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A potential theoretic notion of dimension

» The p-capacity (p > 1) between two sets E, F C R" is given
by

cap,(E, F) := inf{/ VAP (x)dx : f € CYR"), f|p =1, | =0}
]Rn
The capacity of the annulus cap,(B(xo, r), B(x0, R)) is

{Cn IOg(R/r)l_na p=n,

Cpn [RP=M/(P=1) r(p,,,)/(p,l)‘l—p7 o%n.

» Question: Can we identify the dimension of a metric space as
a critical value of p based on the behaviour of p-capacity of
annuli?

2/23



Combinatorial modulus

» Let G = (V,E) be a graph. Let I' be a family of paths in G.
Then the p-modulus of T is

Mod,(T.G) = inf p
od, (T, G) peAgm(r)gp(V),

where
Adm(F) ={p: V = [0,00) : 3° ¢, p(v) =1 forall y €T}

» One can use function p defined on edges (Duffin '62) instead
of vertices (Cannon '94). This leads to a comparable quantity
on bounded degree graphs (He and Schramm '95).

> If [ is the family of paths that join A; and Ay, then the edge
modulus of I is the (discrete) p-capacity between A; and As.

» We can understand modulus (or capacity) on metric spaces by
approximating a metric space by a sequence of graphs at finer
and finer scales.
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Critical exponent for combinatorial modulus

» Let (X, d) be a compact metric space. Fix parameters
a, A\ L>1.

» For each k € N, let X, be a maximal a—*-separated subset of
(X, d) with X C Xy for all k.

» Define graphs G, with vertex set X, where x,y € X,, are
joined by an edge if x # y and B(x,Aa~") N B(y,A\a~") # 0.

» For x € V(G,) = Xp, let Iy 1(x) denote all paths in Gp«
that begin at B(x,a~") and end at B(x, La=")¢. Set

M, « = sup{Modp(lk,1(x) : x € X5, n € N)}
and the critical exponent Q(X, d) is defined as
M, = Iiknliorlf My, Q(X,d)=inf{p>0:M,=0}.
» The above definition does not depend on choices of a, A, L, Xj,.
» This notion is due to Carrasco (2013) and Bourdon-Kleiner

(2013).
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Annulus viewed at a finer scale
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Doubling metric space and Assouad dimension

» A metric space is doubling if there exists N € N such that
every ball of radius R can be covered by N balls of radii R/2.

» The Assouad dimension of a metric space (X, d) is the
infimum of all o > 0 such that there exists C > 1 so that
every ball of radius R can be covered by C(R/r)" balls of
radii r for all 0 < r < R.

» The Assouad dimension da(X, d) is finite if and only if (X, d)
is doubling.
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Doubling measures and Vol'berg-Konyagin theorem ‘87

» A non-zero measure p is said to be doubling if there exists
C > 1 such that u(B(x,2r)) < Cu(B(x,r)) for all
x € X, r > 0. Equivalently p is g-homogeneous for some
qg>0:

B R)) - (RN o .
M(B(X,r))§<r>, forallx € X,0<r <R.

» (Vol'berg-Konyagin) The Assouad dimension of a compact
metric space (X, d) is the infimum of all ¢ > 0 such that
there exists a g-homogeneous measure on (X, d).
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Quasisymmetry and Conformal gauge
» Quasisymmetry (QS): A notion of ‘conformal maps’ on metric

spaces (Ahlfors-Beurling ‘56, Tukia-Vaisala '80).

f:(Xq,d1) — (X2, d2) is a homeomorphism.

n:[0,00) — [0, 00) is a self-homeomorphism on [0, c0).

Def. f is n-QS

AL (90
B (f(x).7(2) =~ " \di(x.2)
fis a QS (quasisymmetry) it is a quasisymmetry for some 7.

Def. Conformal gauge of a metric space (X, d)
J(X,d) =16 is a metricon X|Id : (X.d) — (X.0) is a QS}.

) forall x,y,z € X1, x # z.

Frr X, v>2, As
/7

Heve exdls 850, sotdra
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Conformal dimensions

» The Ahlfors regular conformal dimension of a metric space

(X,d)is
there exists a measure 1 and a metric
darc = inf{Q 0 € J(X,d) such that pu(By(x,r)) < rQ}
for all r < diam(X, 6).

» This is variant of Pansu’s definition (‘89) was introduced by
Bonk-Kleiner (‘05) and Bourdon-Pajot (‘03).

» Possible values of darc = {0} U [1, o0] (Laakso'00,
Kovalev'06).

» The conformal Assouad dimension dca(X, d) is
dcp = inf{dA(X,H) NS j(X, d)}

» Questions: Given a space, what is the value of darc (or
dca)? Is the infimum attained? Both these questions are
open for Sierpiniski carpet.
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Conformal dimensions: motivation and basic properties

» In geometric group theory, the conformal dimension of the
boundary of a hyperbolic group is a quasi-isometry invariant.

» In complex dynamics, the conformal dimension of the Julia set
is invariant under Thurston equivalence.

» Quasisymmetry is a useful tool to understand Harnack
inequalities (Kigami '08).

» dca(X,d) < oo if and only if (X, d) is doubling
darc(X, d) < oo if and only if (X, d) is doubling and
uniformly perfect.

» (X, d) is uniformly perfect if there exists Cp > 1 such that for
all balls B(x, r) # X implies B(x,r) \ B(x,r/Cp) # 0.
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Combinatorial modulus, dca(X, d) and darc(X, d)

P Issue with darc: Y C X need not imply
darc(Y, d) < darc(X, d). On the other hand, Y C X implies
dea(Y,d) < dca(X,d) and Q(Y,d) < Q(X,d).

» Doubling measures are preserved under quasisymmetry
whereas Ahlfors regular measures are not.

» (Heinonen) If (X, d) is compact, doubling and uniformly
perfect, then dca(X, d) = darc(X, d).

» (Carrasco'l3, Keith-Kleiner) If (X, d) is compact, doubling
and uniformly perfect, then Q(X, d) = darc(X, d).

> (M. '224) If (X, d) is compact and doubling, then
Q(Xv d) = dCA(Xv d)
» Carrasco's proof of Q(X,d) < darc(X,d) and
Q(X,d) > darc(X, d) uses the uniform perfectness property.
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Heuristics

» The construction of the metric § € J(X, d) is such that the
‘new’ diameter of a ball is proportional to the optimizer for
modulus of annuli at all locations and scales.

> Then the admissibility condition > . p(y) > 1,7 € T',1(x)
can be interpreted as a ‘no shortcuts condition’:
>_ye diam(By, 0) > diam(Bx, 0).

» The smallness of p-modulus is similar to
> yeG,,, diamP(By,0) < 3, ¢ diam®(Bx, 6) which could
be interpreted as dimension bound dim(X,0) < p.

e AdnlTy )
gup= duing B

dixmg CBy)
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Gromov hyperbolic spaces

» The proof uses Gromov hyperbolic spaces. In particular, it is
helpful to view the given metric space as the boundary of a
Gromov hyperbolic space .

» Let (Z,D) be a metric space. The Gromov product of x and
y with respect to the base point w as

1
(X|y)w = E(D(Xa W) + D(_)/, W) - D(va))
» (Z,D) is d-hyperbolic, if for any four points x,y,z,w € Z, we

have
(x[2)w > (X[¥)w A (Y|2)w — 0.

13/23



The boundary of a hyperbolic space

» A sequence of points {x;} C Z is said to converge at infinity,
if lim; 00 (xi|Xj)w = 00 (choice of w does not matter).

» Two sequences {x;},{y;} that converge at infinity are said to
be equivalent, if lim;_ o (xi|yi)w = 0o. This is an equivalence
relation if (Z, D) is hyperbolic.

» The boundary of the hyperbolic space 9(Z, D) = 0Z is the
equivalence classes of sequences that converge at infinity.
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Visual metric on the boundary
» The Gromov product on dZ with base point w € Z is

(alb)w = sup {Iim inf(xilyi)w : {xi} € a,{yi} € b} , a,beodZ.
1—00

» A metric p on 0Z is said to be a visual metric with visual
parameter o € (1,00) and base point w, if p(a, b) = a (3P
» Visual metrics exist: for any d-hyperbolic space (Z, d), there
exists ag > 1 (ap depends only on §) such that if a € (1, ag),
then there exists a visual metric with parameter .
Toneart dute H*
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Quasi-isometric stability of hyperbolicity

» A map f:(Xq,d1) = (X2, da) between two metric spaces is a
quasi-isometry if there exist constants A.B > 0 such that

A~ ldi(x,y) — B < dao(f(x), fy)) < Adi(x,y) + B,

for all x,y € X1, and sup,,cx, d(x2, f(X1)) < B
> If (X1, d1) and (X2, d2) are almost geodesic spaces and

f:(X1,d1) — (Xo, do) is a quasi-isometry, then (X1, d1) is
hyperbolic if and only if (X2, d2) is hyperbolic.
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The boundary map

» If (X1,d1) and (X2, d2) are hyperbolic and almost geodesic,
the quasi-isometry f : (Xi, d1) — (X2, d2) extends to a
well-defined map 9f : 9X; — 0Xo on its boundary given by

Of ({xn}) = {f(xa)}-

» A sequence {x,} converges at infinity in (X1, d1) if and only if
{f(xn)} converges at infinity in (X, d2). Two sequences {x,}
and {y,} that converge at infinity in (Xi, d1) are equivalent if
and only if {f(x,)} and {f(yn)} are equivalent in (X2, d2).

» (Bonk-Schramm ‘00) The boundary map is a bijection. If
p1, p2 are visual metrics on 90X, X5, then
Of 1 (0X1,p1) — (0X2, p2) is a power quasisymmetry
(quasisymmetry whose distortion function can be taken as
n(t) = C(t7 v t¥/7)for some C > 1,~ > 0).
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Hyperbolic filling

» (Bjorn, Bjorn, Shanmugalingam ‘22) A compact metric space
can be identified with the boundary of a hyperbolic graph
(called hyperbolic filling) with visual metric.

» Similar earlier construction by Bourdon-Pajot '03 has
hyperbolicity constant depend on the constant of uniform
perfectness.

» The idea behind Carrasco's proof goes back to earlier work of
Keith-Laakso '04.

» A bilipschitz change of the graph metric of hyperbolic filling is
done using optimizers for modulus at various scales and
locations.
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Power quasisymmetry vs quasisymmetry

» Let J,(X, d) denote the power quasisymmetric conformal
gauge of (X, d).

» Possible issue with hyperbolic filling: The Bonk-Schramm
theorem only produces metric in J,(X, d) but not all
quasi-symmetries are power quasisymmetries.

» (Tukia-Vaisala '84) If (X, d) is uniformly perfect, then
Tp(X,d) =T (X,d).

» In general, it is possible that J,(X,d) C J(X,d)
(Trostsenko-Vaisala '99).

> (M. 22+) dca(X, d) = inf{da(X,0) : 0 € T,(X,d)} for any
compact doubling space.
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Proof sketch

» To obtain Q(X,d) < dca(X,d), we construct the metric
0 € J(X,d) by a bi-Lipshitz change of metric on the
hyperbolic filling. The upper bound on da(X, 6) is obtained
by constructing a doubling measure and using
Vol'berg-Konyagin theorem (this requires a modification of
the Vol'berg-Konyagin construction of doubling measures).
» To obtain Q(X,d) < dca(X,d), for p > dca(X, d), pick
0 € J(X,d) and u doubling measure that is g-homogeneous
in (X, ) for some dca(X,d) < g < p (using
Vol'berg-Konyagin). A modification of the function

oo = (A20)

where v € G, is a ‘parent’ of w € G, is admissible for
combinatorial modulus and has small p-norm.
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Question: monotonicty of exponents

» By a general sub-multiplicativity property of combinatorial
modulus (Bourdon-Kleiner '13, Carrasco '13),

Bp = limy 00 % log M p exists.

> It is easy to see that p — 3, is non-increasing.

» Question: (Bonk) Is p +— 3, strictly decreasing in p?

» An affirmative answer would allow us characterize conformal
dimension as the unique exponent p for which 5, = 0. We
expect this to be true in most examples of interest: boundaries
of hyperbolic groups, Sierpinski gasket/carpets, Julia sets.
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Concluding remarks

» The conformal Assouad dimension is a better way to define
Ahlfors regular conformal dimension.

» The construction of doubling measure by Vol'berg and
Konyagin and the construction of metric by Carrasco is
flexible enough to be adapated for different purposes.

> A modified version of Vol'berg-Konyagin construction played
an important role in the proof of the stability of elliptic
Harnack inequality (Barlow, M., 2018).

» Similarly, a modification of Carrasco’s construction helped us
to understand a new relationship between elliptic and
parabolic Harnack inequalities (Kajino, M., 2022).
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