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Motivation

boudary measurements.

@ Detection of defects (cavities, inclusions, cracks) inside an elastic body from
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Motivation

@ Detection of defects (cavities, inclusions, cracks) inside an elastic body from
boudary measurements.
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Motivation

@ Detection of defects (cavities, inclusions, cracks) inside an elastic body from
boudary measurements.

div(CoVu) =0
+ bound. cond.
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Motivation

@ Detection of defects (cavities, inclusions, cracks) inside an elastic body from
boudary measurements.
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Possible applications: medical imaging, non-destructive testing of materials...
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Shao et al., Advancements of ultrasound elastography in the cervix, Ultrasound in-Med. & Biol., 2021
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Detection of Cavities

@ Q is a bounded Lipschitz domain, 9Q := p U Xp;

div(CoVu) =0 in Q\ C,
((Co?u)n =0 ondC, (1) °
(CoVu)y =g  on Xy,
u=20 on X p,

Q

v

Cy is the fourth-order isotropic elasticity tensor, uniformly bounded,
and strongly convex;

» C € Qis a bounded Lipschitz domain (C= cavity);

v

v

Vu= T(Vu+ (Vo))
g c LZ(ZN);

Phase-field approaches for reconstruction of elastic cavities



Detection of Cavities

@ Q is a bounded Lipschitz domain, 9Q := p U Xp;

div(CoVu) =0 in Q\ C,
((Co?u)n =0 ondC, (1) °
(CoVu)y =g  on Xy,
u=20 on X p,

Q

» Cy is the fourth-order isotropic elasticity tensor, uniformly bounded,
and strongly convex;

» C € Qis a bounded Lipschitz domain (C= cavity);
» Vu= T(Vu+ (Vo))
> g € LX(Xn);

Forward Problem -
Given (C,Co,g) ~ find u € Hy (Q\ C).
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Detection of Cavities

@ Q is a bounded Lipschitz domain, 9Q := p U Xp;

div(CoVu) =0 in Q\ C,
((Co?u)n =0 ondC, (1) °
(CoVu)y =g  on Xy,
u=20 on X p,

Q

» Cy is the fourth-order isotropic elasticity tensor, uniformly bounded,
and strongly convex;

» C € Qis a bounded Lipschitz domain (C= cavity);
» Vu= T(Vu+ (Vo))
> g€ L*(Zn);

Forward Problem -

Given (C,Co,g) ~ find u € Hy (Q\ C).

Inverse Problem

Given Co, g, and upm on Xy ~» find C s.t. u(C)[x,= um (u(C) sol. to (1)).
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Inverse pb: known results
@ Uniqueness: a single pair of Cauchy data {g, un} on Xy is sufficient to
identify C, when

» Cis a Lipschitz domain;
» Cy satisfies a C%! regularity condition;

(Morassi-Rosset, Ang-Trong-Yamamoto, Lin-Wang-Nakamura,...)
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Inverse pb: known results
@ Uniqueness: a single pair of Cauchy data {g, un} on Xy is sufficient to
identify C, when

» Cis a Lipschitz domain;
» Cy satisfies a C%! regularity condition;

(Morassi-Rosset, Ang-Trong-Yamamoto, Lin-Wang-Nakamura,...)

@ Stability: very weak stability estimates (of log-log type) hold

dn(C1, C2) < C(log [ log([lup, — umllizgs)) ",

with C>0 and 0<n<1

when

» C,, C are CH*-domains;
» Cy satisfies a C! regularity condition;

(Morassi-Rosset)
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Inverse pb: known results
@ Uniqueness: a single pair of Cauchy data {g, un} on Xy is sufficient to
identify C, when

» Cis a Lipschitz domain;
» C, satisfies a CO1 regularity condition;

(Morassi-Rosset, Ang-Trong-Yamamoto, Lin-Wang-Nakamura,...)

@ Stability: very weak stability estimates (of log-log type) hold

dn(C1, C2) < C(log [ log([lup, — umllizgs)) ",

with C>0 and 0<n<1

when
» C,, C are CH*-domains;
» Cy satisfies a C! regularity condition;

(Morassi-Rosset)

Remark: in analogy to the case of a scalar elliptic equation, the stability estimate
is quite optimal.
(Alessandrini, Mandache, Rondi, Di Cristo-Rondi)
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Inverse pb (cont.)

We set our analysis in the following framework

@ Unknown: C € C:={C C Q: compact, simply connected, with 9C
Lipschitz, and dist(C,0Q) > dp > 0};

Main issues
— Nonlinearity

— lll-posedness
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Inverse pb (cont.)

We set our analysis in the following framework
@ Unknown: € € C:={C C Q: compact, simply connected, with 9C
Lipschitz, and dist(C,98) > dy > 0};
Main issues
— Nonlinearity

— lll-posedness (~ noise in the measurements)

@ Available measured data: Umeass € L2(Xp) s.t.

|Umeas — Umlli2(zy) <1, 1> 0 is the noise level
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Inverse pb (cont.)
We set our analysis in the following framework

@ Unknown: C € C:={C C Q: compact, simply connected, with §C
Lipschitz, and dist(C,0) > dy > 0};
Main issues
— Nonlinearity

— lll-posedness (~~ noise in the measurements)

@ Available measured data: uUmeas € L2(Zp) s.t.
|Umeas — Umlli2(zy) <71, 1> 0 is the noise level

Reconstruction algorithms: level set methods, topological derivative, shape
derivative, monotonicity method, method of fundamental solutions,...
(Ameur-Burger-Hackl, Ammari-Kang-Nakamura-Tanuma, Belhachmi-Meftahi, Ben
Abda-Jaiem-Khalfallah-Zine, Bonnet-Constantinescu, Carpio-Raptin,

Eberle-Harrach, lkehata-Itou, Kaltenbacher, Kang-Kim-Lee, Karageorghis-Lesnic-Ma,
Martinez—Castro-Faris-Gallego,...)

Andrea Aspri (Math Dept. “F. Enriques”) Phase-field approaches for reconstruction of elastic cavities



Variational Approach

@ Approach the inverse problem as a
minimization problem

. 1 5
min J(C) = / 1U(©) s (4

Misfit functional

» u(C) solution to the boundary value
problem (1);

Scherzer et al., Variational Methods in Imaging, Applied Mathematical Sciences 167, Springer, 2009.
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Variational Approach

@ Approach the inverse problem as a
minimization problem

1

- _ 2 _ 2
gweng(C)— 2/):N|U(C) Umeas|” do(x)

» u(C) is the solution to the boundary :
value problem (1); x

Scherzer et al., Variational Methods in Imaging, Applied Mathematical Sciences 167, Springer, 2009.
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Variational Approach

@ Approach the inverse problem as a
minimization problem

1

- _ 2 _ 2
gweng(C)— 2/):N|U(C) Umeas|” do(x)

» u(C) is the solution to the boundary :
value problem (1); x

Poor reconstruction is due to the ill-posedness of the inverse problem!

Scherzer et al., Variational Methods in Imaging, Applied Mathematical Sciences 167, Springer, 2009.
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Variational Approach (cont.)

To mitigate the ill-posedness of the inverse problem a regularization term is
needed.

@ Add the perimeter of C as a regularization term in the functional
( Rondi, Deckelnick-Elliot-Styles, Beretta-Ratti-Verani,A.-Beretta-Cavaterra-Rocca-Verani )

min Jreg (C) = = / 1U(C) = upeasP do(x)+  aPer(C)
ceC 2 T ———

Regularization func.
Misfit func.

» u(C) is the solution to the boundary value problem (1);
» « > 0 is a regularization parameter;
» Per(C) is the perimeter of C.
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Analytical Results

. 1 2
min Jreg(C) = 5 /ZN |u(C) — Umeas|” do(x) + aPer(C)

@ Continuity properties of u(C) with respect to perturbations of C;

Theorem (A.,Beretta,Cavaterra,Rocca,Verani (2022))

Let C, € C be a sequence of sets converging to C in the Hausdorff metric, and let
u(Cp) =: up € Hy (2\ G,), u(C) =: u € Hy (2\ C) be solutions of (1) in
Q\ G, Q\ C, respectively. Then

lim / lup — u)? do(x) = 0.
n—+00 b

Andrea Aspri (Math Dept. “F. Enriques”)
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Analytical Results (cont.)
Consequences

e Existence of minima for Jyeg(C);
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Consequences

Analytical Results (cont.)

e Existence of minima for Jyeg(C);

@ Stability with respect to noisy data
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Analytical Results (cont.)
Consequences

e Existence of minima for Jyeg(C);
@ Stability with respect to noisy data
if Up — Umeas then dy(GCp, E') —0, n— +o0

where C is a solution of mincec Jreg(C);
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Analytical Results (cont.)
Consequences

e Existence of minima for Jyeg(C);
@ Stability with respect to noisy data
if Up — Umeas then dy(GCp, E') —0, n— 40
where C is a solution of mincec Jreg(C);

@ Convergence of minimizers as &« — 0 to the solution of the inverse
problem;
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Analytical Results (cont.)
Consequences

e Existence of minima for Jyeg(C);
@ Stability with respect to noisy data
if Up — Umeas then dy(GCp, E') —0, n— 40
where C is a solution of mincec Jreg(C);

@ Convergence of minimizers as &« — 0 to the solution of the inverse
problem;

How to proceed numerically?

Andrea Aspri (Math Dept. “F. Enriques”) Phase-field approaches for reconstruction of elastic cavities



Analytical Results (cont.)

Consequences
o Existence of minima for Jreg(C);
@ Stability with respect to noisy data
if Up — Umeas then dy(GCp, E) —0, n— +o0
where C is a solution of mincec Jreg(C);

@ Convergence of minimizers as o — 0 to the solution of the inverse
problem;

How to proceed numerically?

...use suitable “relaxations” of the functional J,; to overcome issues
arising from non-convexity and non-differentiability of Jre,...
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Outline

© Numerical aspects

@ A parabolic obstacle problem
@ Numerical results

Andrea Aspri (Math Dept.
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Towards Numerical Algorithm

First step: Problem

1

min Jyeg(C) = —/ |u(C) — u,,,eas|2 do(x) 4+ aPer(C)
cecC Ty

2
is equivalent to
. _ 1 _ 9 _
min Jeg(V) = = |u(V) — Umeas|” do(x) + aTV(V)
veXo 2 TN

o TV(V) =sup{[oVdiv(p); ¢ € G(Q) lplli=@ <1}
@ X1(Q):={veBV(Q) : v=xc ae. inQ, CeC}

» BV(Q)={velQ): TV(v) < x}.
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Towards Numerical Algorithm (cont.)

Second step (filling the cavity): let 6 > 0 be sufficiently small; then, consider

_ 1 () 2 -
vrg)l(ﬂnlJ,eg( V) = 2/):N|u(5(v) Umeas|” do(x) + aTV(V)
where
div(Cs(v)Vus(v)) = 0 in Q,
(Cs(V)Vus(V))v =g  on Zn, (2)
us(v)=0 on Xp,

(C(;(V) = C0+(C1—C0)V, with C; = 0C,.
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Approximation of Characteristic Functions

e K(Q)={veH(Q): 0<v(x)<1lae inQ, v(x)=0ae in Q},

» U ={xeQ : dist(x,00) < do}.
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Approximation of Characteristic Functions

e K(Q)={veH(Q): 0<v(x)<1lae inQ, v(x)=0ae in Q},

» U ={xeQ : dist(x,00) < do}.

v is the phase-field variable.
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...approximation of the Perimeter Functional
Perimeter functional: Let P : L1(Q) — [0, +00] s.t.

TV(v) ifveXy1(2
P(V) _ (v) iLve 0,1( )
400 otherwise

u}
)
I
I
it
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...approximation of the Perimeter Functional
Perimeter functional: Let P : L1(Q) — [0, +00] s.t.

TV(v) ifveXy1(2
P(V) _ (v) iLve 0,1( )
400 otherwise

Modica-Mortola functional: For any £ > 0, let M. : L}(Q) — [0, +o0] s.t.

+o00 otherwise

M.(v) = {% Jo (IVVE+ v —v)) it v e K(Q)
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...approximation of the Perimeter Functional
Perimeter functional: Let P : L1(Q) — [0, +00] s.t.

TV(v) ifveXy1(2
P(V) _ (v) iLve 0,1( )
400 otherwise

Modica-Mortola functional: For any £ > 0, let M. : L}(Q) — [0, +o0] s.t.

+o00 otherwise

M.(v) = {% Jo (IVVE+ v —v)) it v e K(Q)

Modica-Mortola (1977)
M. T-converges to P as € — 0. J
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...approximation of the Perimeter Functional
Perimeter functional: Let P : L1(Q) — [0, +00] s.t.

TV(v) ifveXy1(2
P(V) _ (v) iLve 0,1( )
400 otherwise

Modica-Mortola functional: For any £ > 0, let M. : L}(Q) — [0, +o0] s.t.

M.(v) = {% Jo (IVVE+ v —v)) it v e K(Q)

+o00 otherwise

Modica-Mortola (1977)
M. T-converges to P as € — 0. J

Issue: by Modica-Mortola, as € — 0, the limit V is the characteristic
function of a finite perimeter set only.
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Phase-field Approach
For £, > 0, find

. 1 %" 1
veﬁ;\l(nm J5,€(V) = 5 /ZN |U5(V) - Umeas|2 + ? o <5|VV|2 + EV(]. — V))

@ (Q)={veHQ): 0<v(x)<lae inQ, v(x)=0ae in U}
» U ={xeQ : dist(x,00) < do};

@ u;s(v) solution to

div(cg(Av)ﬁu(;(v)) =0 inQ,
(Cs(V)Vus(v))v=g on Xy,
U5(V) =0 on ZD,

where

C&(V) =Co+ v(6 — 1)((:0

Andrea Aspri (Math Dept. “F. Enriques”)
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Analytical Results

@ Continuity: For any § > 0, the map F : v — us(v)|x, is continuous from
K(Q) to L2(Zy) in the L! topology,

n—+o00

lim /Z s (v) — us (V)2 dor(x) = .

@ Existence of solutions: For any 6, > 0, Problem min,ci(q) J5.c(v) admits a
solution v = vs . € K(Q).
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Analytical Results (cont.)

Necessary opt. cond. (A.Beretta,Cavaterra,Rocca,Verani (2022))
Any minimizer v5 . € K(Q) satisfies

Jg,s(vs)[w - VS] > 07 Vw € K(Q)a
where,
5wl = [ 9(C0 = C)Tus(v) : Tos(v)
SO‘E/V Vﬁ+—/(1—2v)19

and p; € Hy () is the solution to the adjoint problem

/ Cs(v)Vps(v) : Vip = / (us(V) — Umeas)V, Vi) € Hy, (Q).
Q P

Phase-field approaches for reconstruction of elastic cavities
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Proof

1. The map F : K(Q2) — HY(Q), F(v) = us(v) is Fréchet differentiable in
K(2) N L>(Q), i.e.

F'(V)[Y] = ub(v), for 9 € L(Q) N (K — v),
where u(v) is the solution in HL () of

/05 V= /19(@0 —C1)Vus(v): Ve, Yy € HE (Q);
Q
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Proof

1. The map F : K(Q2) — HY(Q), F(v) = us(v) is Fréchet differentiable in
K(Q)NL®(Q), ie

F'(V)[Y] = ub(v), for 9 € L(Q) N (K — v),
where u(v) is the solution in HL () of

/ Cs(v Vu / HCo — C1)Vus(v) : Ve, Vo€ H%D(Q);
Q

..using energy estimates for us and the fact that ¥ € L>°(Q)...)
2. By chain rule

Jg,s(v)[ﬁ] = s (F(V) - umeas)Fl(V)[ﬁ] + a/Q (2EVV VI + %(1 — 2V)’l9)

Andrea Aspri (Math Dept. “F. Enriques”) Phase-field approaches for reconstruction of elastic cavities



Proof

1. The map F : K(Q2) — HY(Q), F(v) = us(v) is Fréchet differentiable in
K(Q)NL®(Q), ie

F'(V)[Y] = ub(v), for 9 € L(Q) N (K — v),
where u(v) is the solution in HL () of

/ Cs(v)Vul( / HCo — C1)Vus(v) : Ve, Vo€ H%D(Q);
Q

..using energy estimates for us and the fact that ¥ € L>°(Q)...)
2. By chain rule

Jg,s(v)[ﬁ] = s (F(V) - umeas)Fl(V)[ﬁ] + a/Q (2EVV VI + %(1 — 2V)’l9)

and

[ (F0) = tnas P01 = [ (F0) ~ tmen) () =
pay Iy

:/Q(c0 _COIVF(v) : Tps(v).
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A Parabolic Obstacle Problem

Natural strategy: to find a phase-field critical point v € K(Q2) satisfying
J5 . (V)[w—=v] >0, VweK(Q) (~ ie. tofind at least a local minimum of J; )
we use the following Parabolic Obstacle Problem:

o find v(-,t) € K(Q), t > 0s.t. v(-,0) = v and

/Qatv(w—v)—I—Jg’e(v)[w—v]20, VweK,te(0+oc). (3)
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A Parabolic Obstacle Problem

Natural strategy: to find a phase-field critical point v € K(Q2) satisfying
J5 . (V)[w—=v] >0, VweK(Q) (~ ie. tofind at least a local minimum of J; )
we use the following Parabolic Obstacle Problem:

o find v(-,t) € K(Q), t > 0s.t. v(-,0) = v and
/ devlw — )+ L (Wl — V] 20, Vwek,te(0+o). (3)
Q

In fact,
» choosing w = v(-,t — At) in (3);
» dividing by At;
» sending At — 0

Andrea Aspri (Math Dept. “F. Enriques”) Phase-field approaches for reconstruction of elastic cavities



A Parabolic Obstacle Problem

Natural strategy: to find a phase-field critical point v € K(Q2) satisfying
J5 . (V)[w—=v] >0, VweK(Q) (~ ie. tofind at least a local minimum of J; )
we use the following Parabolic Obstacle Problem:

o find v(-,t) € K(Q), t > 0s.t. v(-,0) = v and
/ devlw — )+ L (Wl — V] 20, Vwek,te(0+o). (3)
Q

In fact,

» choosing w = v(-,t — At) in (3);

» dividing by At;

» sending At — 0

d
||vt||2 + Jgﬁs(v)vt <0, thatis EJ&E(V(-, t)) <0

If lim v(-, t):= v exists, we expect that v, is a solution of

t—+o0
Jgﬁ(v)[w —v] >0.
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Discretization
@ Let (7h)o<h<n, be a regular triangulation of Q2 and define
Vi i={vn € C(Q) : vl € PL(T), YT € Tn},
where P1(T) is the set of polynomials of first degree on 7T, and
Kn:=VyOK, Vhr, = Vs Hg, (Q).

@ We denote by {v/'}n,en C Kp the sequence of approximations v/ ~ v(-, t")

obtained as follows: given v0 = vy € Kp,

n+1 c ICh /( n+l vh wh _ V;,H_l)
/((Co — Cy)(wh — vV Vpp + 2oz€/ VvV (wn — vt

+5 /(1—2vh)(wh—v,’1’+1) >0, Vwp€Kpn>0, (4)
Q

> 7, is the time step, @ = 4/T;
> up, pp € Vhx, are the discrete solutions of the forward problem and
adjoint problem for v, = v}.
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Algorithm & Numerical Results

Algorithm 1 Discrete Parabolic Obstacle Problem

Set n =0 and v = v, the initial guess for the inclusion
while ||v) — v/ 71| > tol do
find up(v))) solution of the forward problem with v = v}/
find pu(v))) solution of the adjoint problem with v = v}’
find vt solving (4)
update n = n+1;
end while
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Meshes and Refinement

o8 98 04 02 o0 02 04 05 o8 1

(a) Mesh 7;"3! : forward problem. (b) Mesh 7x: inverse problem.

m] = = =
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Meshes and Refinement

“ o8 o5 04 02 o 02 o4 o5 o8 1

(a) Mesh 7,7/ forward problem.

il
X

B

— YN
—>p

(a) Boundary condition in numerical ex-
periments: Neumann boundary condi-
tions are assigned on the red part. Ho-
mogeneous Dirichlet conditions are as-

n (b) Refinement of the mesh around the
signed on the blue par. reconstructed domain.
=] = = E E APRN G4
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@ Some numerical results (initial guess vy = 0)

09 0o
08 08
07 07
06 06
05 05
04 04
03 03
02 02
01 01
o o
x x x

Figure: Example 1: noise 2%. Example 2: noise 5%. Example 3:

Andrea Aspri (Math Dept . Enriques”)
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Outline

© A Kohn-Vogelius type functional

Andrea Aspri (Math Dept. “F. Enriques”)
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Before concluding...an alternative

The use of the misfit functional is not the only possible one.
An energy-gap functional can be used.
Consider the two boundary value problems

div(CoVuy) =0 inQ\ C div(CoVup) =0 in Q\ C
((C()?u,v)n =0 on 0C and ((CoﬁuD)n =0 on 0C
(CoVuny)y=g on Xy UDp = Umeas on Yy
uy =20 on ¥ p, up=20 on 2p.
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Before concluding...an alternative

The use of the misfit functional is not the only possible one.
An energy-gap functional can be used.
Consider the two boundary value problems

div(CoVuy) =0 inQ\ C div(CoVup) =0 in Q\ C
((C()?u,v)n =0 onoaC and (CoVup)n=0  on dC
(CoVuny)y=g on Xy Up = Umeas on Xy
uy =20 on ¥ p, up=20 on 2p.

Kohn-Vogelius type functional

min Jxv(C) := % CoV(un(C) = up(C)) : V(un(C) — up(C)) dx +aPer(C)
€ Q\C

Kohn-Vogelius func.
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Before concluding...an alternative

The use of the misfit functional is not the only possible one.
An energy-gap functional can be used.
Consider the two boundary value problems

div(CoVuy) =0 inQ\ C div(CoVup) =0 in Q\ C
((C()?u,v)n =0 onoaC and (CoVup)n=0  on dC
(CoVuny)y=g on Xy Up = Umeas on Xy
uy =20 on ¥ p, up=20 on 2p.

Kohn-Vogelius type functional

min Jxv(C) := % CoV(un(C) = up(C)) : V(un(C) — up(C)) dx +aPer(C)
€ Q\C

Kohn-Vogelius func.

...one can repeat an analogous analysis as done in the previous slides(A. (2022))
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Relaxation of Kohn-Vogelius func.

For any §,e > 0, find
min Js - (v) == Iy (v) + 5/ (5|Vv|2 + 1v(l — v)) dx
veK(Q) Q € ’
where J2,, (v) = Jnp + Jy(v) + J5(v) and

B / C(Tu(v) : Tu(v), JH(v) = / Co(V)Fud(v) : Tud(v),

Functions 1, and v, are solutions to the following problems

div(Cs(v)Vul(v)) =0  inQ, div(Cs(v)Vud(v)) =0 in Q,
(Cs(v)Vug(v))v =8 on X, up(v) = Umeas on X,
ud(v) =0 onZXp, ud(v)=0 on ¥p.
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Necessary optimality condition

Any minimizer v, of Js. satisfies the variational inequality
JZS,E(VE)[W - Vs] > 0, Yw € ]C,

where )
S =3 [ (€ - CTub(v): Tu(v) o
Q

- %/ D(Cy — Co)Vuy(v) : Vul(v) dx
Q

+2&e/§v:§0+9/(1—2v)19.
Q € Ja
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Numerical results - Kohn-Vogelius func.

@ Some numerical results (initial guess vo = 0)

Figure: Example 1: noise 5%. Example 2: noise 5%. Example 3: noise 2%.
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Outline

@ Conclusions & open problems
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Conclusions

@ We have introduced a phase-field approach in elastic inverse problems;

@ The method is more versatile than others since no a priori information is
needed (initial guess could also be vy = 0);
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Conclusions

@ We have introduced a phase-field approach in elastic inverse problems;

@ The method is more versatile than others since no a priori information is
needed (initial guess could also be vy = 0);

Open problems:
@ Prove I'-convergence of Js. to J as d,e — 0, i.e.

1 4o 1
Jse(v):= E/}: lus (V) — Umeas|? + = /s (5|Vv|2 + gv(l - v))
N

7?7 I — converges to 77 (as 0,¢ — 0)

J(v) = % /Z 1U(7) — teas|? dor(x) + aTV(¥)

@ Extend analytical and numerical results to other differential operators (e.g.
evolution PDE systems, non-linear forward problems...);

@ Improve numerical results in the case of non-convex cavities, working on the
regularization term.
Andrea Aspri (Math Dept. “F. Enriques”)
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Figure: Some of the Great Moments in Banff
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Figure: Some of the Great Moments in Banff

Thank you for your attention
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