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Different notions of dimension
e0

Definition

Let F C R" bounded. Forr > 0, denote by N(F, r) the smallest number
of sefs of diameter at most r needed to cover F. The (upper)
box-counting dimension of F is

. . log N(F,r)
dimg(F) = limsup ———= =
B( ) ,Hop Iog(1/f)

=inf{a >0: 3C>0st
N(F,r) < Cr “forall0 < r < diam(F)}.

Example
leta>0and$, := {t79" € C: t > 1}. J. Fraser in 2019 proved

. 2
dimg(S,) = max {1—1—0’ 1} .

Hence, for all a < 1 we have dimy(S,) = 1 < dimg(S,) = +5-




Different notions of dimension
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Let F C R", the Assouad dimension of F is

. ; dC >0st foral0<r<Randx € F
dima(F) =inf<a >0 :
N(B(x,R) N F,r) < C(R/r)«

e dima(Fy) = 1 where F = {1/n°: n € N},
o dima(Sy) =2

Not enough for even bi-Lipschitz classification of S,.



Different notions of dimension
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Definition

For0 < 0 < 1 and F C R", define its (regularized 0-)Assouad spectrum

3¢ > 0st N(B(x,R) N F,r) < C(R/r)*
bt )= {0 2C7 O MERRINE )< S|

VO<r<R/?<R<1,VxeF

Forallx € F, R > 0and m € N, denote by Ny(B(x, R) N F, m) the
number of m-dyadic cubes of Q(x, R) needed to cover B(x, R) N F.
We then have
_ , 3C > 0s.t. Ng(B(x, R) N F,m) < C2m
dim% _(F)=infda>0: ’ e :
area(F) {O‘ Vo< 2 MR< R/ <R<1,VxEF



Different notions of dimension
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Examples

@ Forall0 < <1,
.0 o
dlmA,,eg(Fa) = min {m, 1} (dimg(Fy), dima(Fa))
@ Foralla > 0and0 < # < 1 we have (by Fraser)

min m,2}, Ifo<a§-|,

-0
dImA,reg(SG) =

minq 1+ ifa>1.

('| 9)) 9
Hence, foralla < 1 and § < 14%0 we have

dim(Sa) = —2— < dim®,og(Sa) = 2

1+a m < dimA(Sa) = 2.




Different notions of dimension
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(1) For fixed 0, the set function F dimi’,eg(F) is

(a) monotonic,
(b) finitely stable, i.e.,
. 0 -0 -0
dimy oo(E U F) = max{dim, . (E),dim, . (F)}.
(c) invariant under taking closures, and
(d) invariant under bi-Lipschitz maps.

(2) Forfixed F, limg_, ;- dimi,eg(F) := dimga(F).
Moreover, if F is bounded, then limgy_,q+ dim%,eg(F) = dimg(F).

and

dimg(F) < dimi,eg(F) < dimga(F) < dima(F).




Distortion of dimensions under QC mappings
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Definition

A homeomorphism f : Q0 — Q' between domains in R", n > 2, is said
to be K-quasiconformal (K-QC) if f lies in the local Sobolev space W,LQ
and there is a K > 1 such that the inequality

|Df|" < K det Df

holds a.e. in 2.

The smallest value Ko(f) > 1 for which the above inequality holds a.e.
in €2 is known as the outer dilatation of f.

QC maps are actually "more integrable" than initially expected.



Distortion of dimensions under QC mappings
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Definition

Forn > 2 and K > 1, define p(n, K) to be the supremum of those
values p > 0 so that there exists a constant C > 0 such that for every
QC map f: Q — Q inR" with Ko(f) < K, the estimate

1/p 1/n
(f 1or) " <c(f o)
Q 2Q

holds for every cube Q C Q with diam Q < dist(Q, 0Q2) and
diam £(2Q) < dist(f(2Q), ).

By Gehring ('73), p(n, K) > nforeachn > 2and K > 1.
Astala (‘94) showed that
2K

2,K) = ——.
P(2,K) =



Distortion of dimensions under QC mappings
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QC distortion of the Hausdorff and box dimensions:

Theorem (Gehring - Vdisald, ‘73)
Let E be a subset of 2 C R" with dimy(E) = « € (0, n). Then

(p(n,k"") — n)

K
© _ dimyr(e) < — 2K
p(n.K)—n+a

0<
p(na Kn_]) =@

forany K-QC map f: Q — Q' C R".

Theorem (Kaufman, 2000)
Let E be a bounded subset of 2 C R" with dimg(E) = « € (0, n). Then

(p(n,k"~") — n)
p(n, K" 1) — «

% < dimg(E) < B T R

0<
p(n,K) —n+a

forany K-QC map f: Q — Q' C R".




Distortion of dimensions under QC mappings
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We proved similar estimates for dim and dim4 reg’

Theorem 1 (C.G. - Tyson, 2021)

Letf:Q — Q' beaK-QC mapinR", n > 2. Let E C Q) be a compact
set with dima(E) = a. Then

(b0, k™) = n)a
p(n, K" 1) — «

p(n, K)a
p(n,K) —n+a

< dima f(E) <

If Q = Q' = R" then the conclusion holds for all E C R",

Theorem 2 (C.G. - Tyson, 2021)

Letf: Q — QU beaK-QC mapinR",n> 2, andletE C Q) be a
compact set with ay == dim%,zg(E), where 0(t) = 1/(t + 1). Then

(p(n, K"™1) — n)au
p(n, K"1) — ax

p(”a K)af/K
p(n,K) —n+ O‘f/K7

< dim?M #(E) <

forallt > 0.




Distortion of dimensions under QC mappings
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Proof of Thm 2: We can assume w.l.0.g. the following:
— 1 1
° E7 f(E) - QO T [_m7 rﬁ]n
o f(&) C &

e there is a constant Cx,, € (0, 1) such that

diam @ < Ci,, min{dist(&p, 9Q), dist(&y, 0Q')}.

It suffices to prove

) _ p(n,K)ag . 0(1/K)
d f(E)) < Bp := =d E).
ImA,reg( ( )) = BO p(n, K) —n+ 040’ Qo ImA,reg ( )
Fix p < p(n,K), o > ag and let § := 22—,



Distortion of dimensions under QC mappings
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Lety € f(E)and 0 < R < 1.By QCy of g = ! we can find B(x, R)
"deep" in & with x = g(y). R < 1 and

B(y,R') N f(E) C f(B(x,R) NE).
We consider cubes obtained via dyadic decomposition of Q(x, R).
Im:=2""R
o= o—me/Bpy

for all meaningful scales m > my). Local Hélder continuity of f and
choice of §(t) ensure m{) > my.

Fix m > mj). For j > m, a j-dyadic cube @ is (m-)minor if
diam f(€) < r/, and (m-)major otherwise.



Distortion of dimensions under QC mappings
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The total number of all m-major subcubes of Q(x, R) is bounded above
by CK7 n2moz.

Proof of Lemma 1: For j > m, let M(j) be the number of m-major
subcubes of Q(x, R) of side length 27/R. Denote & such a cube,
1 <i < M(j).

By Morrey-Sobolev inequality on Qf :

1/p
diam £(Q) < Cy(diam(Q)))'~"/P (/ nyp>

Q

i

Sum over all m-major cubes of level j and then over all j > m:

> M) < G4 275" ~m(p=n) (R’)—PRP—”/ DFP. (D

Q(x,R)



Distortion of dimensions under QC mappings
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Recall RHI for p < p(n, K):

. 1/p 1 1/n
—_— Df|P < ————— / Df|"
Z(@x.R)? (/Q(X,R)' | > = Z(@.2R) " < oz )

So the integral on the right of (1) is at most, up to some CQ:

n

(8, 2R)PI" < P L@y, R))PI" < B P(R)P

Hence, by the definiion of § = S£2—, we obtain
o0
Z M(/) S C5 2ma' DLemmcﬂ

j=m
Hence, we can use
R 6 o0 R/ B
“ () + D 2M() € Ca2™ + 527" < 2™ = <>
Jj=m

m r

images of minor cubes to cover B(y, R') N f(E).
O



Distortion of dimensions under QC mappings
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An application of Theorem 2 is the following:

Fora > b > 0, there exists a QC map f : C — C with f(S;) = S if and
only if Ko(f) > ¢.

Proof: (<) f(z) = |2|'/¥~"zis K-QC with K = a/b and f(S,) = Sp.
(=) Suppose K < £ and there is a K-QC f with f(S5) = Sp.

Using p(2, K) = =55 on the right of Theorem 2 gives
1 ( 1 1 ) - 1 1
K\ om0y 2 S a2
K dlmAErég ) (SU) 2 dImA(rgg(sb) 2

But for t = 1/b, 0(t) = b/(1 + b) and §(t/K) < a/(1 + a). so the
right is = O while the left > 0. |



Final remarks
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@ We can actually improve Theorem 2 by replacing p(n, K ”_1) by
the larger (or equal) py(n, K). where p,(n, K) is defined as p(n, K)
but involving the inner dilatation K;.

@ Kaufman’s Theorem only provides
min{a, 1}
~ min{b, 1}
for the spirals. Theorem 2 is necessary for the QC and bi-Lipschitz
classification of spirals.

@ The theorems on dimy and dimg distorfion can be stated for
W'P(Q; R") (right hand side inequality), not necessarily
quasiconformal. Our proofs rely on quasiconformality.




Thank Youl!

Theorem

Letf: Q — Q' be aK- QCmoplnR” n>2,andletE C ) be a
compact set with i 1= dlmA ,eg(E) where 0(t) = 1/(t+ 1). Then

n—1Y) __ K
(p(n, K 7]) n) ok < dimi(f) f(E) < P(na )Oér/K 7
p(n, K™1) — g p(n,K) — n+ a«

forallt > 0.

Theorem

Fora > b > 0, there exists a quasiconformal map f : C — C with
f(Sa) = Sp if and only if Ko > 2.
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