LINEAR AND QUASI-LINEAR FRACTIONAL OPERATORS IN LIPSCHITZ DOMAINS

REGULARITY AND APPROXIMATION

JUAN PABlO BORTHAGARAY
Universidad de la República, Uruguay

Inverse Problems for Anomalous Diffusion Processes
MAY 9, 2022

■ Definition: the fractional Laplacian of order $s \in(0,1)$ of $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is

$$
(-\Delta)^{s} u(x)=C(d, s) \int_{\mathbb{R}^{d}} \frac{u(x)-u(y)}{|x-y|^{d+2 s}} d y, \quad C(d, s)=\frac{2^{2 s} s \Gamma\left(s+\frac{d}{2}\right)}{\pi^{d / 2} \Gamma(1-s)} .
$$

■ Fourier transform: definition above is equivalent to

$$
\mathcal{F}\left((-\Delta)^{s} u\right)(\xi)=|\xi|^{2 s} \mathcal{F} u(\xi) \quad \forall \xi \in \mathbb{R}^{d} .
$$

■ Problem: let $\Omega \subset \mathbb{R}^{d}$ be open with Lipschitz boundary and $f: \Omega \rightarrow \mathbb{R}$,

$$
\left\{\begin{aligned}
(-\Delta)^{s} u=f & \text { in } \Omega, \\
u=0 & \text { in } \Omega^{c}=\mathbb{R}^{d} \backslash \bar{\Omega} .
\end{aligned}\right.
$$

- 'Boundary’ conditions: imposed in $\Omega^{c}=\mathbb{R}^{d} \backslash \bar{\Omega}$.
(This is the so-called integral, Riesz or restricted fractional Laplacian on Ω. There are other non-equivalent fractional Laplacians on bounded domains.)

■ Fractional Sobolev space: $\widetilde{H}^{s}(\Omega)=\left\{v \in L^{2}\left(\mathbb{R}^{d}\right):|v|_{H^{s}\left(\mathbb{R}^{d}\right)}<\infty,\left.v\right|_{\Omega^{c}}=0\right\}$,

$$
\begin{aligned}
& (v, w)_{s}:=\frac{C(d, s)}{2} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{(v(x)-v(y))(w(x)-w(y))}{|x-y|^{d+2 s}} d y d x, \\
& |v|_{H^{s}\left(\mathbb{R}^{d}\right)}=(v, v)_{s}^{1 / 2} .
\end{aligned}
$$

■ Variational formulation: for any $f \in H^{-s}(\Omega)=$ dual of $\widetilde{H}^{s}(\Omega)$, consider

$$
u \in \widetilde{H}^{s}(\Omega): \quad(u, v)_{s}=\langle f, v\rangle \quad \forall v \in \widetilde{H}^{s}(\Omega),
$$

where $\langle\cdot, \cdot\rangle$ stands for the duality pairing.
Existence, uniqueness of weak solutions, and stability: Lax-Milgram Thm.
■ Weak solution is the minimizer of the energy $\mathcal{F}: \widetilde{H}^{s}(\Omega) \rightarrow \mathbb{R}$,

$$
\mathcal{F}(v):=\frac{1}{2}|v|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}-\langle f, v\rangle .
$$

■ In finite element discretizations ${ }^{1}$, one typically finds a Galerkin projection: considers $\mathbb{V}_{h} \subset \widetilde{H}^{s}(\Omega)$ with $\operatorname{dim}\left(\mathbb{V}_{h}\right)<\infty$, and computes $u_{h} \in \mathbb{V}_{h}$ satisfying

$$
\left|u-u_{h}\right|_{H^{s}\left(\mathbb{R}^{d}\right)} \simeq \inf _{v_{h} \in \mathbb{V}_{h}}\left|u-v_{h}\right|_{H^{s}\left(\mathbb{R}^{d}\right)} .
$$

- Using interpolation, one can construct $v_{h} \in \mathbb{V}_{h}$ such that

$$
\left|u-v_{h}\right|_{H^{s}\left(\mathbb{R}^{d}\right)} \leq C h^{\alpha}|u|_{H^{s+\alpha}\left(\mathbb{R}^{d}\right)} \quad \text { if } u \in H^{s+\alpha}\left(\mathbb{R}^{d}\right), 0<\alpha \leq 2-s .
$$

If f is smoother than $H^{-s}(\Omega)$, is necessarily u any smoother than $\widetilde{H}^{s}(\Omega)$?

■ In FE applications, the domain Ω would typically be a polygon/polyhedron.

[^0]■ Sobolev regularity (Vishik \& Eskin (1965), Grubb (2015), Abels \& Grubb (2020)): if $f \in H^{r}(\Omega)$ for some $r \geq 0$ and $\partial \Omega \in C^{1+\beta}(\beta>2 s)$, then

$$
u \in \begin{cases}H^{2 s+r}(\Omega) & \text { if } s+r<1 / 2 \\ \cap_{\varepsilon>0} H^{s+1 / 2-\varepsilon}(\Omega) & \text { if } s+r \geq 1 / 2\end{cases}
$$

Generically, we cannot expect any regularity beyond $H^{s+1 / 2-\varepsilon}(\Omega)$.

- Sobolev regularity (Vishik \& Eskin (1965), Grubb (2015), Abels \& Grubb (2020)): if $f \in H^{r}(\Omega)$ for some $r \geq 0$ and $\partial \Omega \in C^{1+\beta}(\beta>2 s)$, then

$$
u \in \begin{cases}H^{2 s+r}(\Omega) & \text { if } s+r<1 / 2 \\ \cap_{\varepsilon>0} H^{s+1 / 2-\varepsilon}(\Omega) & \text { if } s+r \geq 1 / 2\end{cases}
$$

Generically, we cannot expect any regularity beyond $H^{s+1 / 2-\varepsilon}(\Omega)$.
■ Hölder regularity (Ros-Oton \& Serra (2014)). If $\partial \Omega$ satisfies the exterior ball condition, $\beta>0$ and $\delta(x, y)=\min \{\operatorname{dist}(x, \partial \Omega), \operatorname{dist}(y, \partial \Omega)\}$, then

$$
\sup _{x, y \in \bar{\Omega}}\left\{\delta(x, y)^{\beta+s} \frac{|u(x)-u(y)|}{|x-y|^{\beta+2 s}}\right\} \leq C(f, u)
$$

- Sobolev regularity (Vishik \& Eskin (1965), Grubb (2015), Abels \& Grubb (2020)): if $f \in H^{r}(\Omega)$ for some $r \geq 0$ and $\partial \Omega \in C^{1+\beta}(\beta>2 s)$, then

$$
u \in \begin{cases}H^{2 s+r}(\Omega) & \text { if } s+r<1 / 2 \\ \cap_{\varepsilon>0} H^{s+1 / 2-\varepsilon}(\Omega) & \text { if } s+r \geq 1 / 2\end{cases}
$$

Generically, we cannot expect any regularity beyond $H^{s+1 / 2-\varepsilon}(\Omega)$.
■ Hölder regularity (Ros-Oton \& Serra (2014)). If $\partial \Omega$ satisfies the exterior ball condition, $\beta>0$ and $\delta(x, y)=\min \{\operatorname{dist}(x, \partial \Omega), \operatorname{dist}(y, \partial \Omega)\}$, then

$$
\sup _{x, y \in \bar{\Omega}}\left\{\delta(x, y)^{\beta+s} \frac{|u(x)-u(y)|}{|x-y|^{\beta+2 s}}\right\} \leq C(f, u)
$$

■ Example: If $\Omega=B(0, r)$ and $f \equiv 1$, then the solution u is given by

$$
u(x)=C\left(r^{2}-|x|^{2}\right)_{+}^{s} \Rightarrow u(x) \approx \operatorname{dist}(x, \partial \Omega)^{s},
$$

which does not belong to $H^{s+1 / 2}(\Omega)$. The regularity above is sharp!

- Definition of space $\widetilde{H}_{\gamma}^{t}(\Omega)$: let $\gamma \geq 0$ and $t \in(0,1)$,

$$
|v|_{H_{\gamma}^{t}(\Omega)}^{2}:=\iint_{\Omega \times \Omega} \frac{|v(x)-v(y)|^{2}}{|x-y|^{d+2 t}} \delta(x, y)^{2 \gamma} d x d y
$$

where $\delta(x, y)=\min \{\operatorname{dist}(x, \partial \Omega), \operatorname{dist}(y, \partial \Omega)\}$. Then,

$$
\widetilde{H}_{\gamma}^{t}(\Omega)=\left\{v \in H_{\gamma}^{t}\left(\mathbb{R}^{d}\right):\left.v\right|_{\Omega^{c}}=0\right\},
$$

and analogous definitions for spaces with differentiability order $t>1$.

- Weighted estimates: let Ω satisfy the exterior ball condition.

If $s \leq \frac{d}{2(d-1)}$, let $\beta=\frac{d}{2(d-1)}-s$; otherwise, let $\beta>0$. Let $f \in C^{\beta}(\bar{\Omega})$.
Then, the solution u of $(-\Delta)^{s} u=f$ that vanishes in Ω^{c} belongs to $\widetilde{H}_{\gamma}^{t}(\Omega)$ and satisfies the estimate

$$
\|u\|_{\tilde{H}_{\gamma}^{t}(\Omega)} \leq \frac{C(\Omega, s)}{\varepsilon}\|f\|_{C^{\beta}(\bar{\Omega})},
$$

where $t=s+\frac{d}{2(d-1)}-d \varepsilon, \gamma=\frac{d}{2(d-1)}-\varepsilon, \varepsilon>0$.
(This is based on boundary weighted Hölder estimates by Ros-Oton \& Serra (2014).)

■ Heuristics: $v(x)=x_{+}^{s}$ for $x \in \mathbb{R}$ satisfies $\partial^{t} v(x) \approx x_{+}^{s-t}$. Then

$$
v \in L^{p}(\mathbb{R}) \quad \Leftrightarrow \quad t<s+\frac{1}{p}
$$

If $v(x) \simeq d(x, \partial \Omega)^{s}$, this regularity is valid for any $d \geq 2$.
■ Nonlinear approximation: Sobolev embedding $W_{p}^{t}(\Omega) \subset H^{s}(\Omega)$ needs

$$
t-\frac{d}{p}=\operatorname{Sob}\left(W_{p}^{t}\right)>\operatorname{Sob}\left(H^{s}\right)=s-\frac{d}{2} \quad \Rightarrow \quad t>s+d\left(\frac{1}{p}-\frac{1}{2}\right) .
$$

- Optimal parameters: These two lines intersect at $p=\frac{2(d-1)}{d}, t=s+\frac{d}{2(d-1)}$.

■ Theorem (differentiability vs integrability) Let Ω be a bounded Lipschitz domain in \mathbb{R}^{d} and satisfy the exterior ball condition. Let $f \in C^{\beta}(\bar{\Omega})$, with β as before. Then, the solution $u \in \widetilde{W}_{p+\varepsilon}^{t-\varepsilon}(\Omega)$ satisfies

$$
|u|_{W_{p+\varepsilon}^{t-\varepsilon}\left(\mathbb{R}^{d}\right)} \leq \frac{C(\Omega, s)}{\varepsilon^{2}}\|f\|_{C^{\beta}(\bar{\Omega})} \quad \forall \varepsilon>0 .
$$

■ Characterization by difference quotients: given $1 \leq p<\infty, v \in L^{p}(\Omega)$, and $h \in \mathbb{R}^{d}$, we set $\delta_{2}(h) v(x):=v(x+h)-2 v(x)+v(x-h)$, and define

$$
|v|_{B_{p, q}^{\sigma}(\Omega)}:=\left\{\begin{array}{lr}
\left(q \sigma(2-\sigma) \int_{D} \frac{\left\|\delta_{2}(h) v\right\|_{L^{p}\left(\Omega_{|h|}\right)}^{q}}{|h|^{d+q \sigma}}\right)^{1 / q}, & 1 \leq q<\infty, \\
\sup _{h \in D} \frac{\left\|\delta_{2}(h) v\right\|_{L^{p}\left(\Omega_{|h|}\right)}}{|h|^{\sigma}}, & q=\infty .
\end{array}\right.
$$

[^1]■ Characterization by difference quotients: given $1 \leq p<\infty, v \in L^{p}(\Omega)$, and $h \in \mathbb{R}^{d}$, we set $\delta_{2}(h) v(x):=v(x+h)-2 v(x)+v(x-h)$, and define

$$
|v|_{B_{p, q}^{\sigma}(\Omega)}:=\left\{\begin{array}{lr}
\left(q \sigma(2-\sigma) \int_{D} \frac{\left\|\delta_{2}(h) v\right\|_{L^{p}\left(\Omega_{|h|}\right)}^{q}}{|h|^{d+q \sigma}}\right)^{1 / q}, & 1 \leq q<\infty, \\
\sup _{h \in D} \frac{\left\|\delta_{2}(h) v\right\|_{L^{p}\left(\Omega_{|h|}\right)}}{|h|^{\sigma}}, & q=\infty .
\end{array}\right.
$$

- For spaces of order $\sigma \in(0,1)$, we can also use first-order differences to characterize $B_{p, q}^{\sigma}(\Omega)$, with a norm equivalent to the one defined through second-order differences ${ }^{2}$.

■ Zero-extension spaces: $\dot{B}_{p, q}^{\sigma}(\Omega):=\left\{v \in B_{p, q}^{\sigma}\left(\mathbb{R}^{d}\right)\right.$: supp $\left.v \subset \bar{\Omega}\right\}$.

- Relation with fractional Sobolev spaces: $B_{p, p}^{\sigma}(\Omega)=W_{p}^{\sigma}(\Omega)$ for all $\sigma \in(0,2) \backslash\{1\}, 1 \leq p<\infty$.

[^2]Recall the typical solution behavior $u(x) \approx \operatorname{dist}(x, \partial \Omega)^{s}$. Let $s \in(0,1 / 2)$, and $v(x)=x_{+}^{s}$ near 0 but smooth otherwise.

AN EXAMPLE

Recall the typical solution behavior $u(x) \approx \operatorname{dist}(x, \partial \Omega)^{s}$.
Let $s \in(0,1 / 2)$, and $v(x)=x_{+}^{s}$ near 0 but smooth otherwise.
We compute

$$
\left\|\delta_{1}(h) v\right\|_{L^{2}(\mathbb{R})}^{2}=\left\|v_{h}-v\right\|_{L^{2}(\mathbb{R})}^{2} \simeq \int_{0}^{c}\left[(x+h)^{s}-x^{s}\right]^{2} d x \simeq h^{2 s+1} \Rightarrow\left\|v_{h}-v\right\|_{L^{2}(\mathbb{R})} \simeq h^{s+1 / 2} .
$$

Therefore, if $1 \leq q<\infty$, we have

$$
|v|_{B_{2, q}^{s+1 / 2}(\mathbb{R})}=\left(\int_{D} \frac{\left\|v_{h}-v\right\|_{L^{2}(\mathbb{R})}^{q}}{|h|^{1+q(s+1 / 2)}} d h\right)^{1 / q} \simeq \int_{D} \frac{1}{h} d h=\infty,
$$

while

$$
|v|_{B_{2, \infty}^{s+1 / 2}(\mathbb{R})}=\sup _{h \in D} \frac{\left\|v_{h}-v\right\|_{L^{2}(\mathbb{R})}}{|h|^{s+1 / 2}} \simeq C .
$$

AN EXAMPLE

Recall the typical solution behavior $u(x) \approx \operatorname{dist}(x, \partial \Omega)^{s}$.
Let $s \in(0,1 / 2)$, and $v(x)=x_{+}^{s}$ near 0 but smooth otherwise.
We compute

$$
\left\|\delta_{1}(h) v\right\|_{L^{2}(\mathbb{R})}^{2}=\left\|v_{h}-v\right\|_{L^{2}(\mathbb{R})}^{2} \simeq \int_{0}^{c}\left[(x+h)^{s}-x^{s}\right]^{2} d x \simeq h^{2 s+1} \Rightarrow\left\|v_{h}-v\right\|_{L^{2}(\mathbb{R})} \simeq h^{s+1 / 2} .
$$

Therefore, if $1 \leq q<\infty$, we have

$$
|v|_{B_{2, q}^{s+1 / 2}(\mathbb{R})}=\left(\int_{D} \frac{\left\|v_{h}-v\right\|_{L^{2}(\mathbb{R})}^{q}}{|h|^{1+q(s+1 / 2)}} d h\right)^{1 / q} \simeq \int_{D} \frac{1}{h} d h=\infty,
$$

while

$$
|v|_{B_{2, \infty}^{s+1 / 2}(\mathbb{R})}=\sup _{h \in D} \frac{\left\|v_{h}-v\right\|_{L^{2}(\mathbb{R})}}{|h|^{s+1 / 2}} \simeq C .
$$

In particular, $v \in B_{2, \infty}^{s+1 / 2}(\mathbb{R})$ but $v \notin B_{2,2}^{s+1 / 2}(\mathbb{R})=H^{s+1 / 2}(\mathbb{R})$.

BESOV REGULARITY

The following regularity is valid without a uniform exterior ball condition, thus allowing for reentrant corners ${ }^{3}$.

■ Regularity assumptions: Let $\Omega \subset \mathbb{R}^{d}$ be Lipschitz, $f \in B_{2,1}^{-s+1 / 2}(\Omega)$ and let $u \in \widetilde{H}^{s}(\Omega)$ solve:

$$
(-\Delta)^{s} u=f \text { in } \Omega, \quad u=0 \text { in } \mathbb{R}^{d} \backslash \Omega .
$$

■ Optimal shift property: The solution u belongs to the Besov space $\dot{B}_{2, \infty}^{s+1 / 2}(\Omega)$ and satisfies

$$
\|u\|_{\dot{B}_{2, \infty}^{s+1 / 2}(\Omega)} \leq C(\Omega, d, s)\|f\|_{B_{2,1}^{-s+1 / 2}(\Omega)} .
$$

Therefore, $u \in \cap_{\varepsilon>0} \widetilde{H}^{s+1 / 2-\varepsilon}(\Omega)$ and $|u|_{H^{s+1 / 2-\varepsilon}\left(\mathbb{R}^{d}\right)} \lesssim \frac{1}{\sqrt{\varepsilon}}\|f\|_{B_{2,1}^{-s+1 / 2}(\Omega)}$.

[^3]■ Besov norms and translations: if $s, \sigma \in(0,1), p \in(1, \infty)$, and $r \in[1, \infty]$, then $\left(\right.$ recall $\left.\delta_{1}(h) v(x)=v(x+h)-v(x)\right)$

$$
|v|_{B_{p, \infty}^{s+\infty}\left(\mathbb{R}^{d}\right)}=\sup _{h \in D} \frac{\left\|\delta_{2}(h) v\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}}{|h|^{s+\sigma}} \lesssim \sup _{h \in D} \frac{\left|\delta_{1}(h) v\right|_{B_{p, r}^{s}\left(\mathbb{R}^{d}\right)}}{|h|^{\sigma}} .
$$

Functionals in $\widetilde{H}^{s}(\Omega): u \in \widetilde{H}^{s}(\Omega)$ minimizes $v \mapsto \mathcal{F}_{2}(v)-\mathcal{F}_{1}(v)$ where

$$
\mathcal{F}_{1}(v):=\int_{\Omega} f v, \quad \mathcal{F}_{2}(v):=\frac{1}{2}|v|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2} \quad \forall v \in \widetilde{H}^{s}(\Omega) .
$$

[^4]■ Besov norms and translations: if $s, \sigma \in(0,1), p \in(1, \infty)$, and $r \in[1, \infty]$, then (recall $\left.\delta_{1}(h) v(x)=v(x+h)-v(x)\right)$

$$
|v|_{B_{p, \infty}^{s+\infty}\left(\mathbb{R}^{d}\right)}=\sup _{h \in D} \frac{\left\|\delta_{2}(h) v\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}}{|h|^{s+\sigma}} \lesssim \sup _{h \in D} \frac{\left|\delta_{1}(h) v\right|_{B_{p, r}^{s}\left(\mathbb{R}^{d}\right)}}{|h|^{\sigma}} .
$$

Functionals in $\widetilde{H}^{s}(\Omega): u \in \widetilde{H}^{s}(\Omega)$ minimizes $v \mapsto \mathcal{F}_{2}(v)-\mathcal{F}_{1}(v)$ where

$$
\mathcal{F}_{1}(v):=\int_{\Omega} f v, \quad \mathcal{F}_{2}(v):=\frac{1}{2}|v|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2} \quad \forall v \in \widetilde{H}^{s}(\Omega) .
$$

Minimization problem: Solution of $(-\Delta)^{s} u=f$ in $\Omega, u=0$ in Ω^{c} satisfies

$$
\frac{1}{2}|u-v|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}=\left[\mathcal{F}_{2}(v)-\mathcal{F}_{2}(u)\right]-\left[\mathcal{F}_{1}(v)-\mathcal{F}_{1}(u)\right] \quad \forall v \in \widetilde{H}^{s}(\Omega) .
$$

[^5]■ Besov norms and translations: if $s, \sigma \in(0,1), p \in(1, \infty)$, and $r \in[1, \infty]$, then (recall $\left.\delta_{1}(h) v(x)=v(x+h)-v(x)\right)$

$$
|v|_{B_{p, \infty}^{s+\infty}\left(\mathbb{R}^{d}\right)}=\sup _{h \in D} \frac{\left\|\delta_{2}(h) v\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}}{|h|^{s+\sigma}} \lesssim \sup _{h \in D} \frac{\left|\delta_{1}(h) v\right|_{B_{p, r}^{s}\left(\mathbb{R}^{d}\right)}}{|h|^{\sigma}} .
$$

Functionals in $\widetilde{H}^{s}(\Omega): u \in \widetilde{H}^{s}(\Omega)$ minimizes $v \mapsto \mathcal{F}_{2}(v)-\mathcal{F}_{1}(v)$ where

$$
\mathcal{F}_{1}(v):=\int_{\Omega} f v, \quad \mathcal{F}_{2}(v):=\frac{1}{2}|v|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2} \quad \forall v \in \widetilde{H}^{s}(\Omega) .
$$

Minimization problem: Solution of $(-\Delta)^{s} u=f$ in $\Omega, u=0$ in Ω^{c} satisfies

$$
\frac{1}{2}|u-v|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}=\left[\mathcal{F}_{2}(v)-\mathcal{F}_{2}(u)\right]-\left[\mathcal{F}_{1}(v)-\mathcal{F}_{1}(u)\right] \quad \forall v \in \widetilde{H}^{s}(\Omega) .
$$

Idea: take $v=u_{h}$ and bound $\mathcal{F}\left(u_{h}\right)-\mathcal{F}(u) \ldots$ but u_{h} may not belong to $\widetilde{H}^{s}(\Omega)$!

[^6]In the definition of Besov seminorms, one can replace balls by cones.

A SEEMINGLY HARMLESS TECHNICAL DETAIL

In the definition of Besov seminorms, one can replace balls by cones.
Let \mathcal{C} be a convex cone in \mathbb{R}^{d} so that $\mathcal{C} \subset D_{\rho_{1}}=D_{\rho_{1}}(0)$.
Then, there exist ρ_{0} and c such that for every $v: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
\frac{1}{c^{\sigma}\left(2^{\sigma}+1\right)}|v|_{B_{p, \infty}^{\sigma}\left(\mathbb{R}^{d} ; D_{\rho_{0} / 2}\right)} \leq|v|_{B_{p, \infty}^{\sigma}\left(\mathbb{R}^{d} ; \mathcal{C}\right)} \leq|v|_{B_{p, \infty}^{\sigma}\left(\mathbb{R}^{d} ; D_{\rho_{1}}\right)}
$$

■ Because Ω is Lipschitz, it satisfies a uniform cone property: there exist $\rho>0, \theta \in(0, \pi]$, and a map $\mathbf{n}: \Omega \rightarrow \mathbb{R}^{d}$ such that for all $x \in \Omega$, the cone $\mathcal{C}_{\rho}(\mathbf{n}(x), \theta)$ with height ρ, aperture θ, apex x and axis $\mathbf{n}(x)$ gives admissible outward vectors:

$$
h \in \mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{0}\right), \theta\right) \Rightarrow\left(D_{3 \rho}\left(x_{0}\right) \backslash \Omega\right)+t h \subset \Omega^{c} \quad \forall t \in[0,1]
$$

- Because Ω is Lipschitz, it satisfies a uniform cone property: there exist $\rho>0, \theta \in(0, \pi]$, and a map $\mathbf{n}: \Omega \rightarrow \mathbb{R}^{d}$ such that for all $x \in \Omega$, the cone $\mathcal{C}_{\rho}(\mathbf{n}(x), \theta)$ with height ρ, aperture θ, apex x and axis $\mathbf{n}(x)$ gives admissible outward vectors:

$$
h \in \mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{0}\right), \theta\right) \Rightarrow\left(D_{3 \rho}\left(x_{0}\right) \backslash \Omega\right)+t h \subset \Omega^{c} \quad \forall t \in[0,1]
$$

Localized translations: given a smooth cut-off function ϕ, such that $0 \leq \phi \leq 1, \phi=1$ in $D_{\rho}\left(x_{0}\right)$, supp $\phi \subset D_{2 \rho}\left(x_{0}\right)$, let

$$
T_{h} v(x)=v(x+h \phi(x))
$$

The operator T_{h} translates v within $D_{\rho}\left(x_{0}\right)$ and is the identity in $D_{2 \rho}\left(x_{0}\right)^{c}$. By construction: $x_{0} \in \Omega, h \in \mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{0}\right), \theta\right), v \in \widetilde{H}^{s}(\Omega) \Rightarrow T_{h} v \in \widetilde{H}^{s}(\Omega)$.

- Because Ω is Lipschitz, it satisfies a uniform cone property: there exist $\rho>0, \theta \in(0, \pi]$, and a map $\mathbf{n}: \Omega \rightarrow \mathbb{R}^{d}$ such that for all $x \in \Omega$, the cone $\mathcal{C}_{\rho}(\mathbf{n}(x), \theta)$ with height ρ, aperture θ, apex x and axis $\mathbf{n}(x)$ gives admissible outward vectors:

$$
h \in \mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{0}\right), \theta\right) \Rightarrow\left(D_{3 \rho}\left(x_{0}\right) \backslash \Omega\right)+t h \subset \Omega^{c} \quad \forall t \in[0,1]
$$

Localized translations: given a smooth cut-off function ϕ, such that $0 \leq \phi \leq 1, \phi=1$ in $D_{\rho}\left(x_{0}\right)$, supp $\phi \subset D_{2 \rho}\left(x_{0}\right)$, let

$$
T_{h} v(x)=v(x+h \phi(x))
$$

The operator T_{h} translates v within $D_{\rho}\left(x_{0}\right)$ and is the identity in $D_{2 \rho}\left(x_{0}\right)^{c}$. By construction: $x_{0} \in \Omega, h \in \mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{0}\right), \theta\right), v \in \widetilde{H}^{s}(\Omega) \Rightarrow T_{h} v \in \widetilde{H}^{s}(\Omega)$.
\square We write $T_{h} v=v \circ S_{h}$, where $S_{h}=I+h \phi$; if $|h|$ is sufficiently small, it is one-to-one from $D_{2 \rho}$ to $D_{2 \rho}$. Moreover,

$$
\begin{aligned}
\operatorname{det} \nabla S_{h} & \simeq 1+\mathcal{O}(h), \\
\left|v-T_{h} v\right|_{\dot{B}_{2, \infty}^{1-\sigma}\left(D_{2 \rho}\left(x_{0}\right)\right)} & \lesssim|h|^{\sigma}|v|_{B_{2, \infty}^{1}\left(D_{3 \rho}\left(x_{0}\right)\right)} \quad \forall v \in B_{2, \infty}^{1}\left(D_{3 \rho}\left(x_{0}\right)\right) .
\end{aligned}
$$

Localization: let $\left\{D_{\rho}\left(x_{j}\right)\right\}$ be a finite covering of Ω, then

$$
|v|_{B p, q}^{p}(\Omega) \simeq \sum_{j=1}^{M}|v|_{B \sigma, q}^{p}\left(D_{\rho}\left(x_{j}\right)\right) .
$$

- Localization: let $\left\{D_{\rho}\left(x_{j}\right)\right\}$ be a finite covering of Ω, then

$$
|v|_{B_{p, q}^{\sigma}(\Omega)}^{p} \simeq \sum_{j=1}^{M}|v|_{B_{p, q}^{\sigma}\left(D_{\rho}\left(x_{j}\right)\right)}^{p} .
$$

Thus, if we can prove that

$$
\mathcal{F}\left(T_{h} u\right)-\mathcal{F}(u) \leq C|h|^{\sigma}
$$

for every ball $D_{\rho}\left(x_{j}\right)$ and $h \in \mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{j}\right), \theta\right)$, then we can assure that $u \in B_{2, \infty}^{s+\sigma / 2}(\Omega)$:

$$
\begin{aligned}
|u|_{B_{2, \infty}^{s+\sigma / 2}\left(D_{\rho}\left(x_{j}\right)\right)}^{2} & \lesssim \sup _{h \in D \backslash\{0\}} \frac{\left|\delta_{1}(h) u\right|_{B_{2,2}^{s}\left(D_{\rho}\left(x_{j}\right)\right)}^{2}}{|h|^{\sigma}} \\
& =\sup _{h \in D \backslash\{0\}} \frac{\left|T_{h} u-u\right|_{B_{2,2}\left(D_{\rho}\left(x_{j}\right)\right)}^{2}}{|h|^{\sigma}} \\
& \lesssim \sup _{h \in D \backslash\{0\}} \frac{\mathcal{F}\left(T_{h} u\right)-\mathcal{F}(u)}{|h|^{\sigma}} \leq C .
\end{aligned}
$$

[Note that we can argue with the functionals \mathcal{F}_{1} and \mathcal{F}_{2} separately.]

Given $\sigma \in(0,1], t \in[\sigma-1,1]$, a fixed $x_{j} \in \Omega$, and a cone $\mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{j}\right), \theta\right)$ we have, for all $v \in B_{2, \infty}^{\sigma-t}\left(D_{3 \rho}\left(x_{j}\right)\right)$,

$$
\sup _{h \in \mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{j}\right), \theta\right)} \frac{\mathcal{F}_{1}\left(T_{h} v\right)-\mathcal{F}_{1}(v)}{|h|^{\sigma}} \leq C\|f\|_{B_{2,1}^{t}\left(\Omega \cap D_{2 \rho}\left(x_{j}\right)\right)}|v|_{B_{2, \infty}^{\sigma-t}\left(D_{3 \rho}\left(x_{j}\right)\right)}
$$

Given $\sigma \in(0,1], t \in[\sigma-1,1]$, a fixed $x_{j} \in \Omega$, and a cone $\mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{j}\right), \theta\right)$ we have, for all $v \in B_{2, \infty}^{\sigma-t}\left(D_{3 \rho}\left(x_{j}\right)\right)$,

$$
\sup _{h \in \mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{j}\right), \theta\right)} \frac{\mathcal{F}_{1}\left(T_{h} v\right)-\mathcal{F}_{1}(v)}{|h|^{\sigma}} \leq C\|f\|_{B_{2,1}^{t}\left(\Omega \cap D_{2 \rho}\left(x_{j}\right)\right)}|v|_{B_{2, \infty}^{\sigma-t}\left(D_{3 \rho}\left(x_{j}\right)\right)}
$$

Proof.

Note $\mathcal{F}_{1}\left(T_{h} v\right)-\mathcal{F}_{1}(v)=\int_{\Omega} f\left(T_{h} v-v\right)$, and the result follows if $t=\sigma-1$. If $t=1$, note $\int_{\Omega} f T_{h} v=\int_{S_{h}(\Omega)}\left(f \circ S_{h}^{-1}\right) v|J|$ with $J=\operatorname{det} \nabla S_{h}^{-1} \simeq 1+\mathcal{O}(h)$, and then the result follows as well in that case.

Finally, the mapping $(f, v) \mapsto \mathcal{F}_{1}\left(T_{h} v\right)-\mathcal{F}_{1}(v)$ is bilinear and we interpolate.

Given a fixed $x_{j} \in \Omega$, and a cone $\mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{j}\right), \theta\right)$ we have

$$
\sup _{h \in \mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{j}\right), \theta\right)} \frac{\mathcal{F}_{2}\left(T_{h} v\right)-\mathcal{F}_{2}(v)}{|h|} \leq C \iint_{Q_{D_{2 \rho}\left(x_{j}\right)}} \frac{|v(x)-v(y)|^{2}}{|x-y|^{d+2 s}} d y d x
$$

for all $v \in \widetilde{H}^{s}(\Omega)$, where $Q_{D_{2 \rho}\left(x_{j}\right)}=\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \backslash\left(D_{2 \rho}\left(x_{j}\right)^{c} \times D_{2 \rho}\left(x_{j}\right)^{c}\right)$.

Regularity of functional $\mathcal{F}_{2}(v)=\frac{1}{2}|v|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}$

Given a fixed $x_{j} \in \Omega$, and a cone $\mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{j}\right), \theta\right)$ we have

$$
\sup _{h \in \mathcal{C}_{\rho}\left(\mathbf{n}\left(x_{j}\right), \theta\right)} \frac{\mathcal{F}_{2}\left(T_{h} v\right)-\mathcal{F}_{2}(v)}{|h|} \leq C \iint_{Q_{D_{2 \rho}\left(x_{j}\right)}} \frac{|v(x)-v(y)|^{2}}{|x-y|^{d+2 s}} d y d x
$$

for all $v \in \widetilde{H}^{s}(\Omega)$, where $Q_{D_{2 \rho}\left(x_{j}\right)}=\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \backslash\left(D_{2 \rho}\left(x_{j}\right)^{c} \times D_{2 \rho}\left(x_{j}\right)^{c}\right)$.
Proof: recall $T_{h} v=v \circ S_{h}$, write $Q=Q_{D_{2 \rho}\left(x_{j}\right)}$, and split

$$
\begin{aligned}
\mathcal{F}_{2}\left(T_{h} v\right)-\mathcal{F}_{2}(v)= & \iint_{Q} \frac{|v(x)-v(y)|^{2}}{\left|S_{h}^{-1}(x)-S_{h}^{-1}(y)\right|^{d}}\left(\frac{1}{\left|S_{h}^{-1}(x)-S_{h}^{-1}(y)\right|^{2 s}}-\frac{1}{|x-y|^{2 s}}\right)|J| d y d x \\
& +\iint_{Q} \frac{|v(x)-v(y)|^{2}}{|x-y|^{2 s}}\left(\frac{|J|}{\left|S_{h}^{-1}(x)-S_{h}^{-1}(y)\right|^{d}}-\frac{1}{|x-y|^{d}}\right) d y d x
\end{aligned}
$$

Use that $\frac{\left|S_{h}^{-1}(x)-S_{h}^{-1}(y)\right|}{|x-y|}=1+\mathcal{O}(h)$ and that $J=\operatorname{det} \nabla S_{h}^{-1} \simeq 1+\mathcal{O}(h)$ to prove that both integrals are $\mathcal{O}(h)$.

REGULARITY FOR $f \in B_{2,1}^{-s+1 / 2}(\Omega)$

Fundamental recursion formula: if $f \in B_{2,1}^{t}(\Omega)$ with $t>-s$ and the minimizer u of the energy \mathcal{F} belongs to $\dot{B}_{2, \infty}^{\sigma-t}(\Omega)$, then

$$
\|u\|_{\dot{B}_{2, \infty}^{s+\sigma / 2}(\Omega)}^{2} \leq\left(C_{1}|u|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}+C_{2}\|f\|_{B_{2,1}^{t}(\Omega)}\|u\|_{\dot{B}_{2, \infty}^{\sigma-t}(\Omega)}\right)
$$

Fundamental recursion formula: if $f \in B_{2,1}^{t}(\Omega)$ with $t>-s$ and the minimizer u of the energy \mathcal{F} belongs to $\dot{B}_{2, \infty}^{\sigma-t}(\Omega)$, then

$$
\|u\|_{\dot{B}_{2, \infty}^{s+\sigma / 2}(\Omega)}^{2} \leq\left(C_{1}|u|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}+C_{2}\|f\|_{B_{2,1}^{t}(\Omega)}\|u\|_{\dot{B}_{2, \infty}^{\sigma-t}(\Omega)}\right) .
$$

Parameters: set $t=-s+\frac{1}{2}, \sigma_{k+1}-t=s+\frac{\sigma_{k}}{2}\left(\sigma_{0}=0\right)$

$$
\sigma_{k+1}=t+s+\frac{\sigma_{k}}{2}=\frac{1}{2}+\frac{\sigma_{k}}{2} \Rightarrow \sigma_{k}=1-\frac{1}{2^{k-1}} \rightarrow 1 \text { as } k \rightarrow \infty .
$$

Master iteration:

$$
|u|_{\dot{B}_{2, \infty}^{s+\sigma_{k+1} / 2}(\Omega)}^{2} \leq\left(C_{1}\|f\|_{B_{2,1}^{-s+1 / 2}(\Omega)}+C_{2}|u|_{\dot{B}_{2, \infty}^{s+\sigma_{k} / 2}(\Omega)}\right)\|f\|_{B_{2,1}^{-s+1 / 2}(\Omega)},
$$

■ Induction: for $\left\{\Lambda_{k}\right\}$ uniformly bounded, $|u|_{\dot{B}_{2, \infty}^{s+\sigma_{k} / 2}(\Omega)} \leq \Lambda_{k}\|f\|_{B_{2,1}^{-s+1 / 2}(\Omega)}$.

- For $k=0$: we have $\sigma_{0}=0$ and

$$
|u|_{\dot{B}_{2, \infty}^{s}(\Omega)} \lesssim|u|_{H^{s}\left(\mathbb{R}^{d}\right)} \lesssim\|f\|_{H^{-s}(\Omega)} \lesssim\|f\|_{B_{2,1}^{-s+1 / 2}(\Omega)} .
$$

- For $k>0: \Lambda_{k+1}^{2}=C_{1}+C_{2} \Lambda_{k}$ is uniformly bounded depending on $\Lambda_{0}, C_{1}, C_{2}$,

$$
|u|_{\dot{B}_{2, \infty}^{s+\sigma_{k+1} / 2}(\Omega)}^{2} \leq\left(C_{1}+C_{2} \Lambda_{k}\right)\|f\|_{B_{2,1}^{-s+1 / 2}(\Omega)}^{2}
$$

- Case $s \neq 1 / 2:$ if $\alpha=\min \left\{s, \frac{1}{2}\right\}$, then $u \in \dot{B}_{2, \infty}^{s+\alpha}(\Omega)$ satisfies

$$
|u|_{\dot{B}_{2, \infty}^{s+\alpha}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)},
$$

with constant $C=C(\Omega, d, s)$ that blows up as $s \rightarrow 1 / 2$.
Case $s=1 / 2$: for all $0<\varepsilon<1$,

$$
|u|_{\dot{B}_{2, \infty}^{1-\varepsilon}(\Omega)} \leq \frac{C}{\varepsilon^{1 / 2}}\|f\|_{L^{2}(\Omega)} .
$$

Master iteration for $s \leq \frac{1}{2}$:

$$
|u|_{\dot{B}_{2, \infty}^{s+\sigma / 2}(\Omega)} \leq\left(C_{1}\|f\|_{L^{2}(\Omega)}+\frac{C_{2}}{(1-\sigma)^{1 / 2}}|u|_{\dot{B}_{2, \infty}^{\sigma}(\Omega)}\right)\|f\|_{L^{2}(\Omega)}
$$

Induction: set $\sigma_{0}=s, \sigma_{k}=s+\sigma_{k-1} / 2$, then $\sigma_{k}=2 s\left(1-\frac{1}{2^{(k+1)}}\right) \rightarrow 2 s$ and

$$
|u|_{\dot{B}_{2, \infty}^{\sigma_{k}}(\Omega)} \leq \Lambda_{k}\|f\|_{L^{2}(\Omega)},
$$

with a constant $\Lambda_{k} \leq \Lambda(\Omega, d, s)$ uniformly bounded for $s<1 / 2$ that blows up for $s=1 / 2$ precisely as $\left(1-\sigma_{k}\right)^{-1 / 2}$.

■ Let \mathcal{T}_{h} be a shape-regular mesh of $\Omega ; h_{T}$ is the diameter of $T \in \mathcal{T}_{h}$ and $h=\max _{T} h_{T}$.

Conforming finite element space:

$$
\mathbb{V}_{h}:=C^{0}(\bar{\Omega}) \cap \mathbb{P}_{1}\left(\mathcal{T}_{h}\right) \subset \widetilde{H}^{s}(\Omega) .
$$

Discrete problem: find $u_{h} \in \mathbb{V}_{h}$ such that, for all $v_{h} \in \mathbb{V}_{h}$,

$$
\frac{C(d, s)}{2} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{\left(u_{h}(x)-u_{h}(y)\right)\left(v_{h}(x)-v_{h}(y)\right)}{|x-y|^{d+2 s}} d x d y=\left\langle f, v_{h}\right\rangle .
$$

■ Best approximation: since we project over \mathbb{V}_{h} with respect to the energy norm $\|\cdot\|_{\tilde{H}^{s}(\Omega)}=|\cdot|_{H^{s}\left(\mathbb{R}^{d}\right)}$, we get

$$
\left|u-u_{h}\right|_{H^{s}\left(\mathbb{R}^{d}\right)}=\min _{v_{h} \in \mathbb{V}_{h}}\left|u-v_{h}\right|_{H^{s}\left(\mathbb{R}^{d}\right)} .
$$

- A priori error analysis: must account for nonlocality and boundary behavior.

Local interpolation error:

$$
\left|v-\Pi_{h} v\right|_{H^{s}(T)} \leq C h_{T}^{r-s}|v|_{H^{r}\left(S_{T}^{1}\right)}
$$

where S_{T}^{1} is a patch surrounding T.

- Faermann (2002) accounts for the nonlocal nature of the H^{s}-norm,

$$
\|v\|_{\widetilde{H}^{s}(\Omega)}^{2} \leq\left[\sum_{T \in \mathcal{T}_{h}} \int_{T} \int_{\widetilde{S}_{T}^{1}} \frac{|v(x)-v(y)|^{2}}{|x-y|^{d+2 s}} d y d x+\frac{C(d, \sigma)}{s h_{T}^{2 s}}\|v\|_{L^{2}(T)}^{2}\right]
$$

so that in shape-regular meshes we have the global approximation estimate

$$
\min _{v_{h} \in \mathbb{V}_{h}}\left\|v-v_{h}\right\|_{\tilde{H}^{s}(\Omega)} \leq C\left(\sum_{T \in \mathcal{T}_{h}} h_{T}^{2(r-s)}|v|_{H^{r}\left(\tilde{S}_{T}^{2}\right)}^{2}\right)^{1 / 2} .
$$

Quasi-uniform meshes:

$$
\left|u-u_{h}\right|_{H^{s}\left(\mathbb{R}^{d}\right)} \lesssim \begin{cases}h^{\frac{1}{2}}|\log h|\|f\|_{H^{-s+1 / 2}(\Omega)}, & \Omega \text { smooth, } \\ h^{\frac{1}{2}}|\log h|^{\frac{1}{2}}\|f\|_{\dot{B}_{2,1}^{-s+1 / 2}(\Omega)}, & \Omega \text { Lipschitz. }\end{cases}
$$

■ Quasi-uniform meshes:

$$
\left|u-u_{h}\right|_{H^{s}\left(\mathbb{R}^{d}\right)} \lesssim \begin{cases}h^{\frac{1}{2}}|\log h|\|f\|_{H^{-s+1 / 2}(\Omega)}, & \Omega \text { smooth } \\ h^{\frac{1}{2}}|\log h|^{\frac{1}{2}}\|f\|_{\dot{B}_{2,1}^{-s+1 / 2}(\Omega)}, & \Omega \text { Lipschitz. }\end{cases}
$$

■ Graded meshes $(d \geq 2)$: if $h_{T} \approx h \operatorname{dist}(T, \partial \Omega)^{1 / d}$ then

$$
\left|u-u_{h}\right|_{\tilde{H}^{s}(\Omega)} \lesssim h^{\frac{d}{2(d-1)}}|\log h|\|f\|_{C^{\beta}(\bar{\Omega})} \approx N^{-\frac{1}{2(d-1)}} \log N\|f\|_{C^{\beta}(\bar{\Omega})}
$$

where $N=\# \mathcal{T}_{h} \approx h^{-d}|\log h|$ is the number of degrees of freedom of \mathcal{T}_{h}.

■ Example: $u(x)=C\left(r^{2}-|x|^{2}\right)_{+}^{s}$ with $\Omega=B(0,1) \subset \mathbb{R}^{2}, f=1$

Value of s	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Uniform \mathcal{T}_{h}	0.49	0.49	0.49	0.50	0.50	0.50	0.50	0.50	0.53
Graded \mathcal{T}_{h}	1.06	1.04	1.02	1.00	1.06	1.05	0.99	0.98	0.97

$■$ Interpolation error: $\left|u-\Pi_{h} u\right|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2} \lesssim \sum_{T \in \mathcal{T}_{h}}\left|u-\Pi_{h} u\right|_{H^{s}\left(\widetilde{S}_{T}^{1}\right)}^{2}$ and

$$
\left|u-\Pi_{h} u\right|_{H^{s}\left(\widetilde{S}_{T}^{1}\right)} \lesssim h_{T}^{t}|u|_{W_{1+\varepsilon}^{s+1-\varepsilon}\left(\widetilde{S}_{T}^{2}\right)} \lesssim|T| \operatorname{dist}\left(x_{T}, \partial \Omega\right)^{-1}:=E_{T},
$$

with $\widetilde{S}_{T}^{1}, \widetilde{S}_{T}^{2}$ first and second extended patch of T and $t=2-\varepsilon-\frac{2}{1+\varepsilon}>0$.
■ Greedy algorithm: given a tolerance $\delta>0$, iterate

```
GREEDY (\mathcal{T},\delta)
    while \mathcal{M := {T\in\mathcal{T}:\mp@subsup{E}{T}{}>\delta}}\not=\emptyset
        T}=\operatorname{REFINE}(\mathcal{T},\mathcal{M}
    end while
    return
```

- REFINE is a bisection algorithm acting on the marked elements \mathcal{M}.

■ Optimal mesh: GREEDY terminates in finite steps, the number of elements N satisfies $N \approx \delta^{-1}|\log \delta|$ and the error of the interpolant $u_{N}=\Pi_{h} u$ obeys

$$
\left|u-u_{N}\right|_{H^{s}\left(\mathbb{R}^{d}\right)} \lesssim N^{-1 / 2}|\log N|^{2}
$$

[Constructive proof. Rate consistent with a priori graded meshes.]

■ Sobolev regularity: lift theorem for Ω Lipschitz and $\alpha=\min \left\{s, \frac{1}{2}\right\}$

$$
\left|u_{g}\right|_{H^{s+\alpha-\varepsilon}\left(\mathbb{R}^{d}\right)} \leq \frac{C(\Omega, d, s)}{\varepsilon^{\kappa / 2}}\|g\|_{L^{2}(\Omega)},
$$

where $\kappa=1$ if $s \neq 1 / 2$ and $\kappa=2$ if $s=1 / 2$.
■ Quasi-uniform meshes: If Ω is Lipschitz and $f \in B_{2,1}^{s+1 / 2}(\Omega)$, then

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C h^{\frac{1}{2}+\min \left\{s, \frac{1}{2}\right\}}|\log h|^{\kappa}\|f\|_{B_{2,1}^{-s+1 / 2}(\Omega)},
$$

where $\kappa=1$ if $s \neq 1 / 2$ and $\kappa=2$ if $s=1 / 2$.

- Graded meshes: if Ω satisfies the exterior ball condition, $f \in C^{\beta}(\bar{\Omega})$ ($\beta=\max \left\{\frac{d}{2(d-1)}-s, 0\right\}$), and $h_{T} \approx h \operatorname{dist}(T, \partial \Omega)^{1 / d}$, then

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C h^{\frac{d}{2(d-1)}+\min \left\{s, \frac{1}{2}\right\}}|\log h|^{1+\frac{\kappa}{2}}\|f\|_{C^{\beta}(\bar{\Omega})},
$$

where $\kappa=1$ if $s \neq \frac{1}{2}$ and $\kappa=2$ if $s=\frac{1}{2}$.

■ Caccioppoli inequality (Cozzi (2017)): Let $B_{R} \subset \mathbb{R}^{d}$ be a ball of radius R centered at x_{0}. Let u satisfy

- u is s-harmonic in B_{R}, namely $(u, v)_{s}=0$ for all $v \in \widetilde{H}^{s}\left(B_{R}\right)$
$-\int_{B_{R}^{c}} \frac{|u(x)|}{\left|x-x_{0}\right|^{d+2 s}} d x<\infty$, where $B_{R}^{c}=\mathbb{R}^{d} \backslash B_{R}$.
Then u satisfies

$$
|u|_{H^{s}\left(B_{R / 2}\right)}^{2} \leq \frac{C}{R^{2 s}}\|u\|_{L^{2}\left(B_{R}\right)}^{2}+C R^{d+2 s}\left(\int_{B_{R}^{c}} \frac{|u(x)|}{\left|x-x_{0}\right|^{d+2 s}} d x\right)^{2}
$$

■ Caccioppoli inequality (Cozzi (2017)): Let $B_{R} \subset \mathbb{R}^{d}$ be a ball of radius R centered at x_{0}. Let u satisfy

- u is s-harmonic in B_{R}, namely $(u, v)_{s}=0$ for all $v \in \widetilde{H}^{s}\left(B_{R}\right)$
$-\int_{B_{R}^{c}} \frac{|u(x)|}{\left|x-x_{0}\right|^{d+2 s}} d x<\infty$, where $B_{R}^{c}=\mathbb{R}^{d} \backslash B_{R}$.
Then u satisfies

$$
|u|_{H^{s}\left(B_{R / 2}\right)}^{2} \leq \frac{C}{R^{2 s}}\|u\|_{L^{2}\left(B_{R}\right)}^{2}+C R^{d+2 s}\left(\int_{B_{R}^{c}} \frac{|u(x)|}{\left|x-x_{0}\right|^{d+2 s}} d x\right)^{2}
$$

- A pair $\left(u, u_{h}\right) \in \widetilde{H}^{s}(\Omega) \times \mathbb{V}_{h}$ satisfies the local Galerkin orthogonality (LGO) relation in B_{R} if

$$
\left(u-u_{h}, v_{h}\right)_{s}=0 \quad \forall v_{h} \in \mathbb{V}_{h}\left(B_{R}\right), \text { where } v_{h} \text { vanishes in } B_{R}^{c}
$$

■ Caccioppoli inequality (Cozzi (2017)): Let $B_{R} \subset \mathbb{R}^{d}$ be a ball of radius R centered at x_{0}. Let u satisfy

- u is s-harmonic in B_{R}, namely $(u, v)_{s}=0$ for all $v \in \widetilde{H}^{s}\left(B_{R}\right)$
$-\int_{B_{R}^{c}} \frac{|u(x)|}{\left|x-x_{0}\right|^{d+2 s}} d x<\infty$, where $B_{R}^{c}=\mathbb{R}^{d} \backslash B_{R}$.
Then u satisfies

$$
|u|_{H^{s}\left(B_{R / 2}\right)}^{2} \leq \frac{C}{R^{2 s}}\|u\|_{L^{2}\left(B_{R}\right)}^{2}+C R^{d+2 s}\left(\int_{B_{R}^{c}} \frac{|u(x)|}{\left|x-x_{0}\right|^{d+2 s}} d x\right)^{2} .
$$

- A pair $\left(u, u_{h}\right) \in \widetilde{H}^{s}(\Omega) \times \mathbb{V}_{h}$ satisfies the local Galerkin orthogonality (LGO) relation in B_{R} if

$$
\left(u-u_{h}, v_{h}\right)_{s}=0 \quad \forall v_{h} \in \mathbb{V}_{h}\left(B_{R}\right), \text { where } v_{h} \text { vanishes in } B_{R}^{c}
$$

- Theorem Let $\left(u, u_{h}\right) \in \widetilde{H}^{s}(\Omega) \times \mathbb{V}_{h}$ satisfy LGO in B_{R}. If \mathcal{T}_{h} is a shape-regular mesh with $16 h_{T} \leq R$ for all $T \in \mathcal{T}_{h}, T \subset B_{R}$, then $\left|u-u_{h}\right|_{H^{s}\left(B_{R / 2}\right)} \leq C \inf _{v_{h} \in \mathbb{V}_{h}}\left(\left|u-v_{h}\right|_{H^{s}\left(B_{R}\right)}+\frac{1}{R^{s}}\left\|u-v_{h}\right\|_{L^{2}(\Omega)}\right)+\frac{C}{R^{s}}\left\|u-u_{h}\right\|_{L^{2}(\Omega)}$.
[Similar results by Faustmann, Karkulik, \& Melenk (2020)]

GLOBAL VS INTERIOR ERROR ESTIMATES $(d=2)$

Comparison of convergence rates (up to logarithmic factors) between interior $\left|u-u_{h}\right|_{H^{s}\left(B_{R / 2}\right)}$ and global $\left|u-u_{h}\right|_{H^{s}\left(\mathbb{R}^{d}\right)}$ error estimates.

Quasi-uniform meshes: Let $f \in B_{2,1}^{-s+1 / 2}(\Omega)$ or smoother. The interior estimates exhibit an improvement rate $h^{\min \{s, 1 / 2\}}$ regardless of the regularity of Ω.

	Interior rates		Global rates	
	Ω-smooth	Ω-Lipschitz	Ω-smooth	Ω-Lipschitz
$s \leq \frac{1}{2}$	$h^{s+\frac{1}{2}}$	$h^{s+\frac{1}{2}}$	$h^{\frac{1}{2}}$	$h^{\frac{1}{2}}$
$s>\frac{1}{2}$	h	h	$h^{\frac{1}{2}}$	$h^{\frac{1}{2}}$

Graded meshes: Let $f \in H^{2-2 s}(\Omega) \cap C^{1-s}(\bar{\Omega})$ and local meshsize satisfy $h_{T} \approx h \operatorname{dist}(T, \partial \Omega)^{1 / 2}$. The interior estimates exhibit an improvement rate $h^{\min \{s, 1-s\}}$ for Ω either smooth or Lipschitz with an exterior ball condition (e.b.c.).

	Ω-smooth or Lipschitz e.b.c.	
	Interior rates	Global rates
$s \leq \frac{1}{2}$	h^{s+1}	h
$s>\frac{1}{2}$	h^{2-s}	h

- Fractional Sobolev spaces: let $1<p<\infty$,

$$
\begin{aligned}
\widetilde{W}_{p}^{s}(\Omega) & =\left\{v \in L^{p}\left(\mathbb{R}^{d}\right):|v|_{W_{p}^{s}\left(\mathbb{R}^{d}\right)}<\infty,\left.v\right|_{\Omega c}=0\right\}, \\
|v|_{W_{p}^{s}\left(\mathbb{R}^{d}\right)} & =\left(C_{d, s, p} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{|v(x)-v(y)|^{p}}{|x-y|^{d+s p}} d y d x\right)^{1 / p} .
\end{aligned}
$$

- The minimizer of the energy $\mathcal{F}: \widetilde{W}_{p}^{s}(\Omega) \rightarrow \mathbb{R}$,

$$
\mathcal{F}(v):=\left.\frac{1}{p}|v|\right|_{W_{p}^{s}\left(\mathbb{R}^{d}\right)} ^{p}-\langle f, v\rangle
$$

is the unique weak solution to the problem

$$
\left\{\begin{aligned}
(-\Delta)_{p}^{s} u=f & \text { in } \Omega, \\
u=0 & \text { in } \Omega^{c},
\end{aligned}\right.
$$

where

$$
(-\Delta)_{p}^{s} u(x):=\int_{\mathbb{R}^{d}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{d+s p}} d y .
$$

- Variational formulation: weak solution is the unique $u \in \widetilde{W}^{s, p}(\Omega)$ such that for every $v \in \widetilde{W}^{s, p}(\Omega)$,

$$
\left\langle(-\Delta)_{p}^{s} u, v\right\rangle:=\frac{1}{2} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{d+s p}} d x d y=\langle f, v\rangle .
$$

■ Hölder regularity: (lannizzotto, Mosconi, \& Squassina (2016), Brasco, Lindgren, \& Schikorra (2018)) if $\partial \Omega$ is $C^{1,1}$

$$
\|u\|_{C^{\alpha}(\bar{\Omega})} \lesssim\|f\|_{L^{\infty}(\Omega)}^{1 /(p-1)},
$$

with $\alpha \in(0, s]$ and $\alpha=s$ if $p \geq 2$.

- Interior Sobolev regularity: (Brasco \& Lindgren (2017)) in the $p \geq 2$ case.
- Variational formulation: weak solution is the unique $u \in \widetilde{W}^{s, p}(\Omega)$ such that for every $v \in \widetilde{W}^{s, p}(\Omega)$,

$$
\left\langle(-\Delta)_{p}^{s} u, v\right\rangle:=\frac{1}{2} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{d+s p}} d x d y=\langle f, v\rangle .
$$

■ Hölder regularity: (lannizzotto, Mosconi, \& Squassina (2016), Brasco, Lindgren, \& Schikorra (2018)) if $\partial \Omega$ is $C^{1,1}$

$$
\|u\|_{C^{\alpha}(\bar{\Omega})} \lesssim\|f\|_{L^{\infty}(\Omega)}^{1 /(p-1)},
$$

with $\alpha \in(0, s]$ and $\alpha=s$ if $p \geq 2$.
■ Interior Sobolev regularity: (Brasco \& Lindgren (2017)) in the $p \geq 2$ case.

- Monotonicity: the operator $(-\Delta)_{p}^{s}$ satisfies

$$
\left\langle(-\Delta)_{p}^{s} u-(-\Delta)_{p}^{s} v, u-v\right\rangle \geq \alpha_{p}|u-v|_{W_{p}^{s}\left(\mathbb{R}^{d}\right)}^{p} \quad \forall u, v \in \widetilde{W}_{p}^{s}(\Omega) .
$$

and therefore the minimizer $u \in \widetilde{W}_{p}^{s}(\Omega)$ of \mathcal{F} satisfies

$$
\frac{\alpha_{p}}{p}|u-v|_{W_{p}^{s}\left(\mathbb{R}^{d}\right)}^{p} \leq \mathcal{F}(v)-\mathcal{F}(u) \quad \forall v \in \widetilde{W}_{p}^{s}(\Omega) .
$$

REGULARITY ESTIMATE (JPB, LI \& NOCHETTO (2022))

Theorem

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded Lipschitz domain, $s \in(0,1)$, $p \in(1, \infty)$, $q=\max \{p, 2\}$, and $f \in B_{p^{\prime}, 1}^{-s+\frac{1}{q^{\prime}}}(\Omega)$. Let $u \in \widetilde{W}_{p}^{s}(\Omega)$ be the minimizer of the energy $\mathcal{F}(v)=\frac{1}{p}|v|_{\widetilde{W}_{p}^{s}(\Omega)}^{p}-\langle f, v\rangle$.

- If $p \geq 2$, then $u \in \dot{B}_{p, \infty}^{s+\frac{1}{p}}(\Omega)$, with $\|u\|_{\dot{B}_{p, \infty}^{s+\frac{1}{p}}(\Omega)} \leq C\|f\|_{B_{p^{\prime}, 1}^{-s+\frac{1}{p^{\prime}}}(\Omega)}^{\frac{1}{p-1}}$.

■ If $p<2$, then $u \in \dot{B}_{p, \infty}^{s+\frac{1}{2}}(\Omega)$, with $\|u\|_{\dot{B}_{p, \infty}^{s+\frac{1}{2}}(\Omega)} \lesssim\|f\|_{B_{p^{\prime}, 1}^{-s+\frac{1}{2}}(\Omega)}^{\frac{1}{p-1}}$.

Theorem

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded Lipschitz domain, $s \in(0,1)$, $p \in(1, \infty)$,
$q=\max \{p, 2\}$, and $f \in B_{p^{\prime}, 1}^{-s+\frac{1}{q^{\prime}}}(\Omega)$. Let $u \in \widetilde{W}_{p}^{s}(\Omega)$ be the minimizer of the energy $\mathcal{F}(v)=\frac{1}{p}|v|_{\widetilde{W}_{p}^{s}(\Omega)}^{p}-\langle f, v\rangle$.

- If $p \geq 2$, then $u \in \dot{B}_{p, \infty}^{s+\frac{1}{p}}(\Omega)$, with $\|u\|_{\dot{B}_{p, \infty}^{s+\frac{1}{p}}(\Omega)} \leq C\|f\|_{B_{p^{\prime}, 1}^{-s+\frac{1}{p^{\prime}}}(\Omega)}^{\frac{1}{p-1}}$
- If $p<2$, then $u \in \dot{B}_{p, \infty}^{s+\frac{1}{2}}(\Omega)$, with $\|u\|_{\dot{B}_{p, \infty}^{s+\frac{1}{2}}(\Omega)} \lesssim\|f\|_{B_{p^{\prime}, 1}^{-s+\frac{1}{2}}(\Omega)}^{\frac{1}{p-1}}$.

Remarks:
■ One can interpolate between the maximal regularity and the stability $|u|_{\widetilde{W}_{p}^{s}(\Omega)} \leq C\|f\|_{W_{p^{\prime}}^{-s}(\Omega)}$ to prove intermediate regularity estimates.

- By embedding, we obtain estimates in the Sobolev scale:

$$
|u|_{W_{p}^{s+\frac{1}{q}-\varepsilon}\left(\mathbb{R}^{d}\right)} \leq \frac{C}{\varepsilon^{1 / p}}\|f\|_{B_{p^{\prime}, 1}^{-s+\frac{1}{q^{\prime}}}(\Omega)}, \quad \varepsilon>0
$$

- Discretization: let $\mathbb{V}_{h}:=C^{0}(\bar{\Omega}) \cap \mathbb{P}_{1}\left(\mathcal{T}_{h}\right) \subset \widetilde{W}^{s, p}(\Omega), s \in(0,1)$, and $p \in(1, \infty)$. We seek $u_{h} \in \mathbb{V}_{h}$ such that for all $v_{h} \in \mathbb{V}_{h}$

$$
\int_{\mathbb{R}^{d}} \frac{\left|u_{h}(x)-u_{h}(y)\right|^{p-2}\left(u_{h}(x)-u_{h}(y)\right)\left(v_{h}(x)-v_{h}(y)\right)}{|x-y|^{d+s p}} d y=\int_{\Omega} f(x) v_{h}(x) .
$$

■ Error estimates: Let $p \in(1, \infty), s \in(0,1)$ and $f \in B_{p^{\prime}, 1}^{-s+\gamma^{\prime}}(\Omega)$. Then

$$
\begin{aligned}
p \in(1,2] & \Rightarrow \quad\left|u-u_{h}\right|_{W_{p}^{s}\left(\mathbb{R}^{d}\right)} \leq C h^{\frac{p}{4}}|\log h|^{\frac{1}{2}}\|f\|_{B_{p^{\prime}, 1}^{-s+\gamma^{\prime}}(\Omega)}^{\frac{p^{\prime}}{2}} \\
p \in[2, \infty) \quad & \Rightarrow \quad\left|u-u_{h}\right|_{W_{p}^{s}\left(\mathbb{R}^{d}\right)} \leq C h^{\frac{2}{p^{2}}}|\log h|^{\frac{2}{p^{2}}}\|f\|_{B_{p^{\prime}, 1}^{p\left(p+\gamma^{\prime}\right.}(\Omega)}^{\frac{2-1)}{(\Omega)}},
\end{aligned}
$$

over quasi-uniform meshes \mathcal{T}_{h} (recall $\gamma^{\prime}=\max \left\{1 / p^{\prime}, 1 / 2\right\}$).

- Error analysis inspired by Chow (1989) for classical p-Laplacian.
- Damped Newton's method to solve the nonlinear system of equations ${ }^{5}$.

[^7]Example: $\Omega=(-0.5,0.5) \subset \mathbb{R}$ and $f=1$.

Uniform meshes:

Value of s	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$p=1.25$	0.80	0.78	0.78	0.79	0.80	0.81	0.82	0.85	0.90
$p=3$	0.34	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.34

Remarks:

- Solution is $\widetilde{W}_{p}^{s+\min \{1 / p, 1 / 2\}-\varepsilon}(\Omega)$: interpolation error is $h^{\min \{1 / p, 1 / 2\}}$.
- Theoretical rates $h^{\min \left\{p / 4,2 / p^{2}\right\}}$ seem suboptimal (unless $p=2$).
- Regularity (convergence rates) affected by boundary behavior \Rightarrow graded meshes.

GRADED MESHES

Example: $\Omega=(-0.5,0.5) \subset \mathbb{R}$ and $f=1$.
If there exists some smooth φ such that

$$
u(x)=\operatorname{dist}(x, \partial \Omega)^{s} \varphi(x)
$$

then we can improve the convergence rates by grading the meshes accordingly.

GRADED MESHES

Example: $\Omega=(-0.5,0.5) \subset \mathbb{R}$ and $f=1$.
If there exists some smooth φ such that

$$
u(x)=\operatorname{dist}(x, \partial \Omega)^{s} \varphi(x)
$$

then we can improve the convergence rates by grading the meshes accordingly.
We fix $\mu>1$ and set

$$
h_{T} \approx \begin{cases}h \operatorname{dist}(T, \partial \Omega)^{\frac{\mu-1}{\mu}}, & \text { if } \operatorname{dist}(T, \partial \Omega)>0 \\ h^{\mu}, & \text { if } \operatorname{dist}(T, \partial \Omega)=0\end{cases}
$$

To fully exploit a weighted W_{p}^{2}-regularity, we require $\mu \geq p(2-s)$, and we expect the interpolation error to be of order $2-s$ in the energy norm.

Value of s	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$p=1.25$	1.95	1.85	1.73	1.62	1.51	1.40	1.30	1.20	1.10
$p=3$	1.98	1.80	1.70	1.60	1.46	1.28	1.12	0.99	0.89

[Recall the rates $4 / 5(p=1.25)$ and $1 / 3(p=3)$ we obtained on uniform meshes.]

- For $p=3$ and $s \geq 1 / 2$, the interior regularity limits the convergence rates.
- In the local ($s=1$) case, we have

$$
\left\{\begin{aligned}
-\Delta_{p} u=1 & \text { in } \Omega=(-1 / 2,1 / 2), \\
u=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

so the solution is locally W_{p}^{2} only if $\frac{p}{p-1}+\frac{1}{p} \geq 2$, ie, $p \leq \frac{3+\sqrt{5}}{2}$.
■ We test with modified meshes: for $\mu=p(2-s)$, we set

$$
h_{T} \approx \begin{cases}h \operatorname{dist}(T, \partial \Omega)^{\frac{\mu-1}{\mu}}, & \text { if } \operatorname{dist}(T, \partial \Omega \cup\{0\})>0, \\ h^{\mu}, & \text { if } \operatorname{dist}(T, \partial \Omega \cup\{0\})=0\end{cases}
$$

Value of s	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$p=1.25$	1.85	1.74	1.62	1.51	1.41	1.31	1.21	1.13	1.05
$p=3$	1.90	1.76	1.65	1.55	1.45	1.35	1.25	1.16	1.09

■ Linear problems

- Regularity: Hölder and Sobolev. Besov for Lipschitz domains.
- Boundary behavior of solutions \Rightarrow graded meshes.
- Finite element error analysis in $\widetilde{H}^{s}(\Omega), L^{2}(\Omega), H^{s}\left(B_{R}\right), B_{R} \Subset \Omega$.

■ Quasi-linear problems

- Besov regularity.
- Finite element error analysis in $\widetilde{W}_{p}^{s}(\Omega)$.
- Suboptimal regularity estimates in the case $p<2$;
- Suboptimal convergence rates (w.r.t. interpolation and experiments).
- Technique to prove Besov regularity is variational and can be extended to operators with variable diffusivity, or finite horizon.

■ Linear problems

- Regularity: Hölder and Sobolev. Besov for Lipschitz domains.
- Boundary behavior of solutions \Rightarrow graded meshes.
- Finite element error analysis in $\widetilde{H}^{s}(\Omega), L^{2}(\Omega), H^{s}\left(B_{R}\right), B_{R} \Subset \Omega$.

■ Quasi-linear problems

- Besov regularity.
- Finite element error analysis in $\widetilde{W}_{p}^{s}(\Omega)$.
- Suboptimal regularity estimates in the case $p<2$;
- Suboptimal convergence rates (w.r.t. interpolation and experiments).
- Technique to prove Besov regularity is variational and can be extended to operators with variable diffusivity, or finite horizon.

[^0]: ${ }^{1}$ For clarity, we consider conforming approximations with piecewise linear functions.

[^1]: ${ }^{2}$ This is due to the so-called Marchaud inequality.

[^2]: ${ }^{2}$ This is due to the so-called Marchaud inequality.

[^3]: ${ }^{3}$ Related work by Gimperlein-Stephan-Stocek (2021) and Faustmann-Melenk-Marcati-Schwab (2021).

[^4]: ${ }^{4}$ Inspired by Savaré (1997).

[^5]: 4 Inspired by Savaré (1997).

[^6]: 4 Inspired by Savaré (1997).

[^7]: ${ }^{5}$ In case $p \in(1,2)$, we add a regularization following Bartels, Diening, \& Nochetto (2018).

