
Conformal Assouad dimension as the critical
exponent for combinatorial modulus

Mathav Murugan

The University of British Columbia

BIRS, November 21, 2022.

1 / 23



A potential theoretic notion of dimension

I The p-capacity (p > 1) between two sets E ,F ⊂ Rn is given
by

capp(E ,F ) := inf{
∫
Rn

|∇f |p (x) dx : f ∈ C 1(Rn), f
∣∣
E
≡ 1, f

∣∣
F
≡ 0}.

The capacity of the annulus capp(B(x0, r),B(x0,R)c) is{
cn log(R/r)1−n, p = n,

cp,n
∣∣R(p−n)/(p−1) − r (p−n)/(p−1)

∣∣1−p , p 6= n.

I Question: Can we identify the dimension of a metric space as
a critical value of p based on the behaviour of p-capacity of
annuli?
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Combinatorial modulus

I Let G = (V ,E ) be a graph. Let Γ be a family of paths in G .
Then the p-modulus of Γ is

Modp(Γ,G ) = inf
ρ∈Adm(Γ)

∑
v∈V

ρ(v)p,

where
Adm(Γ) = {ρ : V → [0,∞) :

∑
v∈γ ρ(v) ≥ 1 for all γ ∈ Γ}.

I One can use function ρ defined on edges (Duffin ’62) instead
of vertices (Cannon ’94). This leads to a comparable quantity
on bounded degree graphs (He and Schramm ’95).

I If Γ is the family of paths that join A1 and A2, then the edge
modulus of Γ is the (discrete) p-capacity between A1 and A2.

I We can understand modulus (or capacity) on metric spaces by
approximating a metric space by a sequence of graphs at finer
and finer scales.
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Critical exponent for combinatorial modulus
I Let (X , d) be a compact metric space. Fix parameters

a, λ, L > 1.

I For each k ∈ N, let Xk be a maximal a−k -separated subset of
(X , d) with Xk ⊂ Xk+1 for all k .

I Define graphs Gn with vertex set Xn, where x , y ∈ Xn are
joined by an edge if x 6= y and B(x , λa−n) ∩ B(y , λa−n) 6= ∅.

I For x ∈ V (Gn) = Xn, let Γk,L(x) denote all paths in Gn+k

that begin at B(x , a−n) and end at B(x , La−n)c . Set

Mp,k = sup{Modp(Γk,L(x) : x ∈ Xn, n ∈ N)}

and the critical exponent Q(X , d) is defined as

Mp = lim inf
k→∞

Mp,k , Q(X , d) = inf{p > 0 : Mp = 0}.

I The above definition does not depend on choices of a, λ, L,Xn.

I This notion is due to Carrasco (2013) and Bourdon-Kleiner
(2013).
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Annulus viewed at a finer scale
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Doubling metric space and Assouad dimension

I A metric space is doubling if there exists N ∈ N such that
every ball of radius R can be covered by N balls of radii R/2.

I The Assouad dimension of a metric space (X , d) is the
infimum of all α > 0 such that there exists C > 1 so that
every ball of radius R can be covered by C (R/r)α balls of
radii r for all 0 < r < R.

I The Assouad dimension dA(X , d) is finite if and only if (X , d)
is doubling.
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Doubling measures and Vol’berg-Konyagin theorem ‘87

I A non-zero measure µ is said to be doubling if there exists
C > 1 such that µ(B(x , 2r)) ≤ Cµ(B(x , r)) for all
x ∈ X , r > 0. Equivalently µ is q-homogeneous for some
q > 0:

µ(B(x ,R))

µ(B(x , r))
.

(
R

r

)q

, for all x ∈ X , 0 < r < R.

I (Vol’berg-Konyagin) The Assouad dimension of a compact
metric space (X , d) is the infimum of all q > 0 such that
there exists a q-homogeneous measure on (X , d).
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Quasisymmetry and Conformal gauge
I Quasisymmetry (QS): A notion of ‘conformal maps’ on metric

spaces (Ahlfors-Beurling ‘56, Tukia-Väisälä ‘80).
f : (X1, d1)→ (X2, d2) is a homeomorphism.
η : [0,∞)→ [0,∞) is a self-homeomorphism on [0,∞).
Def. f is η-QS

d2(f (x), f (y))

d2(f (x), f (z))
≤ η

(
d1(x , y)

d1(x , z)

)
for all x , y , z ∈ X1, x 6= z .

f is a QS (quasisymmetry) it is a quasisymmetry for some η.
Def. Conformal gauge of a metric space (X , d)
J (X , d) = {θ is a metric on X Id : (X , d)→ (X , θ) is a QS} .
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Conformal dimensions
I The Ahlfors regular conformal dimension of a metric space

(X , d) is

dARC = inf

{
Q

∣∣∣∣∣
there exists a measure µ and a metric
θ ∈ J (X , d) such that µ(Bθ(x , r)) � rQ

for all r < diam(X , θ).

}
.

I This is variant of Pansu’s definition (‘89) was introduced by
Bonk-Kleiner (‘05) and Bourdon-Pajot (‘03).

I Possible values of dARC = {0} ∪ [1,∞] (Laakso‘00,
Kovalev‘06).

I The conformal Assouad dimension dCA(X , d) is

dCA = inf{dA(X , θ) : θ ∈ J (X , d)}.

I Questions: Given a space, what is the value of dARC (or
dCA)? Is the infimum attained? Both these questions are
open for Sierpiński carpet.

9 / 23



Conformal dimensions: motivation and basic properties

I In geometric group theory, the conformal dimension of the
boundary of a hyperbolic group is a quasi-isometry invariant.

I In complex dynamics, the conformal dimension of the Julia set
is invariant under Thurston equivalence.

I Quasisymmetry is a useful tool to understand Harnack
inequalities (Kigami ’08).

I dCA(X , d) <∞ if and only if (X , d) is doubling
dARC(X , d) <∞ if and only if (X , d) is doubling and
uniformly perfect.

I (X , d) is uniformly perfect if there exists CP > 1 such that for
all balls B(x , r) 6= X implies B(x , r) \ B(x , r/CP) 6= ∅.
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Combinatorial modulus, dCA(X , d) and dARC(X , d)

I Issue with dARC: Y ⊂ X need not imply
dARC(Y , d) ≤ dARC(X , d). On the other hand, Y ⊂ X implies
dCA(Y , d) ≤ dCA(X , d) and Q(Y , d) ≤ Q(X , d).

I Doubling measures are preserved under quasisymmetry
whereas Ahlfors regular measures are not.

I (Heinonen) If (X , d) is compact, doubling and uniformly
perfect, then dCA(X , d) = dARC(X , d).

I (Carrasco‘13, Keith-Kleiner) If (X , d) is compact, doubling
and uniformly perfect, then Q(X , d) = dARC(X , d).

I (M. ‘22+) If (X , d) is compact and doubling, then
Q(X , d) = dCA(X , d).

I Carrasco’s proof of Q(X , d) ≤ dARC(X , d) and
Q(X , d) ≥ dARC(X , d) uses the uniform perfectness property.
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Heuristics
I The construction of the metric θ ∈ J (X , d) is such that the

‘new’ diameter of a ball is proportional to the optimizer for
modulus of annuli at all locations and scales.

I Then the admissibility condition
∑

y∈γ ρ(y) ≥ 1, γ ∈ Γk,L(x)
can be interpreted as a ‘no shortcuts condition’:∑

y∈γ diam(By , θ) ≥ diam(Bx , θ).
I The smallness of p-modulus is similar to∑

y∈Gn+k
diamp(By , θ)�

∑
x∈Gn

diamp(Bx , θ) which could
be interpreted as dimension bound dim(X , θ) ≤ p.
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Gromov hyperbolic spaces

I The proof uses Gromov hyperbolic spaces. In particular, it is
helpful to view the given metric space as the boundary of a
Gromov hyperbolic space .

I Let (Z ,D) be a metric space. The Gromov product of x and
y with respect to the base point w as

(x |y)w =
1

2
(D(x ,w) + D(y ,w)− D(x , y)).

I (Z ,D) is δ-hyperbolic, if for any four points x , y , z ,w ∈ Z , we
have

(x |z)w ≥ (x |y)w ∧ (y |z)w − δ.
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The boundary of a hyperbolic space

I A sequence of points {xi} ⊂ Z is said to converge at infinity,
if limi ,j→∞(xi |xj)w =∞ (choice of w does not matter).

I Two sequences {xi} , {yi} that converge at infinity are said to
be equivalent, if limi→∞(xi |yi )w =∞. This is an equivalence
relation if (Z ,D) is hyperbolic.

I The boundary of the hyperbolic space ∂(Z ,D) = ∂Z is the
equivalence classes of sequences that converge at infinity.
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Visual metric on the boundary
I The Gromov product on ∂Z with base point w ∈ Z is

(a|b)w = sup

{
lim inf
i→∞

(xi |yi )w : {xi} ∈ a, {yi} ∈ b

}
, a, b ∈ ∂Z .

I A metric ρ on ∂Z is said to be a visual metric with visual
parameter α ∈ (1,∞) and base point w , if ρ(a, b) � α−(a|b)w .

I Visual metrics exist: for any δ-hyperbolic space (Z , d), there
exists α0 > 1 (α0 depends only on δ) such that if α ∈ (1, α0),
then there exists a visual metric with parameter α.
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Quasi-isometric stability of hyperbolicity

I A map f : (X1, d1)→ (X2, d2) between two metric spaces is a
quasi-isometry if there exist constants A.B > 0 such that

A−1d1(x , y)− B ≤ d2(f (x), f (y)) ≤ Ad1(x , y) + B,

for all x , y ∈ X1, and supx2∈X2
d(x2, f (X1)) ≤ B

I If (X1, d1) and (X2, d2) are almost geodesic spaces and
f : (X1, d1)→ (X2, d2) is a quasi-isometry, then (X1, d1) is
hyperbolic if and only if (X2, d2) is hyperbolic.

16 / 23



The boundary map

I If (X1, d1) and (X2, d2) are hyperbolic and almost geodesic,
the quasi-isometry f : (X1, d1)→ (X2, d2) extends to a
well-defined map ∂f : ∂X1 → ∂X2 on its boundary given by

∂f ({xn}) = {f (xn)}.

I A sequence {xn} converges at infinity in (X1, d1) if and only if
{f (xn)} converges at infinity in (X2, d2). Two sequences {xn}
and {yn} that converge at infinity in (X1, d1) are equivalent if
and only if {f (xn)} and {f (yn)} are equivalent in (X2, d2).

I (Bonk-Schramm ‘00) The boundary map is a bijection. If
ρ1, ρ2 are visual metrics on ∂X1, ∂X2, then
∂f : (∂X1, ρ1)→ (∂X2, ρ2) is a power quasisymmetry
(quasisymmetry whose distortion function can be taken as
η(t) = C (tγ ∨ t1/γ)for some C ≥ 1, γ > 0).
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Hyperbolic filling

I (Björn, Björn, Shanmugalingam ‘22) A compact metric space
can be identified with the boundary of a hyperbolic graph
(called hyperbolic filling) with visual metric.

I Similar earlier construction by Bourdon-Pajot ’03 has
hyperbolicity constant depend on the constant of uniform
perfectness.

I The idea behind Carrasco’s proof goes back to earlier work of
Keith-Laakso ‘04.

I A bilipschitz change of the graph metric of hyperbolic filling is
done using optimizers for modulus at various scales and
locations.
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Power quasisymmetry vs quasisymmetry

I Let Jp(X , d) denote the power quasisymmetric conformal
gauge of (X , d).

I Possible issue with hyperbolic filling: The Bonk-Schramm
theorem only produces metric in Jp(X , d) but not all
quasi-symmetries are power quasisymmetries.

I (Tukia-Väisälä ‘84) If (X , d) is uniformly perfect, then
Jp(X , d) = J (X , d).

I In general, it is possible that Jp(X , d) ( J (X , d)
(Trostsenko-Vaisälä ’99).

I (M. 22+) dCA(X , d) = inf{dA(X , θ) : θ ∈ Jp(X , d)} for any
compact doubling space.
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Proof sketch

I To obtain Q(X , d) ≤ dCA(X , d), we construct the metric
θ ∈ J (X , d) by a bi-Lipshitz change of metric on the
hyperbolic filling. The upper bound on dA(X , θ) is obtained
by constructing a doubling measure and using
Vol’berg-Konyagin theorem (this requires a modification of
the Vol’berg-Konyagin construction of doubling measures).

I To obtain Q(X , d) ≤ dCA(X , d), for p > dCA(X , d), pick
θ ∈ J (X , d) and µ doubling measure that is q-homogeneous
in (X , θ) for some dCA(X , d) ≤ q < p (using
Vol’berg-Konyagin). A modification of the function

ρ(w) =

(
µ(Bw )

µ(Bv )

)1/q

where v ∈ Gn is a ‘parent’ of w ∈ Gn+k is admissible for
combinatorial modulus and has small p-norm.
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Question: monotonicty of exponents

I By a general sub-multiplicativity property of combinatorial
modulus (Bourdon-Kleiner ’13, Carrasco ’13),
βp = limk→∞

1
k logMk,p exists.

I It is easy to see that p 7→ βp is non-increasing.

I Question: (Bonk) Is p 7→ βp strictly decreasing in p?

I An affirmative answer would allow us characterize conformal
dimension as the unique exponent p for which βp = 0. We
expect this to be true in most examples of interest: boundaries
of hyperbolic groups, Sierpinski gasket/carpets, Julia sets.

21 / 23



Concluding remarks

I The conformal Assouad dimension is a better way to define
Ahlfors regular conformal dimension.

I The construction of doubling measure by Vol’berg and
Konyagin and the construction of metric by Carrasco is
flexible enough to be adapated for different purposes.

I A modified version of Vol’berg-Konyagin construction played
an important role in the proof of the stability of elliptic
Harnack inequality (Barlow, M., 2018).

I Similarly, a modification of Carrasco’s construction helped us
to understand a new relationship between elliptic and
parabolic Harnack inequalities (Kajino, M., 2022).
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