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What is a Coarea Inequality?

Coarea Formula: Ω ⊂ Rn open, u : Ω → R is Lipschitz,

then∫
R

∫
u−1(t)

g dHn−1dt =

∫
Ω

g |∇u| dx for every Borel g : Ω → [0,∞].

Extension to Sobolev is nontrivial. (Malý-Swanson-Ziemer, 2003)

Question: Does there exist C = C (n) such that for a reasonable class of
“n-dimensional” metric spaces we have∫ ∗

R

∫
u−1(t)

g dHn−1dt ≤ C

∫
X

gρ dHn

for all u : X → R and any upper gradient ρ of u?
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Eilenberg’s Inequality

Federer: for any X , any s ≥ 1, any Lipschitz function u : X → R, and any
A ⊂ X , ∫ ∗

R
Hs−1(u−1(t) ∩ A)dt ≤ 2ωs−1

ωs
Lip (u)Hs(A) .

Localizing gives ∫ ∗

R

∫
u−1(t)

g dHn−1 dt ≤ Cn

∫
X

g lip(u) dHn ,

where

lip(u)(x) := lim sup
x ̸=y→x

|u(y)− u(x)|
d(y , x)

.
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Coarea Inequality vs. Eilenberg’s Inequality

By work of Cheeger, Hn is doubling + a (1, 1)-Poincaré inequality, then
local lip is a minimal upper gradient, so, Eilenberg’s Inequality implies the
Coarea Inequality.

But in general, we could have that the minimal upper gradient ρu is strictly
smaller than lip(u) on a set of positive measure.

Motivated by uniformization theory, we wish to avoid stringent geometric
assumptions.
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Our Main Theorems

X homeomorphic to R2, and H2 locally finite (metric surface for short)

Theorem (Esmayli-Ikonen-Rajala, 2022)

If u : X → R is MONOTONE and has a p-integrable upper gradient ρ, for some
p ≥ 1, then with κ = (4/π) · 200,∫

R

∫
u−1(t)

g dH1 dt ≤ κ

∫
X

gρ dH2.

Theorem (same paper)

There exists a Lipschitz function u on a metric surface X such that∫
R

∫
u−1(t)

g dH1 dt > 0, while

∫
X

gρ dH2 = 0.

(g is the characteristic function of a closed subset A ⊂ X.)
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Continuity of “Harmonic” Functions

WEAKLY monotone: maximum principle without (a priori) continuity assumption

Theorem (Esmayli-Ikonen-Rajala, 2022)

Suppose X is a metric surface and u : X → R is WEAKLY monotone. If u has a
locally p-integrable upper gradient for some p ≥ 2, then u is continuous.
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The Counter-Example

C : a Cantor set in plane with H2(C ) > 0

Start with a plane and instead of removing squares, lift them to a higher
elevation

Repeat with the next generation... The limits of tubes is C

Make the tubes very thin to avoid infinite H2

Add spiral to make the lengths of tentacles infinite

Only rectifiable paths that intersect C are constants.

Thus the minimal upper gradient must vanish on C

Take u(x , y) = x . Use Fubini to finish.
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