Curvewise differentiable structure on metric measure spaces

Elefterios Soultanis, Radboud University (joint with Sylvester Eriksson–Bique)

November 25, 2022

Smooth functions on Rough spaces - BIRS, Banff

p-weak differentiable structures

2 Consequences

Questions

Recall

Every $f \in N^{1,p}(X)$ admits a (unique) p-weak differential $df : U \to (\mathbb{R}^n)^*$ wrt p-weak charts (U, φ) :

p-weak differential

$$(f \circ \gamma)'_t = d_{\gamma_t} f((\varphi \circ \gamma)'_t)$$
 a.e. $t \in \gamma^{-1}(U)$

 $\mathrm{Mod}_{\pmb{p}}$ -a.e. γ .

Dimension of charts

If $\varphi \in \mathrm{LIP}(X,\mathbb{R}^n)$ is *p*-independent, then $n \leq \dim_H U$.

Corollary

If $\dim_H X < \infty$ then X admits a p-weak differentiable structure.

Existence and relationships

In general, Cheeger charts are not p-weak charts. (Not even in differentiability spaces.) But in the important PI-case they are.

Pl-spaces

Let X be a p-PI space. Then (U,φ) is a Cheeger chart if and only if it is a p-weak chart.

Basic reason

PI implies: for a.e. x, $\operatorname{Lip}(\xi \cdot \varphi)(x) \simeq |D(\xi \cdot \varphi)|(x)$ for all $\xi \in (\mathbb{R}^n)^*$.

- \Longrightarrow Cheeger charts are p-independent. $\operatorname{Lip}(\operatorname{d}_{C,x}f\cdot\varphi-f)(x)=0$ \Longrightarrow $(f\circ\gamma)'_t=\operatorname{d}_{C,x}f((\varphi\circ\gamma)'_t)$ for p-a.e. $\gamma\in\Gamma_U^+\Longrightarrow$ Cheeger chart is a p-weak chart.
- Conversely, p-weak differential "formally" determined by condition $|D(\mathrm{d}_x f \cdot \varphi f)|(x) = 0$ a.e. $\Longrightarrow \mathrm{Lip}(\mathrm{d}_x f \cdot \varphi f)(x) = 0$ a.e. $\Longrightarrow p$ -weak chart is a Cheeger chart.

Constructions

From now on, assume $p \in [1, \infty)$ and X has a p-weak differentiable structure (i.e. covering up to null set by p-weak charts). What consequences can we draw from this?

• Pointwise norm on $T_x^*X = (\mathbb{R}^n)^*$ (a.e. $x \in U$):

$$|\xi|_{\mathsf{x}} := \left\| \frac{\xi((\varphi \circ \gamma)'_t)}{|\gamma'_t|} \right\|_{L^{\infty}(\pi_{\mathsf{x}})};$$

 π_{x} a suitable probability measure concentrated on $\{(\gamma,t): \gamma_{t}=x\}$;

- for every $f \in N^{1,p}(X)$ we have $|Df|(x) = |d_x f|_X$ a.e. $x \in X$;
- measurable L^{∞} (co-)tangent bundle $T^*X = \bigsqcup_{a.e.\ X} (T_x^*X, |\cdot|_X)$ over X. (a la Cheeger, GAFA '99)

Upshot

p-weak diff. str. + techniques allow us to pass from p-a.e. curvewise information to a.e. pointwise information.

Consequences

- Concrete description of Gigli's co-cotangent module: $L^p(T^*X) = \Gamma_p(T^*X) \ (= L^p\text{-integrable sections over } T^*X)$ isometrically isomorphic;
- $N^{1,2}(X)$ is Hilbertian (i.e. X is inf. Hilb.) if and only if $|\cdot|_X$ is an inner product a.e. X;
- $N^{1,p}(X)$ is reflexive for 1 (renorming tangent spaces);
- LIP_b(X) is dense in norm in $N^{1,p}(X)$, also when p=1 (density in energy (AGS, Rev. Mat. '13, EB, Arxiv '22)+reflexivity).

- Tensorization of charts: if (U, φ) *n*-dim *p*-weak chart on X, (V, ψ) *m*-dim *p*-weak chart on Y, then $(U \times V, \varphi \times \psi)$ n + m-dim *p*-weak chart on $X \times Y$;
- partial progress in the tensorization problem for Sobolev spaces: isometric inclusion $N^{1,p}(X \times Y) \subset J^{1,p}(X,Y)$.

The space $J^{1,p}$ (Ambrosio–Gigli–Savare, Duke Math., '13; Ambrosio–Pinamonti–Speight, Adv.Math '15)

Consists of $f \in L^p(X \times Y)$ s.t.

- $f_X := f(x, \cdot) \in N^{1,p}(Y)$ a.e. $x \in X$;
- $f^y := f(\cdot, y) \in N^{1,p}(X)$ a.e. $y \in Y$;
- $[f]_{J^{1,p}} := \int_X \int_Y [|Df_X|^p(y) + |Df^Y|^p(x)] d\mu_X(x) d\mu_Y(y) < \infty.$

- The differential of $f \in N^{1,p}$ "should be" $df = (df^y, df_x)$ a.e. (x,y) (only candidate, by testing along X-curves and Y-curves).
- Problem: X- and Y- differentials cannot a priori control along "diagonal" curves (γ_X, γ_Y) .
- Look at f(x,y) = h(u(x), v(y)), $h \in C^1$, first, use approximation.
- Yields $df = (df^y, df_x)$ a.e. for Sobolev functions.
- That the norm tensorizes requires more work.
- Doesn't tell us anything about $f \in J^{1,p}$ (no known way to approximate them).

Questions and possible directions

- $N^{1,p}(X \times Y) = J^{1,p}(X \times Y)$? Known for p = 2 when X, Y have p-weak diff. str.
- 2 $p=\infty$ case of weak diff. str. Relevant for curve fragment diff. str. (ongoing work).
- Infinitesimal structure of generic spaces:
 - Density of directions $\{(\varphi \circ \gamma)'_t : \gamma_t = x\} \subset \mathbb{R}^n$ a.e. x?
 - Controlling non-injectivity of charts: $\varphi^{-1}(y)$ does not contain curves a.e. $y \in \varphi(U)$?

The end

Thank you for your attention.