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Overview: data-driven computing

General idea: simulation data + X

o Fokker-Planck solver: meshed version (with J. Zhai and M.
Dobson), DNN version (with J. Zhai, M. Dobson, C.
Meredith)

@ Sensitivity analysis (with J. Zhai and M. Dobson)
@ QSD and sensitivity (with Y. Yuan)
@ DNN surrogate of neurons (with L. Tao, Z. Xiao et al)

This work (with S. Wang and M. Tao)

@ Coupling time data from Monte Carlo

@ Detect dynamics via the time scale of coupling rate
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Heuristics: Random perturbation of dynamical systems

Deterministic dynamical system X, 11 = f(X,) or X = f(X)
Add a small noise with magnitude ¢

Invariant probability measure 7,

Assume ||uPt — m|| ~ exp(—r(€)t)

Very important: r(e) vs. €

The scale of r(e€) vs. € reveals the dynamics

Difficulty

How to give a sharp bound of r(e) efficiently??
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Our answer: Coupling Method

A Markov process (®1, ®2) on the state space X x X is said to be
a Markov coupling if

© Two marginal distributions are Markov processes ¢, with
initial distribution p and v, respectively

Q If ®L = d2 then ®L = 2 for all m > n.

Tcp = infp>o{®L = ®2} is the coupling time.

Yao Li Using coupling method to detect underlying dynamics



Coupling Lemma

Coupling Lemma

H/LP" = I/PnHTV < 2]P[TCp > n] .

Optimal coupling (Pitman 1970s)

There exists a coupling (¥}, 2) (may not be Markov) such that

|uP" — vP"|| v = 2P[rcp > n].

The existence of “honest” optimal coupling remains open.
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Upper and lower bound

Estimate r; such that

P[Tcp > t] ~e M,

r; < ris a lower bound of geometric ergodicity rate.

Upper bound

Construct disjoint sets (A¢, Bt). Run coupling (X%, V¢) with
Xo € Ap and Yy € Bp.

£c = min {iqf{xt ¢ Add,inf{ ¢ Bt}} , Plec> fa et

r < ry is an upper bound of geometric ergodicity rate.

Yao Li Using coupling method to detect underlying dynamics



Implementation: How to couple numerically?

Numerical simulation comes with error

Risk of “near miss” each other!

Solution: Switch to maximal coupling when X; and Y; are
sufficiently close to each other.

Maximal coupling: compare probability density functions.
Couple the "overlapping” part

Robust against small perturbations

1

0.5
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Warm-up example: 1D mappings

Consider X,+1 = f(X,) for
e fi(x) =2x+ asin(2rx) (modl), a < 1/(2m): mixing
o fh(x) =x++2 (modl): ergodic but not mixing
e f3(x) = 3.2x(1 — x): stable periodic orbit

e Add small noise €(,, ¢y ~ N(0,1)
Coupled trajectories (X,, Y;)

@ Change to maximal coupling when | X, — Y,| <€
@ Exponential tail of coupling time distribution: r(e)
°

Relation r(€) vs. e for three mappings: linear, quadratic,
exponential
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Stochastic differential equations

@ Stochastic differential equation
dXt = f(Xt)dt"— od Wt

@ Continuous time Markov process

@ Time-dependent transition kernel
Pi(x,A) = P[®r € A| b = X
@ Euler-Maruyama scheme

Xps1 = Xn + hAX,) + Vho Z,
for Z, ~ N(0, Idy)
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Couple stochastic differential equations

Let (Xgl),X(f)) be a coupling of two trajectories of SDEs
@ Independent. Xgl) and X§2) are independent until coupling.

@ Synchronous. Use the “same noise”.

o Reflection. Use “mirroring” random terms. Assume o is a
constant matrix.

aXY = AXD)dt + cd W,
X(2) X(z))dH— o(l—2ee])dW,
with
o 1(XY - X?)
lo=1 (XD — X))

et =

(Ref: Lindvall, Chen)
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How to couple SDEs numerically

@ Strategy: mixed coupling

@ Step 1: Run reflection/independent/synchronous coupling
until | XY — x| < e

@ Step 2: Compare density function with time step h. Run
maximal coupling

o If success, Xgl) and Xﬁz) are coupled. Otherwise return to
Step 1.

Theorem (Joint with S. Wang, 2020)

Let 7¢, and T¢p, be coupling times of (X(tl),ng)) and their
numerical approximation, respectively. Let h be the time step of
the Euler-Maruyama method. Under certain regularity condition

Ili_r)no |P(x,y)[TCp > t] - ]P)(x,y)[%Cp >t =0

for any t > 0.
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Geometric ergodicity

@ Run mixed coupling repeatedly

@ Plot P[rc, > t] vs. tin log-linear plot

o If P[rc, > t] has slope —r in log-linear plot for large t, by
coupling lemma, X; is geometrically ergodic with rate > r

Upper bound

@ Divide the phase space into partition A and B

@ General rule: Make transition between A and B as difficult as
possible

@ Simulate the minimum of first passage times

£c = min {iqf{xt # Ack,inf{Ve ¢ Bt}}

repeatedly
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Discussion

Mixed coupling strategy 1

@ Run independent coupling using “identical noise”

@ Change to maximal coupling when trajectories are close to
each other

@ Coupling rate depends on Lyapunov exponent (dissipative
case) or Li-Yorke chaos (chaotic case)

@ Connect random dynamical system and stochastic process

Mixed coupling strategy 2

@ Run reflection coupling using “symmetric noise”

@ Change to maximal coupling when trajectories are close to
each other

@ Reflection coupling is optimal for many SDEs

@ Gives good estimate of convergence in applications
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Application: Can you hear the shape of a landscape?

Can you hear the shape of a drum?

By Mark Kac in 1966.

o Difficult to know the shape of high dimensional landscapes

@ Idea: “hit” the landscape by injecting noise to the gradient
flow

@ Applications: deep learning, molecular dynamics, Bayesian
inference
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Application: Can you hear the shape of a landscape?

Coupling time distribution can be used to detect high
dimensional landscape V(x)

Consider the stochastic gradient flow

dX; = —VV(x)dt + edW,

Run mixed coupling for a few different €. Estimate

fe) = fim —% log Blrey(c) > 1]

@ r(e) is related to the landscape of V(x)
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Application: Can you hear the shape of a landscape?

One global minimum x*

@ r(€) does not change with €

o r(€) approximates the least eigenvalue of Hessian matrix at x*

Many local minima

@ r(€) decay exponentially fast with smaller e

o linear extrapolation of —e? log r(€) approximates maximal
barrier height
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Application: Can you hear the shape of a landscape?

Joint work with S. Wang and M. Tao.
The scaling of r(e) vs. e depending on the dynamics

One local minimum: linearized local dynamics when ¢ < 1

Many local minima: at least one trajectory needs to cross the
barrier to couple

Idea of proof: random sum of random variables
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One global minimum
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Application to deep learning

Hidden

@ Use three artificial neural Input /Q
ity (ANN) ro fearn 2 @ / Output

quadratic function

@ Two hidden layers. Small
ANN: (4,3), medium ANN:
(10, 10), large ANN: (20, 20)

@ Small ANN has bad local
minimum with higher barrier

o Consistent with other
literatures
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Learning result

Small NN, bad local min
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Coupling time distribution and linear

extrapolation
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Thank you




