Example 4.3 we obtain the following.

**Proposition 6.2.** There are finitely generated free DGCAs  $(\mathcal{E}^*, d_E)$  and  $(\mathcal{M}^*, d_M)$  over  $\mathbb{Q}$  such that

- $\triangleright \mathcal{M}^* = \Lambda^*(\tau_1, \dots, \tau_{k_e}, \eta_1, \dots, \eta_{k_e}, \sigma_1, \dots, \sigma_{k_o})$ , where the degrees of  $\tau_j$  correspond to the even  $n_j$ , the degrees of  $\sigma_j$  correspond to the odd  $n_j$ ,  $\deg(\eta_j) = 2 \deg(\tau_j) 1$ , and  $d_M(\eta_i) = \tau_i^2$ ,
- $\triangleright \mathcal{E}^* = \mathcal{M}^* \otimes \mathbb{Q}[t_1, \dots, t_r]$  as graded commutative algebras where  $\deg(t_i) = 2$ ,
- $\triangleright d_E$  is  $\mathbb{Q}[t_1, \dots, t_r]$ -linear and the projection  $\mathcal{E}^* \to \mathcal{M}^*$  given by evaluating  $t_1, \dots, t_r$  at 0 is a cochain map,
- $hor H^*(\mathcal{E}^*) \cong H^*(X_G; \mathbb{Q})$ , in particular, the total dimension of  $H^*(\mathcal{E}^*)$  is finite.

We claim that  $\mathcal{E}^*$  must have at east as many odd degree generators as even degree generators. Hence  $k_e + r \le k_e + k_o$  which implies Theorem 6.1.

Inspired by the construction of *pure towers* in [8], we deform  $d_E$  to another differential  $\delta_E$  on  $\mathcal{E}^*$  as follows:  $\delta_E$  is a derivation that vanishes on  $\mathbb{Q}[t_1,\ldots,t_r,\tau_1,\ldots,\tau_{k_e}]$  and satisfies

$$\delta_E(\sigma_j) = \pi(d_E(\sigma_j)), \qquad \delta_E(\eta_j) = \pi(d_E(\eta_j)).$$

where  $\pi: \mathcal{E}^* \to \mathcal{E}^*$  is the projection onto  $\mathbb{Q}[t_1,\ldots,t_r,\tau_1,\ldots,\tau_{k_e}]$  given by evaluating the odd degree generators  $\eta_j,\sigma_j$  at 0. It is easy to verify that  $\delta_E^2=0$ .

For  $\ell \geq 0$  let  $\Sigma^{\ell} \subset \mathcal{E}^*$  be the  $\mathbb{Q}[t_1,\ldots,t_r]$ -linear subspace generated by the monomials in  $\mathcal{M}^*$  containing exactly  $\ell$  of the odd degree generators  $\sigma_j,\eta_j$ . In particular,  $\Sigma^{\ell}=0$  for  $\ell>k$  by the graded commutativity of the product. We set  $\Sigma^+:=\bigoplus_{\ell\geq 1}\Sigma^{\ell}$ . This is a nilpotent ideal in  $E^*$ .

**Lemma 6.3.** For all  $\ell \geq 1$ , the differential  $\delta_E$  maps  $\Sigma^{\ell}$  to  $\Sigma^{\ell-1}$ . Furthermore, the image of  $\delta_E - d_E$  is contained in  $\Sigma^+$ .

*Proof.* The first assertion holds by the definition and derivation property of  $\delta_E$ .

The second assertion holds for the generators  $\sigma_j$  and  $\eta_j$ , because  $\operatorname{im}(\operatorname{id} - \pi) \subset \Sigma^+$ , it holds for the generators  $t_i$ , because  $\delta_E$  and  $d_E$  send these elements to zero and it holds for the generators  $\tau_j$ , because each  $d_E(\tau_j)$  is of odd degree and therefore contained in  $\Sigma^+$ . This implies the second assertion in general, since  $\Sigma^+$  is an ideal in  $F^*$  and  $\delta_E - d_E$  is a derivation.

The elements  $t_i$ ,  $1 \le i \le r$ , and  $\tau_j$ ,  $1 \le j \le k_e$ , represent cocycles in  $(\mathcal{E}^*, \delta_E)$ . Let  $[t_i]$  and  $[\tau_j]$  be the corresponding cohomology classes.

**Proposition 6.4.** The classes  $[t_i]$  and  $[\tau_j]$  are nilpotent in  $H^*(\mathcal{E}^*, \delta_E)$ .

*Proof.* We claim that each monomial in  $t_1, \ldots, t_r$  of cohomological degree at least dim  $X \ge \dim X_G + 1$  represents the zero class in  $H^*(\mathcal{E}^*)$ . In particular, the classes  $[t_i] \in H^*(\mathcal{E}, \delta_E)$  are nilpotent. Let m be such a monomial and write  $m = d_E(c)$  for a cochain  $c \in \mathcal{E}^*$ .

By Lemma 6.3, we have  $\delta_E(c) = m + \omega$  where  $\omega \in \Sigma^+$ . Let  $c_1$  be the component of c in  $\Sigma^1$ . Lemma 6.3 and the fact that  $m \in \Sigma^0$  imply the equation  $\delta_E(c_1) = m$ . This shows that m is a coboundary in  $(\mathcal{E}^*, \delta_E)$ .

The cochain algebra  $(\mathcal{E}^*, \delta_E)$  has a decreasing filtration given by

$$\mathcal{F}_{\gamma}^* = \mathbb{Q}[t_1, \dots, t_r]^{\geq \gamma} \otimes \mathcal{M}^*$$

where  $\gamma \in \mathbb{N}$  denotes the cohomological degree. Our previous argument and the fact that each  $\tau_j$  is a cocycle in  $(\mathcal{E}^*, \delta_E)$  imply that each element in  $\Sigma^0 \subset \mathcal{E}^*$  in filtration level at least dim X is a coboundary in  $(\mathcal{E}^*, \delta_E)$ .

Now pick a  $j \in \{1, ..., k_e\}$ . By Proposition 5.1, we have

$$d_E(\eta_j) = \tau_j^2 \mod \mathcal{F}_2^*$$
.

By the definition of  $\delta_E$ , we have

$$\delta_E(\eta_j) = \pi(\tau_j^2) = \tau_j^2 \mod \mathcal{F}_2^*$$

since the map  $\pi$  preserves the ideal  $(t_1,\ldots,t_r)=\mathcal{F}_2^*$ . This implies that  $\tau_j^2$  is  $\delta_E$ -cohomologous to a cocycle  $c\in\mathcal{F}_2^*$ . Hence  $(\tau_j^2)^{\dim X}$  is  $\delta_E$ -cohomologous to  $c^{\dim X}\in\mathcal{F}_{2\dim X}^*$ . We can split  $c^{\dim X}$  into a sum  $c_0+c^+$  where  $c_0\in\Sigma^0\cap\mathcal{F}_{2\dim X}^*$  and  $c^+\in\Sigma^+\cap\mathcal{F}_{2\dim X}^*$ . As noted earlier,  $c_0$  is  $\delta_E$ -cohomologous to zero. Because  $\Sigma^+$  is nilpotent, the element  $c^+$  is nilpotent.

We conclude that  $\tau_i^{2\dim X}$  is  $\delta_E$ -cohomologous to a nilpotent cocycle in  $(\mathcal{E}^*, \delta_E)$ .

Together with Proposition 6.4, we see that the elements  $t_i$ ,  $1 \le i \le r$ , and  $\tau_j$ ,  $1 \le j \le k_e$ , define nilpotent classes in  $H^*(\mathcal{E}, \delta_E)$ . This implies that  $H^*(\mathcal{E}, \delta_E)$  is a finite dimensional  $\mathbb{Q}$ -vector space. Consider the ideal

$$I = (\delta_E(\eta_1), \dots, \delta_E(\eta_{k_e}), \delta_E(\sigma_1), \dots, \delta_E(\sigma_{k_o})) \subset \mathbb{Q}[t_1, \dots, t_r, \tau_1, \dots, \tau_{k_o}]$$

contained in  $im(\delta_E)$  and obtain an inclusion

$$\mathbb{F}_p[t_1,\ldots,t_r,\tau_1,\ldots,\tau_{k_e}]/I \subset H^*(\mathcal{E}^*,\delta_E)$$
.

Here we use the fact that the coboundaries in  $(\mathcal{E}^*, \delta_E)$  are contained in the ideal  $I \cdot \mathcal{E}^*$ , whose intersection with  $\mathbb{Q}[t_1, \dots, t_r, \tau_1, \dots, \tau_{k_e}]$  is equal to I. We conclude that  $\mathbb{Q}[t_1, \dots, t_r, \tau_1, \dots, \tau_{k_e}]/I$  is a finite dimensional  $\mathbb{Q}$ -vector space.

Because I is generated by homogenous elements of positive degree, it does not contain a unit of  $\mathbb{Q}[t_1,\ldots,t_r,\tau_1,\ldots,\tau_{k_e}]$  and hence there is a minimal prime ideal  $\mathfrak{p}\subset\mathbb{Q}[t_1,\ldots,t_r,\tau_1,\ldots,\tau_{k_e}]$  containing I. The quotient  $\mathbb{Q}[t_1,\ldots,t_r,\tau_1,\ldots,\tau_{k_e}]/\mathfrak{p}$  is both a finite dimensional  $\mathbb{Q}$ -vector space and an integral domain. Hence  $\mathfrak{p}=(t_1,\ldots,t_r,\tau_1,\ldots,\tau_{k_e})$  and consequently height  $(\mathfrak{p})=r+k_e$ . By Krull's height theorem, see [5, Theorem 10.2], the number of generators of I must be at least  $r+k_e$ . From the definition of I we derive the inequality  $k_e+k_o\geq r+k_e$ . This implies  $k_o\geq r$  and finishes the proof of Theorem 6.1.

Remark 6.5. Let  $G = (S^1)^r$ , let X is a free finite G-CW complex which is a simple topological space and assume that  $\pi_*(X) \otimes \mathbb{Q}$  is zero in all but finitely many degrees. We obtain the homotopy Euler characteristic

$$\chi_{\pi}(X) := \sum_{k>1} (-1)^k \dim(\pi_k(X) \otimes \mathbb{Q}).$$

It follows from [8, Theorem T] that  $r \leq -\chi_{\pi}(X)$ . This implies our Theorem 6.1 as a special case.

For further information about the relation of rational homotopy theory and torus actions we refer to [1, Chapters 2 and 4].

### 7. CENKL-PORTER THEOREM

We wish to prove a version of Theorem 6.1 for  $G = (\mathbb{Z}/p)^r$ . Since  $\tilde{H}^*(BG; \mathbb{Q}) = 0$ , we need to refine the previous constructions to subrings  $R \subset \mathbb{Q}$  without inverting the prime p.

The Sullivan-deRham theorem does not generalize to integral coefficients in an obvious way since the integration map introduces denominators as in

$$\int_{[0,1]} t^{k-1} dt = \frac{1}{k}.$$

However, a closer look shows that the denominators are controlled by the *weights* of polynomial forms to be integrated. More precisely, defining the weight of a monomial  $t_0^{\alpha_0}dt_0^{\varepsilon_0}\cdots t_n^{\alpha_n}dt_n^{\varepsilon_n}$ ,  $\alpha_i\geq 0, 0\leq \varepsilon_i\leq 1$ , as  $\max_i\{\alpha_i+\varepsilon_i\}$ , we get

$$\int_{[0,1]^k} \omega \in \mathbb{Q}_q$$

if  $\omega$  is an k-form of weight at most q and  $\mathbb{Q}_q \subset \mathbb{Q}$  is the smallest subring where all integers smaller than or equal to q are inverted.

Starting from this observation, Cenkl-Porter in [4] replace the simplicial DGCA  $T^*$  by a filtered simplicial DGCA  $T^{*,*}$ , where  $(T^{*,q})_n$ ,  $q \ge 0$ , is the simplicial DGCA over  $\mathbb{Q}_q$  consisting of polynomial forms with coefficients  $\mathbb{Q}_q$  and weight at most q on a cubical decomposition of  $\Delta^n$ . This leads to the *filtered Sulllivan-de Rham* cochain algebra  $\mathcal{A}^{*,*}(X)$  with

$$\mathcal{A}^{*,q}(X) := \mathrm{Mor}_{\mathsf{SimplSet}}(\mathsf{Sing}(X), T^{*,q})$$

together with integration maps

$$\Psi^{*,q} \colon \mathcal{A}^{*,q}(X) \to C^*_{\mathsf{sing}}(X; \mathbb{Q}_q).$$

For the following result, see [4, Theorems 4.1 and 4.2].

**Theorem 7.1.** For  $q \ge 1$ , the map  $\Psi^{*,q}$  induces a linear isomorphism

$$H^*(\mathcal{A}^{*,q}(X)) \cong H^*(C^*_{\mathsf{sing}}(X; \mathbb{Q}_q)) = H^*_{\mathsf{sing}}(X; \mathbb{Q}_q).$$

These maps are compatible with the multiplication maps  $\mathcal{A}^{*,q_1}(X) \otimes \mathcal{A}^{*,q_1}(X) \to \mathcal{A}^{*,q_1+q_2}(X)$  and  $C^*_{\mathsf{sing}}(X;\mathbb{Q}_{q_1}) \otimes C^*_{\mathsf{sing}}(X;\mathbb{Q}_{q_2}) \to C^*_{\mathsf{sing}}(X;\mathbb{Q}_{q_1+q_2})$  induced by muliplication of forms and the cup product of singular cochains.

Note in particular, that the Cenkl-Porter theorem gives a description of the  $\mathbb{Z}$ -module  $H^*_{\text{sing}}(X;\mathbb{Z})$ in terms of polynomial forms.

# 8. TAME HIRSCH LEMMA

Let p be a prime. By a computation due to Cartan and Serre,  $H^*(K(\mathbb{Z},k);\mathbb{F}_p)$  is a DGCA over  $\mathbb{F}_p$  in one generator of degree k and further generators of degrees at least k+2(p-1). This corresponds to the fact that the first reduced Steenrod power operation for the prime p raises degrees by 2(p-1). Hence, up to degree k+2q-1, we have  $H^*(K(\mathbb{Z},k);\mathbb{Q}_q)\cong \Lambda^*(\mathrm{Hom}(\mathbb{Z},\mathbb{Q}_q)^{(k)})$ , analogous to Proposition 1.2, whereas such an isomorphism does no longer hold in higher degrees.

This implies that with coefficients  $\mathbb{Q}_q$  instead of  $\mathbb{Q}$ , the map  $\Gamma_f$  from the Hirsch lemma 3.2 can induce an isomorphism only up to degree k(q) where  $\lim_{q\to\infty} k(q) = \infty$ . The precise formulation and the proof of such a "tame" Hirsch lemma can be found in [10].

# 9. The stable free rank of symmetry of products of spheres

**Theorem 9.1.** Let  $r \geq 1$ , let  $n_1, \ldots, n_k \geq 1$ , let  $G = (\mathbb{Z}/p)^r$  and let X be a finite free G-CW complex homotopy equivalent to  $S^{n_1} \times \cdots \times S^{n_k}$ . Then, assuming that p is sufficiently large with respect to dim X, we obtain  $r \leq \sharp \{n_j \text{ odd}\}.$ 

Remark 9.2. It is shown in [10] that the conclusion of Theorem 9.1 holds for  $p > 3 \dim X$ .

We denote by  $X_G = EG \times_G X$  the Borel construction of X. Since G acts freely, we have  $X_G \simeq X/G$ . In particular, as in the case of free torus actions, we obtain  $\dim_{\mathbb{F}_p} H^*(X_G; \mathbb{F}_p) < \infty$ . Using the Cenkl-Porter theorem and the tame Hirsch lemma one obtains the following version of Proposition 6.2, compare [10, Theorem 5.5].

**Proposition 9.3.** If p is sufficiently large with respect to dim X, there are finitely generated free DGCAs  $(\mathcal{E}^*, d_E)$  and  $(\mathcal{M}^*, d_M)$  over  $\mathbb{F}_p$  such that

- $\triangleright \mathcal{M}^* = \Lambda^*(\tau_1, \dots, \tau_{k_e}, \eta_1, \dots, e_{k_e}, \sigma_1, \dots, \sigma_{k_o}) \text{ as in Proposition 6.2 with } d_M(\eta_j) = \tau_j^2,$   $\triangleright \mathcal{E}^* = \mathcal{M}^* \otimes \mathbb{F}_p[t_1, \dots, t_r] \otimes \Lambda^*(s_1, \dots, s_r) \text{ as graded commutative algebras, where } \deg(t_i) = 2$ and  $deg(s_i) = 1$ ,
- $\triangleright d_E$  is  $\mathbb{F}_p[t_1,\ldots,t_r] \otimes \Lambda^*(s_1,\ldots,s_r)$ -linear and the projection  $\mathcal{E}^* \to \mathcal{M}^*$  given by evaluating  $t_1, \ldots, t_r, s_1, \ldots, s_r$  at 0 is a cochain map,
- $\triangleright$  each monomial in  $t_1, \ldots, t_r$  of cohomological degree at least dim X+1 represents the zero class in  $H^*(\mathcal{E}^*)$ . However, the cohomology algebra  $H^*(\mathcal{E}^*)$  is not isomorphic to  $H^*(X_G; \mathbb{F}_p)$ in large degrees,

Note that  $H^*(B(\mathbb{Z}/p)^r; \mathbb{F}_p) \cong \mathbb{F}_p[t_1, \dots, t_r] \otimes \Lambda^*(s_1, \dots, s_r)$ . Now replace  $\mathcal{E}^*$  by  $\mathcal{E}^*/(s_1, \dots, s_r)$ with the induced differential and denote this DGCA  $(\mathcal{E}^*, d_E)$  again. Arguing as in the proof of Proposition 6.4, one shows that all  $t_i$  and  $\tau_i$  represent nilpotent cohomology classes in  $H^*(\mathcal{E}^*, \delta_E)$ so that this cohomology is finite dimensional over  $\mathbb{F}_p$ . Using a commutative algebra argument as in Section 6, this implies  $k_e + r \le k_e + k_o$ , as required. More details can be found in [10].

#### REFERENCES

- [1] C. Allday, V. Puppe, Cohomological methods in transformation groups, Cambridge University Press (1993).
- [2] A. Bousfield, V. Gugenheim, *On PL de Rham theory and rational homotopy type*, Mem. Amer. Math. Soc. **179** (1976).
- [3] H. Cartan, Théories cohomologiques, Invent. Math. 35 (1976), 261-271.
- [4] B. Cenkl, R. Porter, De Rham theorem with cubical forms, Pacific J. Math. 112 (1984), 35-48.
- [5] D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics 150 (1996), Springer-Verlag.
- [6] P. Griffiths, J. Morgan, Rational Homotopy Theory and Differential Forms, Second Edition, Birkhäuser, 2013.
- [7] Y. Félix, S. Halperin, J.-C. Thomas, *Rational homotopy theory*, Springer Graduate Texts in Mathematics **205**, Springer-Verlag 2001.
- [8] S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173-199.
- [9] A. Hatcher, Notes on spectral sequences, availabe at https://pi.math.cornell.edu/ hatcher/AT/ATch5.pdf
- [10] B. Hanke, The stable free rank of symmetry of products of spheres, Inv. Math. 178 (2009), 265–298.
- [11] P. May, Simplicial objects in algebraic topology, Chicago Lecture Notes in Mathematics (1992).
- [12] T. Sörensen, *Zahme Homotopietheorie einfacher Kan-Mengen und p-Torus-Operationen*, Diplomarbeit (1992), FU Berlin, available at ftp.math.fu-berlin.de/pub/math/publ/pre/2008/index.html.
- [13] D. Sullivan, Infinitesimal computations in topology, Publ. Math. Inst. Hautes Études Sci. 47 (1977), 269-331.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF AUGSBURG, GERMANY

Email address: hanke@math.uni-augsburg.de