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ABSTRACT. We develop the part of rational homotopy theory due to Sullivan which is required to
compute the (stable) free rank of symmetry of products of spheres.

1. OVERVIEW

Let G = (S1)r and let X be a finite free G-CW complex. Halperin’s toral rank conjecture
predicts dimH∗(X;Q) ≥ 2r. One appraoch to this question is as follows: Since G acts freely, we
get XG = EG×G X ' X/G, which is a finite CW complex. In particular, dimH∗(XG;Q) <∞.
The cohomology H∗(XG;Q) can be studied by means of the Leray-Serre spectral sequence for the
fibration X ↪→ XG → BG. We have E2

∼= H∗(X;Q) ⊗ Q[t1, . . . , tr] and dimE∗,∗∞ < ∞, which
might imply the predicted lower bound for H∗(X;Q). However, in general one does not have
enough control of the differentials in the spectral sequence in order resolve the Halperin conjecture
in this way. So we need a more precise understanding how H∗(XG;Q) and H∗(X;Q) are related.

For this aim let us rethink the following basic problem in algebraic topology:

Given a topological space X , compute its cohomology ring H∗(X;Q).

IfX is a CW complex, then the additive, but not the multiplicative structure, ofH∗(X;Q) can be
computed from the cellular cochain complex ofX . In order to compute the multiplicative structure
as well, we apply a different approach which closely reflects the homotopy type of X .

If π is a group π and k ≥ 1, let K(π, k) denote an Eilenberg-MacLane space of type (π, k), i.e.,
K(π, k) is a path connected CW-complex with πi(K(π, k)) = 0 for i 6= k and πk(K(π, k)) ∼= π.
The space K(π, k) is unique up to homotopy equivalence. For consecutive k, these spaces are
related by a path loop fibration with contractible total space

(1.1) K(π, k) = ΩK(π, k + 1)→ PK(π, k + 1)→ K(π, k + 1).

Assume that X is a simple topological space, that is, X is path connected, π1(X) is abelian and
π1(X) acts trivially on the higher homotopy groups πk(X) for k ≥ 2. The homotopy type of X
can then be described by its Postnikov tower (Xk, pk, φk)k≥0, that is, X0 = ∗, pk : Xk → Xk−1,
k ≥ 1, and φk : X → Xk, k ≥ 0, are continuous maps such that

(i) each φk is a k-equivalence, i.e., the induced maps πi(X) → πi(Xk) are bijections for 0 ≤
i ≤ k and a surjection for i = k + 1,

(ii) pk ◦ φk = pk−1 for k ≥ 1,
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(iii) each pk fits into a pull back of fibrations

Xk
//

pk

��

PK(πk(X), k + 1)

��
Xk−1

fk // K(πk(X), k + 1)

In other words, pk : Xk → Xk−1 is a fibration with fibre K(πk(x), k) and classified by fk. The
spaceXk can be constructed, up to homotopy equivalence, by attaching cells of dimension≥ k+2
to X in order to kill πi(X), i ≥ k + 1.

Let us now assume that π∗(X) is finitely generated in each degree. By a theorem of Serre, this
is equivalent to H∗(X;Z) being finitely generated in each degree, compare [9, Thm. 5.7].

The rational cohomology rings of K(π, k) with finitely generated abelian π were computed by
Cartan and Serre. If V is a rational vector space and k ≥ 0, we denote by V (k) the graded vector
space V concentrated in degree k.

Proposition 1.2. Let π be a finitely generated abelian group. Then, for each k ≥ 1, there exists an
isomorphism of Q-algebras

H∗(K(π, k);Q) ∼= Λ∗(Hom(π,Q)(k)).

In degree k it restricts to the identity H∗(K(π, k);Q) = Hom(πk(K(π, k),Q)) = Hom(π,Q).

Proof. Write π ∼= T ⊕ Zr for some r ≥ 0 where T is a finitely generated torsion abelian group.
We have

H̃∗(K(T, k);Q) = 0, H∗(K(Z, k);Q) = Λ∗(Q(k)).

Both assertions are clear for k = 1 and for higher k follow by analysing the Leray-Serre spectral
sequence, including its multiplicative properties, for the path loop fibration (1.1) for π = T and
π = Z.

From this the assertion of Proposition 1.2 follows from the Künneth theorem. �

We can now try to compute the cohomology rings H∗(X;Q) inductively along a Postnikov
decomposition of X . For this aim, it remains to resolve the following problem. Let π be a finitely
generated abelian group, let k ≥ 1 and let p : E → B be a fibration fitting into a pull back diagram

(1.3) E //

p

��

PK(π, k + 1)

��
B

f // K(π, k + 1)

Problem 1.4. Compute the cohomology ring H∗(E;Q) in terms of H∗(B;Q), H∗(K(π, k);Q) =
Λ∗(Hom(π,Q)(k)) and the map f .

We will present an efficient solution of this problem going back to Dennis Sullivan [13] and use
this to verify the Halperin conjecture if X is a product of spheres.

2. SULLIVAN-DE RHAM THEOREM

Recall that given a smooth manifold M , the real cohomology ring H∗(M ;R) can be computed
by means of the cochain complex Ω∗(M) of smooth differential forms onM . The ring structure on
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H∗(M ;R) is induced by the wedge product of differential forms which makes Ω∗(M) a real differ-
ential graded commutative algebra (DGCA). Dennis Sullivan in [13] generalized this construction
to arbitrary topological spaces.

If V is a graded vector space we denote by Λ∗(V ) the free rational GCA generated by V . Con-
sider the free rational DGCA

Λ∗(t0, . . . , tn, dt0, . . . , dtn) := Λ∗(Span(t0, . . . , tn, dt0, . . . , dtn))

with generators t0, . . . , tn in degree 0 and dt1, . . . , dtn in degree 1 and coboundary given by ti 7→
dti, dti 7→ 0. We obtain the DGCA

T ∗n := Λ∗(t0, . . . , tn, dt0, . . . , dtn)/(t0 + · · ·+ tn − 1, dt0 + · · ·+ dtn)

which we regard as the algebra of rational polynomial forms on the n-simplex

∆n := {(t0, . . . , tn) ∈ Rn+1 | 0 ≤ ti ≤ 1, t0 + · · ·+ tn = 1}.

The inclusion of the i-th face into ∆n and the i-th collapse onto ∆n, 0 ≤ i ≤ n, are given by

∆n−1 → ∆n, (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti+1, . . . , tn−1),

∆n+1 → ∆n, (t0, . . . , tn+1) 7→ (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1) .

Via pullback of forms, these maps induce DGCA maps ∂i : T ∗n → T ∗n−1 and si : T ∗n → T ∗n+1 that
satisfy the simplicial identities. In other words, T ∗ := (T ∗n)n∈N is a simplicial rational DGCA.

Definition 2.1. Let X be a topological space and let Sing(X),

(Sing(X))n = MorTop(∆
n, X),

be the simplicial set of singular simplices in X . The rational GCDA

A∗(X) := MorSimplSet(Sing(X), T ∗)

is called the Sullivan-de Rham cochain algebra of X .

We think ofAk(X) as compatible polynomial k-forms with rational coefficients on the simplices
of a triangulation of X .

Let ξ ∈ Ak(X) and let σ : ∆n → X be a singular simplex. Then ξ(σ) ∈ T kn is a rational
polynomial k-form ω on the geometric n-simplex ∆n ⊂ Rn+1 and we set

Ψξ(σ) :=

∫
∆n

ω ∈ Q.

This is zero for k 6= n. We can thus regard Ψξ ∈ Ck
sing(X;Q) and hence obtain a Q-linear map

Ψk : Ak(X)→ Ck
sing(X;Q), ξ 7→ Ψξ. Stokes’ theorem implies that Ψ∗ : A∗(X)→ C∗sing(X;Q) is

a cochain map.

Theorem 2.2 (Sullivan-de Rham comparison theorem). The map Ψ∗ induces a multiplicative iso-
morphism

H∗(A∗(X)) ∼= H∗(C∗sing(X;Q)) = H∗sing(X;Q).

For a proof see [2, Sections 2 and 3] and [6, Section 9].
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3. HIRSCH LEMMA

We will now come back to Problem 1.4. Let

f ] : Hk+1(K(π, k + 1);Q) = Hom(π,Q)→ Ak+1(B)

be cochain representative of f ∗ in degree k+ 1. It is uniquely determined up to cochain homotopy,
that is, a linear map Hom(π,Q)→ Ak+1(B) with values in the coboundaries of Ak+1(B).

Definition 3.1. Let (B∗, dB) be a rational GCDA, let V be a vector space which is concentrated in
degree k ≥ 1 and let τ : V → Bk+1 be a Q-linear map with dB ◦ τ = 0.

The free Hirsch extension1 (B∗ ⊗τ Λ∗(V ), d) is the rational DGCA equal to B∗ ⊗ Λ∗(V ) as a
GCA and equipped with the differential d which acts as a derivation and satisfies

d(b⊗ 1) = dB(b)⊗ 1, d(1⊗ v) = τ(v)⊗ 1.

If two maps τ, τ ′ : V → Bk+1 with dB ◦τ = 0 = dB ◦τ ′ induce the same maps V → Hk+1(B∗),
then there exists a DGCA isomorphism B∗ ⊗τ Λ∗(V ) ∼= B∗ ⊗τ ′ Λ∗(V ) which restricts to the
identity on B∗ ⊗ 1. In particular, if τ induces the zero map V → Hk+1(B∗), then B∗ ⊗τ Λ∗(V ) is
isomorphic to (B∗, dB)⊗ Λ∗(V ) with the zero differential on 1⊗ Λ∗(V ).

The following result gives a satisfactory answer to Problem 1.4.

Theorem 3.2 (Hirsch lemma). There is a DGCA map

Γf : A∗(B)⊗f] Λ∗(Hom(π,Q)(k))→ A∗(E)

which induces an isomorphism in cohomology.

Proof. The trickiest part is the construction of Γf . Diagram 1.3 induces a pull-back square of
simplicial Kan fibrations

(3.3) Sing(E) //

p

��

Sing(PK(π, k + 1))

��
Sing(B)

f // Sing(K(π, k + 1))

Given a cochain complex V ∗ we define the simplicial abelian group

‖V ∗‖ := MorCochainCompl(V
∗, T ∗),

called the simplicial realisation of V ∗. For each topological space X , we obtain a canonical bijec-
tion

(3.4) MorSimplSet(Sing(X), ‖V ∗‖) ≈ MorCochainCompl(V
∗,A∗(X))

which is natural in X and V ∗ and preserves homotopies. This will help us to construct the map Γf .
The right hand vertical map in (3.3) is a simplicial analogue of the path look fibration PK(π, k+

1) → K(π, k + 1). After replacing π by π ⊗ Q we will now construct an especially convenient
model for this fibration.

Let V ∗ := Hom(π,Q)(k), let ΣV ∗ with (ΣV )i = V i−1 be the suspension of V ∗ and let
coneV ∗ = (V ∗ ⊕ ΣV ∗, d(v, w) := (0, v)) be the cone of V ∗, which has vanishing cohomology.
We obtain a short exact sequence of cochain complexes

0 −→ ΣV ∗
v 7→(0,v)−→ coneV ∗

(v,w)7→v−→ V ∗ −→ 0.

1Named after Guy Hirsch (1915–1993) who also appears in the Leray-Hirsch theorem
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Passing to simplicial realisations, we obtain a Kan fibration of simplicial groups

‖V ∗‖ ↪→ ‖ coneV ∗‖ → ‖ΣV ∗‖

which is a model for the simplicial path-loop fibration

K̂(G, k)→ PK̂(G, k + 1)→ K̂(G, k + 1)

where G = Hom(Hom(π,Q),Q) = π ⊗ Q and where K̂ denotes simplicial Eilenberg-MacLane
complexes. Here we use the fact that the map of simplicial abelian groups ‖ coneV ∗‖ → ‖ΣV ∗‖
is surjective, hence a principal Kan fibration by [11, Lemma 18.2] whose kernel can be identified
with the simplicial abelian group ‖V ∗‖ by an explicit calculation. Furthermore, ‖V ∗‖ = K̂(G, k)
since (π ⊗ Q) ⊗ T ∗ is a cohomology theory with coefficients π ⊗ Q in the sense of Cartan [3]
and by the inductive argument in the proof of [3, Théorème 1]. A similar argument shows that
‖ΣV ∗‖ = K̂(G, k + 1).

The canonical inclusion π → π ⊗ Q combined with diagram (3.3) induces a commutative
diagram

Sing(E) //

p

��

‖ coneV ∗‖

��
Sing(B)

f // ‖ΣV ∗‖

and applying (3.4) to this diagram, we obtain the commutative diagram

(3.5) A∗(E) coneV ∗oo

A∗(B)

p]

OO

ΣV ∗

OO

f]oo

where addig to f ] a linear map with values in the coboundaries Ak+1(B) amounts to replacing f
by a homotopic map. In particular, we obtain an induced grading preserving linear map

φ : Hom(π,Q)(k) v 7→(v,0)−→ (coneV )k −→ Ak(E)

which satisfies (since the upper horizontal map in (3.5) is a cochain map)

dA∗(E) ◦ φ = p] ◦ f ].

Now the maps p] and φ induce the required DGCA map

Γf : A∗(B)⊗f] Λ∗(Hom(π,Q)(k))→ A∗(E).

It remains to show that it induces an isomorphism in cohomology. We may assume without loss of
generality that B is a CW complex.
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In a first step, we show that Γf induces an isomorphism in cohomology if f is constant. In this
case, we have commutative diagram

K(π, k)

��

= // K(π, k)

��
E = B ×K(π, k) //

p

��

PK(π, k + 1)

��
B

const. // K(π, k + 1)

and φ : Hom(π,Q) → Ak(E) factors as Hom(π,Q) → Ak(K(π, k)) → Ak(E), where the first
map induces the isomorphism Hom(π,Q) ∼= Hk(K(π, k),Q) and the second map is induced by
the projection E → K(π, k). Hence the claim follows from the Künneth formula and Proposition
1.2.

In a next step, we show that Γf induces an isomorphism in cohomology if f ' const. In order
to prove this, let H : B × [0, 1] → K(π, k + 1) be a homotopy from f to const. and notice that
the restrictions of A∗(B × [0, 1]) ⊗H] Λ∗(Hom(π,Q)(k)) to A∗(B) ⊗f] Λ∗(Hom(π,Q)(k)) and
A∗(B) ⊗0 Λ∗(Hom(π,Q)(k)) induce isomorphisms in cohomology. Thus we are reduced to the
case f = const..

We now show that Γf induces an isomorphism in cohomology by induction on dimB. If
dimB = 0, then f ' const. and hence this case is clear. In the induction, step we write

Bk = Bk−1
⋃
αi

∐
i∈I

Dk

with attaching maps αi : ∂Dk → Bk−1. Let Ai : Dk → Bk be the induced characteristic maps.
Then Γf̃ induce isomorphisms for

. f̃ = f |Bk−1 : Bk−1 → K(π, k + 1), by the induction hypothesis,

. f̃ = f ◦ Ai : Dk → K(π, k + 1) which is homotopic to a constant map,

. f̃ = f ◦ αi : Sk−1 → K(π, k + 1) since dimSk−1 = k − 1.
Hence, Γf is an isomorphism by a Mayer-Vietoris argument and the five lemma, keeping in mind
that our construction of Γf is natural with respect to precomposing f : B → K(πk(X), k+ 1) with
maps B′ → B. This finishes the proof of Theorem 3.2. �

Our exposition is inspired by [6]. However, the Hirsch lemma in [6, Section 16] is proven in a
different and, in our opinion, less conceptual way.

4. MINIMAL MODELS VIA POSTNIKOV DECOMPOSITIONS

Assume thatX is a path connected simple topological space such that π∗(X) is finitely generated
in each degree. Using the Postnikov decomposition(Xk, pk, φk)k≥0 of X (see Section 1) and the
Hirsch lemma, we will replace the Sullivan-de Rham algebra A∗(X) by a smaller DGCA which
closely reflects the homotopy type of X .

For k ≥ 1 we will construct a finitely generated free rational DGCAM∗
k together with a DGCA

map
ψk : M∗

k → A∗(Xk)

withM∗
0 := Q and the following properties for k ≥ 1:
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. ψk induces an isomorphism in rational cohomology,

. M∗
k =M∗

k−1 ⊗τk Λ∗(Hom(πk(X),Q)(k)), where the twisting map τk is induced by fk,
. the following diagram commutes:

M∗
k−1 ⊗τk Λ∗(Hom(πk(X),Q)k)

ψk // A∗(Xk)

M∗
k−1

ζ 7→ζ⊗1

OO

ψk−1 // A∗(Xk−1)

p∗k

OO

Assume that ψk−1 : M∗
k−1 → A∗(Xk−1) has been constructed. The Hirsch lemma gives a

DGCA map
Γfk = A∗(Xk−1)⊗f]k Λ∗(Hom(πk(X),Q)(k))→ A∗(Xk)

which induces an isomorphism in cohomology.
Since ψk−1 : M∗

k−1 → A∗(Xk−1) induces an isomorphism in cohomology, there is (possibly
after replacing f ] by a cochain homotopic map) a Q-linear map

τk : Hom(πk(X),Q)→Mk+1
k−1

whose image lies in the cocycles ofMk+1
k−1 and such that ψk−1 ◦ τk = f ]k. We now set

M∗
k :=M∗

k−1 ⊗τk Λ∗(Hom(πk(X),Q)(k))

and ψk = Γfk ◦ (ψk−1 ⊗ id) : M∗
k−1 ⊗τk Λ∗(Hom(πk(X),Q)(k))→ A∗(Xk). A spectral sequence

argument shows that ψk−1⊗ id induces an isomorphism in cohomology and hence the same is true
for ψk.

We finally set

M∗(X) := colimkM∗
k, ψ := colimk ψk : M∗(X)→ A∗(X).

By construction, the map ψ induces an isomorphism in cohomology.

Definition 4.1. We call ψ : M∗(X)→ A∗(X) the Sullivan minimal model of A∗(X).

Remark 4.2. . The Sullivan model of X determines the rational homotopy groups π∗(X)⊗Q.
. The Sullivan minimal model of X can be characterised in an axiomatic way and is determined

up to isomorphism by A∗(X) alone. In particular, A∗(X) determines π∗(X)⊗Q.

Example 4.3. Applying the procedure from the previous section to the n-sphere Sn and (only)
using the known cohomology computation for H∗(Sn;Q), we obtain
(a) M∗(Sn) ∼= Q[τ ]⊗ Λ∗(η) where deg(τ) = n, deg(η) = 2n− 1, dM(η) = τ 2, for even n,
(b) M∗(Sn) ∼= Λ∗(σ) where deg(σ) = n, for odd n.
For X = BS1 we haveM∗(X) = Q[t] with deg(t) = 2, henceM∗(B((S1)r)) = Q[t1, . . . , tr].

5. SMALL COCHAIN MODELS FOR TORUS ACTIONS

Let G = (S1)r and let X be a finite connected G-CW complex which is a simple topological
space. Let X ↪→ XG → BG be the Borel construction. Note that XG is simple and π∗(XG) ⊗ Q
is finitely generated in each degree.
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By attaching G-cells to X for killing homotopy groups of X , we obtain the Postnikov decom-
position of XG relative to BG, leading to a commutative diagram

�� �� ��
X2

//

p2

��

(XG)2
//

P2

��

BG

X1
//

p1

��

(XG)1
P1 //

P1

��

BG

X0 = ∗ // (XG)0 = BG BG

where for all k ≥ 1, the complexes Xk and (XG)k are k-th stages of the Postnikov decompositions
of X and XG, each row is a fibration with fibre Xk and the vertical maps pk and Pk are fibrations
whose fibres are Eilenberg-MacLane complexes of type (πk(X), k).

Carrying out the previous construction in this relative situation and using Example 4.3 we obtain
a commutative diagram of rational DGCAs

M∗
2

OO

E∗2oo

OO

Q[t1, . . . , tr]oo

OO

M∗
1.

p∗2

OO

E∗1oo

P ∗2

OO

Q[t1, . . . , tr]
P ∗1

oo

M∗
0 = Q

p∗1

OO

E∗0

P ∗1

OO

oo Q[t1, . . . , tr]

Furthermore, we have

M∗
k =M∗

k−1 ⊗τk Λ∗(Hom(πk(X),Q)(k)), E∗k = E∗k−1 ⊗τk Λ∗(Hom(πk(X),Q)(k))

where the twisting map τk are induced by the mapXk → (XG)k → K(πk(X), k+1) classifying the
fibrations pk and Pk. We also have DCGA maps ψk :Mk → A∗(Xk) and Ψk : Ek → A∗((XG)k)
which induce isomorphisms in cohomology and fit into commutative diagrams

A∗(Xk) A∗((XG)k)oo

M∗
k

ψk

88

E∗k

Ψk

88

oo

A ∗ (Xk−1)

p∗k

OO

A∗((XG)k−1)oo

P ∗k

OO

M∗
k−1

ψk−1

88

OO

E∗k−1
oo

Ψk−1

88

OO
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SettingM∗ := colimkM∗
k and E∗ := colimk E∗k , we arrive at the following theorem:

Theorem 5.1. There are rational DGCAs (E∗, dE) and (M∗, dM) with the following properties:
1) E∗ = Q[t1, . . . , tr]⊗M∗ as graded algebras where deg(ti) = 2,
2) dE is zero on Q[t1, . . . , tr] and the map E∗ →M∗, ti 7→ 0, is a cochain map,
3) M∗ is free as a graded algebra. As generators in degree k ≥ 1 we can take the elements of a

basis of the Q-module Hom(πk(X),Q).,
4) there is a commutative diagram

M∗ // A∗(X)

E∗ //

ti 7→0

OO

A∗(XG)

p∗

OO

and the horizontal maps induce isomorphisms in cohomology.

Example 5.2. Let X = S2n−1 with the standard free S1-action, n ≥ 1. Then M∗ = Λ∗(σ),
deg(σ) = 2n− 1 and E∗ = Q[t]⊗ Λ(σ), dE(σ) = tn.

6. THE TORAL RANK OF PRODUCTS OF SPHERES

We apply Theorem 5.1 to verify the toral rank conjecture for products of spheres.

Theorem 6.1. Let r ≥ 1, let n1, . . . , nk ≥ 1, let G = (S1)r and let X be a finite free G-CW
complex homotopy equivalent to Sn1 × · · · × Snk . Then r ≤ ]{nj odd}.

We denote by XG = EG ×G X the Borel construction of X . Since G acts freely, we have
XG ' X/G. In particular H∗(XG;Q) is a finite dimensional vector space. Let ko denote the
number of odd ni and ke denote the number of even ni.

Using Theorem 5.1 and Example 4.3 we obtain the following.

Proposition 6.2. There are finitely generated free DGCAs (E∗, dE) and (M∗, dM) over Q such
that
. M∗ = Λ∗(τ1, . . . τke , η1, . . . , ηke , σ1, . . . , σko), where the degrees of τj correspond to the even
nj , the degrees of σj correspond to the odd nj , deg(ηj) = 2 deg(τj)− 1, and dM(ηi) = τ 2

i ,
. E∗ =M∗ ⊗Q[t1, . . . , tr] as graded commutative algebras where deg(ti) = 2,
. dE is Q[t1, . . . , tr]-linear and the projection E∗ →M∗ given by evaluating t1, . . . , tr at 0 is a

cochain map,
. H∗(E∗) ∼= H∗(XG;Q), in particular, the total dimension of H∗(E∗) is finite.

We claim that E∗ must have at east as many odd degree generators as even degree generators.
Hence ke + r ≤ ke + ko which implies Theorem 6.1.

Inspired by the construction of pure towers in [8], we deform dE to another differential δE on
E∗ as follows: δE is a derivation that vanishes on Q[t1, . . . , tr, τ1, . . . , τke ] and satisfies

δE(σj) = π(dE(σj)), δE(ηj) = π(dE(ηj)) .

where π : E∗ → E∗ is the projection onto Q[t1, . . . , tr, τ1, . . . , τke ] given by evaluating the odd
degree generators ηj, σj at 0. It is easy to verify that δ2

E = 0.
For ` ≥ 0 let Σ` ⊂ E∗ be the Q[t1, . . . , tr]-linear subspace generated by the monomials inM∗

containing exactly ` of the odd degree generators σj, ηj . In particular, Σ` = 0 for ` > k by the
graded commutativity of the product. We set Σ+ :=

⊕
`≥1 Σ`. This is a nilpotent ideal in E∗.
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Lemma 6.3. For all ` ≥ 1, the differential δE maps Σ` to Σ`−1. Furthermore, the image of δE−dE
is contained in Σ+.

Proof. The first assertion holds by the definition and derivation property of δE .
The second assertion holds for the generators σj and ηj , because im(id−π) ⊂ Σ+, it holds for

the generators ti, because δE and dE send these elements to zero and it holds for the generators
τj , because each dE(τj) is of odd degree and therefore contained in Σ+. This implies the second
assertion in general, since Σ+ is an ideal in F ∗ and δE − dE is a derivation. �

The elements ti, 1 ≤ i ≤ r, and τj , 1 ≤ j ≤ ke, represent cocycles in (E∗, δE). Let [ti] and [τj]
be the corresponding cohomology classes.

Proposition 6.4. The classes [ti] and [τj] are nilpotent in H∗(E∗, δE).

Proof. We claim that each monomial in t1, . . . , tr of cohomological degree at least dimX ≥
dimXG + 1 represents the zero class in H∗(E∗). In particular, the classes [ti] ∈ H∗(E , δE) are
nilpotent. Let m be such a monomial and write m = dE(c) for a cochain c ∈ E∗.

By Lemma 6.3, we have δE(c) = m + ω where ω ∈ Σ+. Let c1 be the component of c in Σ1.
Lemma 6.3 and the fact that m ∈ Σ0 imply the equation δE(c1) = m. This shows that m is a
coboundary in (E∗, δE).

The cochain algebra (E∗, δE) has a decreasing filtration given by

F∗γ = Q[t1, . . . , tr]
≥γ ⊗M∗

where γ ∈ N denotes the cohomological degree. Our previous argument and the fact that each τj
is a cocycle in (E∗, δE) imply that each element in Σ0 ⊂ E∗ in filtration level at least dimX is a
coboundary in (E∗, δE).

Now pick a j ∈ {1, . . . , ke}. By Proposition 5.1, we have

dE(ηj) = τ 2
j mod F∗2 .

By the definition of δE , we have

δE(ηj) = π(τ 2
j ) = τ 2

j mod F∗2
since the map π preserves the ideal (t1, . . . , tr) = F∗2 . This implies that τ 2

j is δE-cohomologous to
a cocycle c ∈ F∗2 . Hence (τ 2

j )dimX is δE-cohomologous to cdimX ∈ F∗2 dimX . We can split cdimX

into a sum c0 + c+ where c0 ∈ Σ0 ∩ F∗2 dimX and c+ ∈ Σ+ ∩ F∗2 dimX . As noted earlier, c0 is
δE-cohomologous to zero. Because Σ+ is nilpotent, the element c+ is nilpotent.

We conclude that τ 2 dimX
j is δE-cohomologous to a nilpotent cocycle in (E∗, δE). �

Together with Proposition 6.4, we see that the elements ti, 1 ≤ i ≤ r, and τj , 1 ≤ j ≤ ke, define
nilpotent classes in H∗(E , δE). This implies that H∗(E , δE) is a finite dimensional Q-vector space.

Consider the ideal

I =
(
δE(η1), . . . , δE(ηke), δE(σ1), . . . , δE(σko)

)
⊂ Q[t1, . . . , tr, τ1, . . . , τke ]

contained in im(δE) and obtain an inclusion

Fp[t1, . . . , tr, τ1, . . . , τke ]/I ⊂ H∗(E∗, δE) .

Here we use the fact that the coboundaries in (E∗, δE) are contained in the ideal I · E∗, whose in-
tersection with Q[t1, . . . , tr, τ1, . . . , τke ] is equal to I . We conclude that Q[t1, . . . , tr, τ1, . . . , τke ]/I
is a finite dimensional Q-vector space.
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Because I is generated by homogenous elements of positive degree, it does not contain a unit
of Q[t1, . . . , tr, τ1, . . . , τke ] and hence there is a minimal prime ideal p ⊂ Q[t1, . . . , tr, τ1, . . . , τke ]
containing I . The quotient Q[t1, . . . , tr, τ1, . . . , τke ]/p is both a finite dimensional Q-vector space
and an integral domain. Hence p = (t1, . . . , tr, τ1, . . . , τke) and consequently height(p) = r + ke.
By Krull’s height theorem, see [5, Theorem 10.2], the number of generators of I must be at least
r + ke. From the definition of I we derive the inequality ke + ko ≥ r + ke. This implies ko ≥ r
and finishes the proof of Theorem 6.1.

Remark 6.5. Let G = (S1)r, let X is a free finite G-CW complex which is a simple topological
space and assume that π∗(X)⊗Q is zero in all but finitely many degrees. We obtain the homotopy
Euler characteristic

χπ(X) :=
∑
k≥1

(−1)k dim(πk(X)⊗Q).

It follows from [8, Theorem T] that r ≤ −χπ(X). This implies our Theorem 6.1 as a special case.

For further information about the relation of rational homotopy theory and torus actions we refer
to [1, Chapters 2 and 4].

7. CENKL-PORTER THEOREM

We wish to prove a version of Theorem 6.1 for G = (Z/p)r. Since H̃∗(BG;Q) = 0, we need to
refine the previous constructions to subrings R ⊂ Q without inverting the prime p.

The Sullivan-deRham theorem does not generalize to integral coefficients in an obvious way
since the integration map introduces denominators as in∫

[0,1]

tk−1dt =
1

k
.

However, a closer look shows that the denominators are controlled by the weights of polynomial
forms to be integrated. More precisely, defining the weight of a monomial tα0

0 dt
ε0
0 · · · tαn

n dtεnn ,
αi ≥ 0, 0 ≤ εi ≤ 1, as maxi{αi + εi}, we get∫

[0,1]k
ω ∈ Qq

if ω is an k-form of weight at most q and Qq ⊂ Q is the smallest subring where all integers smaller
than or equal to q are inverted.

Starting from this observation, Cenkl-Porter in [4] replace the simplicial DGCA T ∗ by a filtered
simplicial DGCA T ∗,∗, where (T ∗,q)n, q ≥ 0, is the simplicial DGCA over Qq consisting of poly-
nomial forms with coefficients Qq and weight at most q on a cubical decomposition of ∆n. This
leads to the filtered Sulllivan-de Rham cochain algebra A∗,∗(X) with

A∗,q(X) := MorSimplSet(Sing(X), T ∗,q)

together with integration maps

Ψ∗,q : A∗,q(X)→ C∗sing(X;Qq).

For the following result, see [4, Theorems 4.1 and 4.2].
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Theorem 7.1. For q ≥ 1, the map Ψ∗,q induces a linear isomorphism

H∗(A∗,q(X)) ∼= H∗(C∗sing(X;Qq)) = H∗sing(X;Qq).

These maps are compatible with the multiplication mapsA∗,q1(X)⊗A∗,q1(X)→ A∗,q1+q2(X) and
C∗sing(X;Qq1)⊗ C∗sing(X;Qq2)→ C∗sing(X;Qq1+q2) induced by muliplication of forms and the cup
product of singular cochains.

Note in particular, that the Cenkl-Porter theorem gives a description of the Z-moduleH∗sing(X;Z)
in terms of polynomial forms.

8. TAME HIRSCH LEMMA

Let p be a prime. By a computation due to Cartan and Serre, H∗(K(Z, k);Fp) is a DGCA
over Fp in one generator of degree k and further generators of degrees at least k + 2(p − 1). This
corresponds to the fact that the first reduced Steenrod power operation for the prime p raises degrees
by 2(p − 1). Hence, up to degree k + 2q − 1, we have H∗(K(Z, k);Qq) ∼= Λ∗(Hom(Z,Qq)

(k)),
analogous to Proposition 1.2, whereas such an isomorphism does no longer hold in higher degrees.

This implies that with coefficients Qq instead of Q, the map Γf from the Hirsch lemma 3.2 can
induce an isomorphism only up to degree k(q) where limq→∞ k(q) =∞. The precise formulation
and the proof of such a “tame” Hirsch lemma can be found in [10].

9. THE STABLE FREE RANK OF SYMMETRY OF PRODUCTS OF SPHERES

Theorem 9.1. Let r ≥ 1, let n1, . . . , nk ≥ 1, let G = (Z/p)r and let X be a finite free G-CW
complex homotopy equivalent to Sn1 × · · · × Snk . Then, assuming that p is sufficiently large with
respect to dimX , we obtain r ≤ ]{nj odd}.

Remark 9.2. It is shown in [10] that the conclusion of Theorem 9.1 holds for p > 3 dimX .

We denote by XG = EG ×G X the Borel construction of X . Since G acts freely, we have
XG ' X/G. In particular, as in the case of free torus actions, we obtain dimFp H

∗(XG;Fp) <∞.
Using the Cenkl-Porter theorem and the tame Hirsch lemma one obtains the following version

of Proposition 6.2, compare [10, Theorem 5.5].

Proposition 9.3. If p is sufficiently large with respect to dimX , there are finitely generated free
DGCAs (E∗, dE) and (M∗, dM) over Fp such that
. M∗ = Λ∗(τ1, . . . τke , η1, . . . , eke , σ1, . . . , σko) as in Proposition 6.2 with dM(ηj) = τ 2

j ,
. E∗ =M∗⊗Fp[t1, . . . , tr]⊗Λ∗(s1, . . . , sr) as graded commutative algebras, where deg(ti) = 2

and deg(si) = 1,
. dE is Fp[t1, . . . , tr] ⊗ Λ∗(s1, . . . , sr)-linear and the projection E∗ → M∗ given by evaluating
t1, . . . , tr, s1, . . . , sr at 0 is a cochain map,

. each monomial in t1, . . . , tr of cohomological degree at least dimX + 1 represents the zero
class in H∗(E∗). However, the cohomology algebra H∗(E∗) is not isomorphic to H∗(XG;Fp)
in large degrees,

Note thatH∗(B(Z/p)r;Fp) ∼= Fp[t1, . . . , tr]⊗Λ∗(s1, . . . , sr). Now replace E∗ by E∗/(s1, . . . , sr)
with the induced differential and denote this DGCA (E∗, dE) again. Arguing as in the proof of
Proposition 6.4, one shows that all ti and τj represent nilpotent cohomology classes in H∗(E∗, δE)
so that this cohomology is finite dimensional over Fp. Using a commutative algebra argument as
in Section 6, this implies ke + r ≤ ke + ko, as required. More details can be found in [10].
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