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Introduction
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Overview

@ Constructing the Banana
© Stability of Pulses

© Analysis
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The Fitzhugh-Nagumo Equation

Up = Uy +u(u—a)(1 —u) —w

we = e(u — yw)

Traveling wave solutions depend only on { = x + ct, yielding

UC:V

ve=cv—ulu—a)(l-u)+w

€
we = E(u —yw)
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Slow Drift: Critical Manifold

In our problem, we note that the
critical manifold is given by v = 0,
w = u(u — a)(1 — u). The manifold
can be divided into a left, center,
and right part by two fold points
located at the extrema of the cubic.
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Normal Stability of Branches
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Fast Jumps: The Nagumo Front and Back

Figure 6: Shoun are the singular fronts ¢y and ¢ for the layer problem (2.7) for e =0 and 0 <a <1/2.
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Figure: Carter et al. 2018
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Summary of Result

Theorem (Carter et al, 2018)

For each 0 < v < 4 and each sufficiently small ¢ > 0, there exists a
one-parameter family of traveling pulses (parametrized by s € [0,8/27])
which is C* in (s, +/€). For s sufficiently small, the solutions are one-pulses
with oscillatory tails while for s sufficiently close to 8/27 they are double
pulses. Away from either endpoint, a and c satisfy

(a,¢)(s,€) = (ax, &:)(€) + O(e™7)

for appropriately chosen a,, c;.
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Visualizing the Transition
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Spectral Stability of Pulses
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Intuition for Spectral Analysis

© Solutions jump left or right at height s
@ The speed at which solutions travel along the slow manifold is O(%)

© Points 1 and 2 imply that eigenfunctions with support along the
middle branch solve a boundary value problem with domain of size
1
O(¢)
@ The spectra of an operator on a bounded domain of size O( ) as
¢ — 0 accumulates on the absolute spectrum of the operator

© The absolute spectrum from the center part of the critical manifold
reaches into the right-half plane
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Jump Height and s
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Intuition for Spectral Analysis

Solutions jump left or right at height s
The speed at which solutions travel along the slow manifold is O(%)
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middle branch solve a boundary value problem with domain of size

1
0()
The spectra of an operator on a bounded domain of size O(%) as
¢ — 0 accumulates on the absolute spectrum of the operator

The absolute spectrum from the center part of the critical manifold
reaches into the right-half plane

[} = =

Erik Bergland (Brown University) Exploring Temporal Pulse Replication in the F



Intuition for Spectral Analysis

Solutions jump left or right at height s
The speed at which solutions travel along the slow manifold is O(%)

Points 1 and 2 imply that eigenfunctions with support along the
middle branch solve a boundary value problem with domain of size

1
0(¢)
The spectra of an operator on a bounded domain of size O(2) as
€ — 0 accumulates on the absolute spectrum of the operator

The absolute spectrum from the center part of the critical manifold
reaches into the right-half plane
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Absolute Spectrum

Erik Bergland (Brown Universit;

Exploring Temporal Pulse Replication in the F

m]

=




Intuition for Spectral Analysis

@ Solutions jump left or right at height s
© The speed at which solutions travel along the slow manifold is O(%)

© Points 1 and 2 imply that eigenfunctions with support along the
middle branch solve a boundary value problem with domain of size
1
O(¢)
@ The spectra of an operator on a bounded domain of size O(%) as
¢ — 0 accumulates on the absolute spectrum of the operator

© The absolute spectrum from the center part of the critical manifold
reaches into the right-half plane

[} = =
Erik Bergland (Brown University) Exploring Temporal Pulse Replication in the F



Overview

@ Constructing the Banana
© Stability of Pulses

© Analysis

Erik Bergland (Brown University)

Exploring Temporal Pulse Replication in the F

m]

=



Questions to Answer

Suppose we consider solutions to the Fitzhugh-Nagumo equations of the
form y(x,t) = T(s(t))(x) + v(x, t), where y = (u, w).

@ Can we determine the speed of travel % along the banana?

@ Can we prove that v is small in some appropriate norm?
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Taylor Expansion

We formally write the Fitzhugh-Nagumo equations as an ODE on an
appropriate Banach space

Yy
gt Y, @

where 11 = (a, ¢). We denote the values of the parameters along the
banana itself by ©*. Expanding, we find that

ds dv
dt r + dr Dyf(reaﬂ*)v"i_ Duf(rw:u’*)(u_li*)"i‘h.o.t.
Finally, projecting in the direction of a vector p yields

ds dv % * *
$<Fe,p>+<a,p> = (Dyf(Te, *)v, p) + (Duf (Fe, ™) (p — %), p) +hot.
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