Phase-field approaches for reconstruction of elastic cavities

Andrea Aspri

Department of Mathematics "F. Enriques" University of Milan

Joint work with E. Beretta, C. Cavaterra, E. Rocca, M. Verani

Inverse Problems for Anomalous Diffusion Processes BIRS - Banff, Canada, May 9-13, 2022

Andrea Aspri (Math Dept. "F. Enriques")

Outline

Inverse problem: detection of cavities

- Motivation
- Analytical known results
- A variational method: a phase-field approach

2 Numerical aspects

- A parabolic obstacle problem
- Numerical results
- 3 A Kohn-Vogelius type functional
- 4 Conclusions & open problems

Outline

Inverse problem: detection of cavities

- Motivation
- Analytical known results
- A variational method: a phase-field approach

Numerical aspects

- A parabolic obstacle problem
- Numerical results

A Kohn-Vogelius type functional

Conclusions & open problems

• Detection of defects (cavities, inclusions, cracks) inside an elastic body from boudary measurements.

(B)

• Detection of defects (cavities, inclusions, cracks) inside an elastic body from boudary measurements.

N 4 E N

• Detection of defects (cavities, inclusions, cracks) inside an elastic body from boudary measurements.

• Detection of defects (cavities, inclusions, cracks) inside an elastic body from boudary measurements.

E 6 4 E 6

• Detection of defects (cavities, inclusions, cracks) inside an elastic body from boudary measurements.

Possible applications: medical imaging, non-destructive testing of materials...

Shao et al., Advancements of ultrasound elastography in the cervix, Ultrasound in Med. & Biol., 2021

Andrea Aspri (Math Dept. "F. Enriques")

Detection of Cavities

• Ω is a bounded Lipschitz domain, $\partial \Omega := \Sigma_D \cup \Sigma_N$;

$$\begin{cases} \operatorname{div}(\mathbb{C}_0\widehat{\nabla} u) = 0 & \text{in } \Omega \setminus \overline{C}, \\ (\mathbb{C}_0\widehat{\nabla} u)n = 0 & \text{on } \partial C, \\ (\mathbb{C}_0\widehat{\nabla} u)\nu = g & \text{on } \Sigma_N, \\ u = 0 & \text{on } \Sigma_D, \end{cases}$$
(1)

- ► C₀ is the fourth-order isotropic elasticity tensor, uniformly bounded, and strongly convex;
- $C \Subset \Omega$ is a bounded Lipschitz domain (C = cavity);

•
$$\widehat{\nabla} u = \frac{1}{2} (\nabla u + (\nabla u)^T);$$

• $g \in L^2(\Sigma_N);$

Forward Problem Given $(C, \mathbb{C}_0, g) \rightsquigarrow$ find $u \in H^1_{\Sigma_D}(\Omega \setminus \overline{C})$.

Inverse Problem

Given \mathbb{C}_0, g , and u_m on $\Sigma_N \rightsquigarrow$ find \mathbb{C} s.t. $u(\mathcal{C})|_{\Sigma_N} = u_m, (u(\mathcal{C}), sol, to, (1))$

Andrea Aspri (Math Dept. "F. Enriques")

Detection of Cavities

• Ω is a bounded Lipschitz domain, $\partial \Omega := \Sigma_D \cup \Sigma_N$;

$$\begin{cases} \operatorname{div}(\mathbb{C}_0\widehat{\nabla} u) = 0 & \text{in } \Omega \setminus \overline{C}, \\ (\mathbb{C}_0\widehat{\nabla} u)n = 0 & \text{on } \partial C, \\ (\mathbb{C}_0\widehat{\nabla} u)\nu = g & \text{on } \Sigma_N, \\ u = 0 & \text{on } \Sigma_D, \end{cases}$$
(1)

- ► C₀ is the fourth-order isotropic elasticity tensor, uniformly bounded, and strongly convex;
- $C \Subset \Omega$ is a bounded Lipschitz domain (C = cavity);

•
$$\widehat{\nabla} u = \frac{1}{2} (\nabla u + (\nabla u)^T)$$

• $g \in L^2(\Sigma_N);$

 $\frac{\text{Forward Problem}}{\text{Given } (C, \mathbb{C}_0, g)} \rightsquigarrow \text{ find } u \in H^1_{\Sigma_D}(\Omega \setminus \overline{C}).$

Inverse Problem

Given \mathbb{C}_0, g , and u_m on $\Sigma_N \rightsquigarrow$ find \mathbb{C} s.t. $u(\mathbb{C})|_{\Sigma_N} = u_m, (u(\mathbb{C}), sol, to(1))$

Andrea Aspri (Math Dept. "F. Enriques")

Detection of Cavities

• Ω is a bounded Lipschitz domain, $\partial \Omega := \Sigma_D \cup \Sigma_N$;

$$\begin{cases} \operatorname{div}(\mathbb{C}_0\widehat{\nabla} u) = 0 & \text{in } \Omega \setminus \overline{C}, \\ (\mathbb{C}_0\widehat{\nabla} u)n = 0 & \text{on } \partial C, \\ (\mathbb{C}_0\widehat{\nabla} u)\nu = g & \text{on } \Sigma_N, \\ u = 0 & \text{on } \Sigma_D, \end{cases}$$
(1)

- ▶ C₀ is the fourth-order isotropic elasticity tensor, uniformly bounded, and strongly convex;
- $C \Subset \Omega$ is a bounded Lipschitz domain (C = cavity);

$$\widehat{\nabla} u = \frac{1}{2} (\nabla u + (\nabla u)^T);$$

• $g \in L^2(\Sigma_N);$

 $\frac{\text{Forward Problem}}{\text{Given } (\mathcal{C}, \mathbb{C}_0, g)} \rightsquigarrow \text{ find } u \in H^1_{\Sigma_D}(\Omega \setminus \overline{\mathcal{C}}).$

Inverse Problem

Given \mathbb{C}_0, g , and u_m on $\Sigma_N \rightsquigarrow$ find C s.t. $u(\mathsf{C})|_{\Sigma_N} = u_m (u(\mathsf{C}) \text{ sol. to } (1))_{\bullet}$

Inverse pb: known results

- Uniqueness: a single pair of Cauchy data $\{g, u_m\}$ on Σ_N is sufficient to identify C, when
 - C is a Lipschitz domain;
 - ▶ C₀ satisfies a C^{0,1} regularity condition;

(Morassi-Rosset, Ang-Trong-Yamamoto, Lin-Wang-Nakamura,...)

• Stability: very weak stability estimates (of log-log type) hold

 $d_H(C_1, C_2) \leq C(\log |\log(||u_m^1 - u_m^2||_{L^2(\Sigma_N)})|)^{-\eta},$

with
$$C > 0$$
 and $0 < \eta \le 1$

when

- C_1 , C_2 are $C^{1,\alpha}$ -domains;
- ▶ C₀ satisfies a C^{1,1} regularity condition;

(Morassi-Rosset)

<u>Remark</u>: in analogy to the case of a scalar elliptic equation, the stability estimate is quite optimal.

(Alessandrini, Mandache, Rondi, Di Cristo-Rondi)

Andrea Aspri (Math Dept. "F. Enriques")

Phase-field approaches for reconstruction of elastic cavities

A (B) (A) (B) (A) (B) (A)

Inverse pb: known results

- Uniqueness: a single pair of Cauchy data $\{g, u_m\}$ on Σ_N is sufficient to identify C, when
 - C is a Lipschitz domain;
 - ▶ C₀ satisfies a C^{0,1} regularity condition;

(Morassi-Rosset, Ang-Trong-Yamamoto, Lin-Wang-Nakamura,...)

• Stability: very weak stability estimates (of log-log type) hold

$$d_H(C_1, C_2) \le C(\log |\log(||u_m^1 - u_m^2||_{L^2(\Sigma_N)})|)^{-\eta}$$

with
$$C > 0$$
 and $0 < \eta \le 1$

when

- C_1 , C_2 are $C^{1,\alpha}$ -domains;
- \mathbb{C}_0 satisfies a $C^{1,1}$ regularity condition;

(Morassi-Rosset)

<u>Remark</u>: in analogy to the case of a scalar elliptic equation, the stability estimate is quite optimal.

(Alessandrini, Mandache, Rondi, Di Cristo-Rondi)

Andrea Aspri (Math Dept. "F. Enriques")

Inverse pb: known results

- Uniqueness: a single pair of Cauchy data $\{g, u_m\}$ on Σ_N is sufficient to identify C, when
 - C is a Lipschitz domain;
 - \mathbb{C}_0 satisfies a $C^{0,1}$ regularity condition;

(Morassi-Rosset, Ang-Trong-Yamamoto, Lin-Wang-Nakamura,...)

• Stability: very weak stability estimates (of log-log type) hold

 $d_{H}(C_{1}, C_{2}) \leq C(\log |\log(||u_{m}^{1} - u_{m}^{2}||_{L^{2}(\Sigma_{N})})|)^{-\eta},$

with
$$C > 0$$
 and $0 < \eta \leq 1$

when

- C_1 , C_2 are $C^{1,\alpha}$ -domains;
- ▶ C₀ satisfies a C^{1,1} regularity condition;

(Morassi-Rosset)

<u>Remark</u>: in analogy to the case of a scalar elliptic equation, the stability estimate is quite optimal.

(Alessandrini, Mandache, Rondi, Di Cristo-Rondi)

Andrea Aspri (Math Dept. "F. Enriques")

Inverse pb (cont.)

We set our analysis in the following framework

Unknown: C ∈ C:={C ⊂ Ω : compact, simply connected, with ∂C Lipschitz, and dist(C, ∂Ω) ≥ d₀ > 0};

Main issues

- Nonlinearity
- III-posedness

Inverse pb (cont.)

We set our analysis in the following framework

• Unknown: $C \in C := \{C \subset \overline{\Omega} : \text{ compact, simply connected, with } \partial C \text{ Lipschitz, and } dist(C, \partial \Omega) \ge d_0 > 0\};$

Main issues

- Nonlinearity
- Ill-posedness (→ noise in the measurements)
- Available measured data: $u_{meas} \in L^2(\Sigma_N)$ s.t.

 $\|u_{meas} - u_m\|_{L^2(\Sigma_N)} \leq \eta, \quad \eta > 0 \text{ is the noise level}$

Inverse pb (cont.)

We set our analysis in the following framework

• Unknown: $C \in C := \{C \subset \overline{\Omega} : \text{ compact, simply connected, with } \partial C \text{ Lipschitz, and } dist(C, \partial \Omega) \ge d_0 > 0\};$

Main issues

- Nonlinearity

- Ill-posedness (→ noise in the measurements)

• Available measured data: $u_{meas} \in L^2(\Sigma_N)$ s.t.

 $\|u_{meas} - u_m\|_{L^2(\Sigma_N)} \le \eta, \quad \eta > 0$ is the noise level

Reconstruction algorithms: level set methods, topological derivative, shape derivative, monotonicity method, method of fundamental solutions,... (*Ameur-Burger-Hackl, Ammari-Kang-Nakamura-Tanuma, Belhachmi-Meftahi, Ben Abda-Jaïem-Khalfallah-Zine, Bonnet-Constantinescu, Carpio-Rapún, Eberle-Harrach, Ikehata-Itou, Kaltenbacher, Kang-Kim-Lee, Karageorghis-Lesnic-Ma, Martínez–Castro-Faris-Gallego,...*)

Andrea Aspri (Math Dept. "F. Enriques")

Variational Approach

 Approach the inverse problem as a minimization problem

$$\min_{C \in \mathcal{C}} J(C) = \underbrace{\frac{1}{2} \int_{\Sigma_N} |u(C) - u_{meas}|^2 \, d\sigma(x)}_{\sum_N}$$

Misfit functional

 u(C) solution to the boundary value problem (1);

Scherzer et al., Variational Methods in Imaging, Applied Mathematical Sciences 167, Springer, 2009. 4 🖻 🕨 🚊 🛷 🤉

Andrea Aspri (Math Dept. "F. Enriques")

Variational Approach

• Approach the inverse problem as a minimization problem

$$\min_{C \in \mathcal{C}} J(C) = \underbrace{\frac{1}{2} \int_{\Sigma_N} |u(C) - u_{meas}|^2 \, d\sigma(x)}_{\text{Misfit functional}}$$

 u(C) is the solution to the boundary value problem (1);

Poor reconstruction is due to the ill-posedness of the inverse problem!

Scherzer et al., Variational Methods in Imaging, Applied Mathematical Sciences 167, Springer, 2009. 🕢 🖹 👘 😤 🛷 🔍

Andrea Aspri (Math Dept. "F. Enriques")

Variational Approach

• Approach the inverse problem as a minimization problem

$$\min_{C \in \mathcal{C}} J(C) = \underbrace{\frac{1}{2} \int_{\Sigma_N} |u(C) - u_{meas}|^2 \, d\sigma(x)}_{\text{Misfit functional}}$$

 u(C) is the solution to the boundary value problem (1);

Poor reconstruction is due to the ill-posedness of the inverse problem!

Andrea Aspri (Math Dept. "F. Enriques")

Scherzer et al., Variational Methods in Imaging, Applied Mathematical Sciences 167, Springer, 2009. Վ 🖹 🕨 🚊 🛶 🖓 🔍

Variational Approach (cont.)

To mitigate the ill-posedness of the inverse problem a regularization term is needed.

• Add the perimeter of *C* as a regularization term in the functional (*Rondi, Deckelnick-Elliot-Styles, Beretta-Ratti-Verani,A.-Beretta-Cavaterra-Rocca-Verani*)

$$\min_{C \in \mathcal{C}} J_{reg}(C) = \underbrace{\frac{1}{2} \int_{\Sigma_N} |u(C) - u_{meas}|^2 d\sigma(x)}_{\text{Misfit func.}} + \underbrace{\alpha \text{Per}(C)}_{\text{Regularization func.}}$$

- u(C) is the solution to the boundary value problem (1);
- $\alpha > 0$ is a regularization parameter;
- Per(C) is the perimeter of C.

Analytical Results

$$\min_{C \in \mathcal{C}} J_{reg}(C) = \frac{1}{2} \int_{\Sigma_N} |u(C) - u_{meas}|^2 \, d\sigma(x) + \alpha \operatorname{Per}(C)$$

• Continuity properties of *u*(*C*) with respect to perturbations of *C*;

Theorem (A.,Beretta,Cavaterra,Rocca,Verani (2022))

Let $C_n \in C$ be a sequence of sets converging to C in the Hausdorff metric, and let $u(C_n) =: u_n \in H^1_{\Sigma_D}(\Omega \setminus C_n)$, $u(C) =: u \in H^1_{\Sigma_D}(\Omega \setminus C)$ be solutions of (1) in $\Omega \setminus C_n$, $\Omega \setminus C$, respectively. Then

$$\lim_{n\to+\infty}\int_{\Sigma_N}|u_n-u|^2\,d\sigma(x)=0.$$

Andrea Aspri (Math Dept. "F. Enriques")

• Existence of minima for $J_{reg}(C)$;

• Stability with respect to noisy data

if $u_n \to u_{meas}$ then $d_H(C_n, \widetilde{C}) \to 0, n \to +\infty$

where \tilde{C} is a solution of min_{$C \in C$} $J_{reg}(C)$;

• Convergence of minimizers as $\alpha \rightarrow 0$ to the solution of the inverse problem;

How to proceed numerically?

...use suitable "relaxations" of the functional J_{reg} to overcome issues arising from non-convexity and non-differentiability of J_{reg} ...

- Existence of minima for $J_{reg}(C)$;
- Stability with respect to noisy data

if $u_n \to u_{meas}$ then $d_H(C_n, \widetilde{C}) \to 0, n \to +\infty$

where \widetilde{C} is a solution of min_{$C \in C$} $J_{reg}(C)$;

• Convergence of minimizers as $\alpha \rightarrow 0$ to the solution of the inverse problem;

How to proceed numerically?

...use suitable "relaxations" of the functional J_{reg} to overcome issues arising from non-convexity and non-differentiability of J_{reg} ...

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

- Existence of minima for $J_{reg}(C)$;
- Stability with respect to noisy data

 $\text{if } u_n \to u_{meas} \text{ then } d_H(C_n, \widetilde{C}) \to 0, \quad n \to +\infty$ where \widetilde{C} is a solution of $\min_{C \in \mathcal{C}} J_{reg}(C)$;

• Convergence of minimizers as $\alpha \rightarrow 0$ to the solution of the inverse problem;

How to proceed numerically?

...use suitable "relaxations" of the functional J_{reg} to overcome issues arising from non-convexity and non-differentiability of J_{reg} ...

- (日本) - (1)

• Existence of minima for $J_{reg}(C)$;

• Stability with respect to noisy data

if $u_n \to u_{meas}$ then $d_H(C_n, \widetilde{C}) \to 0, n \to +\infty$

where \tilde{C} is a solution of $\min_{C \in C} J_{reg}(C)$;

• Convergence of minimizers as $\alpha \rightarrow 0$ to the solution of the inverse problem;

How to proceed numerically?

...use suitable "relaxations" of the functional J_{reg} to overcome issues arising from non-convexity and non-differentiability of J_{reg} ...

- (個) - (日) - (日) - (日)

• Existence of minima for $J_{reg}(C)$;

• Stability with respect to noisy data

if $u_n \to u_{meas}$ then $d_H(C_n, \widetilde{C}) \to 0, n \to +\infty$

where \tilde{C} is a solution of $\min_{C \in C} J_{reg}(C)$;

• Convergence of minimizers as $\alpha \rightarrow 0$ to the solution of the inverse problem;

How to proceed numerically?

...use suitable "relaxations" of the functional J_{reg} to overcome issues arising from non-convexity and non-differentiability of J_{reg} ...

- 「「「」、「」、「」、「」、「」、

• Existence of minima for $J_{reg}(C)$;

• Stability with respect to noisy data

if $u_n \to u_{meas}$ then $d_H(C_n, \widetilde{C}) \to 0, n \to +\infty$

where \tilde{C} is a solution of $\min_{C \in C} J_{reg}(C)$;

• Convergence of minimizers as $\alpha \rightarrow 0$ to the solution of the inverse problem;

How to proceed numerically?

...use suitable "relaxations" of the functional J_{reg} to overcome issues arising from non-convexity and non-differentiability of J_{reg} ...

3

Outline

Inverse problem: detection of cavities

- Motivation
- Analytical known results
- A variational method: a phase-field approach

2 Numerical aspects

- A parabolic obstacle problem
- Numerical results

A Kohn-Vogelius type functional

Conclusions & open problems

Towards Numerical Algorithm

First step: Problem

$$\min_{C \in \mathcal{C}} J_{reg}(C) = \frac{1}{2} \int_{\Sigma_N} |u(C) - u_{meas}|^2 \, d\sigma(x) + \alpha \operatorname{Per}(C)$$

is equivalent to

$$\min_{\overline{\nu}\in\mathcal{X}_{0,1}} J_{reg}(\overline{\nu}) = \frac{1}{2} \int_{\Sigma_N} |u(\overline{\nu}) - u_{meas}|^2 \, d\sigma(x) + \alpha \, \mathcal{TV}(\overline{\nu})$$

•
$$TV(\overline{\mathbf{v}}) = \sup \left\{ \int_{\Omega} \overline{\mathbf{v}} \operatorname{div}(\varphi); \quad \varphi \in C_0^1(\Omega), \, \|\varphi\|_{L^{\infty}(\Omega)} \leq 1 \right\};$$

•
$$X_{0,1}(\Omega) := \{ v \in BV(\Omega) : v = \chi_C \text{ a.e. in } \Omega, C \in \mathcal{C} \};$$

•
$$BV(\Omega) = \{ v \in L^1(\Omega) : TV(v) < \infty \}.$$

▶ < ∃ >

Towards Numerical Algorithm (cont.)

Second step (filling the cavity): let $\delta > 0$ be sufficiently small; then, consider

$$\min_{\overline{\nu}\in X_{0,1}}\overline{J}_{reg}(\overline{\nu}) = \frac{1}{2}\int_{\Sigma_N}|u_{\delta}(\overline{\nu}) - u_{meas}|^2 d\sigma(x) + \alpha TV(\overline{\nu})$$

where

$$\begin{cases} \operatorname{div}(\mathbb{C}_{\delta}(\overline{\nu})\widehat{\nabla} u_{\delta}(\overline{\nu})) = 0 & \text{ in } \Omega, \\ (\mathbb{C}_{\delta}(\overline{\nu})\widehat{\nabla} u_{\delta}(\overline{\nu}))\nu = g & \text{ on } \Sigma_{N}, \\ u_{\delta}(\overline{\nu}) = 0 & \text{ on } \Sigma_{D}, \end{cases}$$
(2)

$$\mathbb{C}_{\delta}(\overline{v}) = \mathbb{C}_0 + (\mathbb{C}_1 - \mathbb{C}_0)\overline{v}, \text{ with } \mathbb{C}_1 = \frac{\delta}{\mathbb{C}_0}.$$

$$\delta C_0$$

 C_0

Approximation of Characteristic Functions

• $\mathcal{K}(\Omega) = \{ v \in H^1(\Omega) : 0 \le v(x) \le 1 \text{ a.e. in } \Omega, v(x) = 0 \text{ a.e. in } \Omega_1 \},$

• $\Omega_1 = \{x \in \Omega : dist(x, \partial \Omega) \le d_0\}.$

v is the phase-field variable.

Approximation of Characteristic Functions

• $\mathcal{K}(\Omega) = \{ v \in H^1(\Omega) : 0 \le v(x) \le 1 \text{ a.e. in } \Omega, v(x) = 0 \text{ a.e. in } \Omega_1 \},$

•
$$\Omega_1 = \{x \in \Omega : dist(x, \partial \Omega) \le d_0\}.$$

v is the phase-field variable.

$$P(\overline{v}) = egin{cases} TV(\overline{v}) & ext{if } \overline{v} \in X_{0,1}(\Omega) \ +\infty & ext{otherwise} \end{cases}$$

Modica-Mortola functional: For any $\varepsilon > 0$, let $M_{\varepsilon} : L^1(\Omega) \to [0, +\infty]$ s.t.

$$M_{\varepsilon}(v) = \begin{cases} \frac{4}{\pi} \int_{\Omega} \left(\varepsilon |\nabla v|^2 + \frac{1}{\varepsilon} v(1-v) \right) & \text{if } v \in \mathcal{K}(\Omega) \\ +\infty & \text{otherwise} \end{cases}$$

Modica-Mortola (1977)

 $M_ε$ Γ-converges to P as $ε \to 0$.

Issue: by Modica-Mortola, as $\varepsilon \to 0$, the limit \overline{v} is the characteristic function of a finite perimeter set only.

Andrea Aspri (Math Dept. "F. Enriques")

$${m P}(\overline{v}) = egin{cases} TV(\overline{v}) & ext{if } \overline{v} \in X_{0,1}(\Omega) \ +\infty & ext{otherwise} \end{cases}$$

Modica-Mortola functional: For any $\varepsilon > 0$, let $M_{\varepsilon} : L^{1}(\Omega) \to [0, +\infty]$ s.t.

$$M_{\varepsilon}(\mathbf{v}) = egin{cases} rac{4}{\pi} \int_{\Omega} \left(arepsilon |
abla \mathbf{v}|^2 + rac{1}{arepsilon} \mathbf{v}(1-\mathbf{v})
ight) & ext{if } \mathbf{v} \in \mathcal{K}(\Omega) \ +\infty & ext{otherwise} \end{cases}$$

Modica-Mortola (1977)

 $M_ε$ Γ-converges to P as $ε \to 0$.

Issue: by Modica-Mortola, as $\varepsilon \to 0$, the limit \overline{v} is the characteristic function of a finite perimeter set only.

Andrea Aspri (Math Dept. "F. Enriques")

$${m P}(\overline{v}) = egin{cases} TV(\overline{v}) & ext{if } \overline{v} \in X_{0,1}(\Omega) \ +\infty & ext{otherwise} \end{cases}$$

Modica-Mortola functional: For any $\varepsilon > 0$, let $M_{\varepsilon} : L^{1}(\Omega) \to [0, +\infty]$ s.t.

$$M_{\varepsilon}(v) = egin{cases} rac{4}{\pi} \int_{\Omega} \left(arepsilon |
abla v|^2 + rac{1}{arepsilon} v(1-v)
ight) & ext{if } v \in \mathcal{K}(\Omega) \ +\infty & ext{otherwise} \end{cases}$$

Modica-Mortola (1977)

 $M_ε$ Γ-converges to P as $ε \to 0$.

Issue: by Modica-Mortola, as $\varepsilon \to 0$, the limit $\overline{\nu}$ is the characteristic function of a finite perimeter set only.

Andrea Aspri (Math Dept. "F. Enriques")

$${m P}(\overline{v}) = egin{cases} TV(\overline{v}) & ext{if } \overline{v} \in X_{0,1}(\Omega) \ +\infty & ext{otherwise} \end{cases}$$

Modica-Mortola functional: For any $\varepsilon > 0$, let $M_{\varepsilon} : L^{1}(\Omega) \to [0, +\infty]$ s.t.

$$M_{\varepsilon}(v) = egin{cases} rac{4}{\pi} \int_{\Omega} \left(arepsilon |
abla v|^2 + rac{1}{arepsilon} v(1-v)
ight) & ext{if } v \in \mathcal{K}(\Omega) \ +\infty & ext{otherwise} \end{cases}$$

Modica-Mortola (1977)

 M_{ε} Γ-converges to P as $\varepsilon \to 0$.

Issue: by Modica-Mortola, as $\varepsilon \to 0$, the limit \overline{v} is the characteristic function of a finite perimeter set only.

Andrea Aspri (Math Dept. "F. Enriques")

Phase-field Approach

For $\varepsilon, \delta >$ 0, find

$$\min_{\boldsymbol{v}\in\mathcal{K}(\Omega)}J_{\delta,\varepsilon}(\boldsymbol{v}):=\frac{1}{2}\int_{\Sigma_N}|\boldsymbol{u}_{\delta}(\boldsymbol{v})-\boldsymbol{u}_{meas}|^2+\frac{4\alpha}{\pi}\int_{\Omega}\left(\varepsilon|\nabla\boldsymbol{v}|^2+\frac{1}{\varepsilon}\boldsymbol{v}(1-\boldsymbol{v})\right)$$

• $u_{\delta}(v)$ solution to

$$\begin{cases} \operatorname{div}(\mathbb{C}_{\delta}(v)\widehat{\nabla}\boldsymbol{u}_{\delta}(v)) = 0 & \text{ in } \Omega, \\ (\mathbb{C}_{\delta}(v)\widehat{\nabla}\boldsymbol{u}_{\delta}(v))\nu = g & \text{ on } \Sigma_{N}, \\ \boldsymbol{u}_{\delta}(v) = 0 & \text{ on } \Sigma_{D}, \end{cases}$$

where

$$\mathbb{C}_{\delta}(v) = \mathbb{C}_0 + v(\delta - 1)\mathbb{C}_0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Analytical Results

• <u>Continuity</u>: For any $\delta > 0$, the map $\overline{F} : v \to u_{\delta}(v) \lfloor_{\Sigma_N}$ is continuous from $\overline{\mathcal{K}(\Omega)}$ to $L^2(\Sigma_N)$ in the L^1 topology,

$$\lim_{n\to+\infty}\int_{\Sigma_N}|u_{\delta}(v_n)-u_{\delta}(v)|^2\,d\sigma(x)=0.$$

<u>Existence of solutions</u>: For any δ, ε > 0, Problem min_{ν∈K(Ω)} J_{δ,ε}(ν) admits a solution ν = ν_{δ,ε} ∈ K(Ω).

Analytical Results (cont.)

Necessary opt. cond. (A.,Beretta,Cavaterra,Rocca,Verani (2022)) Any minimizer $v_{\delta,\varepsilon} \in \mathcal{K}(\Omega)$ satisfies

$$J_{\delta,arepsilon}'(oldsymbol{v}_arepsilon)[\omega-oldsymbol{v}_arepsilon]\geq 0, \qquad orall \omega\in\mathcal{K}(\Omega),$$

where,

$$egin{aligned} J_{\delta,arepsilon}'(m{v})[artheta] &= \int_\Omega artheta(\mathbb{C}_0 - \mathbb{C}_1)\widehat{
abla} u_\delta(m{v}): \widehat{
abla} p_\delta(m{v}) \ &+ rac{8lphaarepsilon}{\pi}\int_\Omega \widehat{
abla} m{v}: \widehat{
abla} artheta + rac{4lpha}{arepsilon\pi}\int_\Omega (1-2m{v})artheta. \end{aligned}$$

and $p_{\delta} \in H^1_{\Sigma_D}(\Omega)$ is the solution to the *adjoint problem*

$$\int_{\Omega} \mathbb{C}_{\delta}(\mathbf{v}) \widehat{\nabla} p_{\delta}(\mathbf{v}) : \widehat{\nabla} \psi = \int_{\Sigma_{N}} (u_{\delta}(\mathbf{v}) - u_{meas}) \psi, \qquad \forall \psi \in H^{1}_{\Sigma_{D}}(\Omega).$$

Proof

1. The map $F : \mathcal{K}(\Omega) \to H^1(\Omega), F(v) = u_{\delta}(v)$ is Fréchet differentiable in $\mathcal{K}(\Omega) \cap L^{\infty}(\Omega)$, i.e.

$$F'(v)[\vartheta] = u^{\sharp}(v), \text{ for } \vartheta \in L^{\infty}(\Omega) \cap (\mathcal{K} - v),$$

where $u^{\sharp}(v)$ is the solution in $H^{1}_{\Sigma_{\Omega}}(\Omega)$ of

$$\int_{\Omega} \mathbb{C}_{\delta}(\mathbf{v}) \widehat{\nabla} u^{\sharp}(\mathbf{v}) : \widehat{\nabla} \varphi = \int_{\Omega} \vartheta(\mathbb{C}_0 - \mathbb{C}_1) \widehat{\nabla} u_{\delta}(\mathbf{v}) : \widehat{\nabla} \varphi, \quad \forall \varphi \in H^1_{\Sigma_D}(\Omega);$$

(...using energy estimates for u_δ and the fact that $artheta\in L^\infty(\Omega)...$

2. By chain rule

$$J_{\delta,\varepsilon}'(v)[\vartheta] = \int_{\Sigma_N} (F(v) - u_{meas})F'(v)[\vartheta] + \widetilde{\alpha} \int_{\Omega} \left(2\varepsilon \nabla v : \nabla \vartheta + \frac{1}{\varepsilon} (1 - 2v)\vartheta \right)$$

and

$$\int_{\Sigma_N} (F(v) - u_{meas}) F'(v)[\vartheta] = \int_{\Sigma_N} (F(v) - u_{meas}) u^{\sharp}(v) =$$
$$= \int_{\Omega} (\mathbb{C}_0 - \mathbb{C}_1) \vartheta \widehat{\nabla} F(v) : \widehat{\nabla} p_{\delta}(v).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof

1. The map $F : \mathcal{K}(\Omega) \to H^1(\Omega), F(v) = u_{\delta}(v)$ is Fréchet differentiable in $\mathcal{K}(\Omega) \cap L^{\infty}(\Omega)$, i.e.

$$F'(v)[\vartheta] = u^{\sharp}(v), \text{ for } \vartheta \in L^{\infty}(\Omega) \cap (\mathcal{K} - v),$$

where $u^{\sharp}(v)$ is the solution in $H^{1}_{\Sigma_{D}}(\Omega)$ of

$$\int_{\Omega} \mathbb{C}_{\delta}(v) \widehat{\nabla} u^{\sharp}(v) : \widehat{\nabla} \varphi = \int_{\Omega} \vartheta(\mathbb{C}_0 - \mathbb{C}_1) \widehat{\nabla} u_{\delta}(v) : \widehat{\nabla} \varphi, \quad \forall \varphi \in H^1_{\Sigma_D}(\Omega);$$

(...using energy estimates for u_δ and the fact that $\vartheta \in L^\infty(\Omega)$...)

2. By chain rule

$$J_{\delta,\varepsilon}'(\mathbf{v})[\vartheta] = \int_{\Sigma_N} (F(\mathbf{v}) - u_{meas})F'(\mathbf{v})[\vartheta] + \widetilde{\alpha} \int_{\Omega} \left(2\varepsilon \nabla \mathbf{v} : \nabla \vartheta + \frac{1}{\varepsilon} (1 - 2\mathbf{v})\vartheta \right)$$

and

$$\int_{\Sigma_N} (F(v) - u_{meas})F'(v)[\vartheta] = \int_{\Sigma_N} (F(v) - u_{meas})u^{\sharp}(v) =$$
$$= \int_{\Omega} (\mathbb{C}_0 - \mathbb{C}_1)\vartheta\widehat{\nabla}F(v):\widehat{\nabla}p_{\delta}(v).$$

Proof

1. The map $F : \mathcal{K}(\Omega) \to H^1(\Omega), F(v) = u_{\delta}(v)$ is Fréchet differentiable in $\mathcal{K}(\Omega) \cap L^{\infty}(\Omega)$, i.e.

$$F'(v)[\vartheta] = u^{\sharp}(v), \text{ for } \vartheta \in L^{\infty}(\Omega) \cap (\mathcal{K} - v),$$

where $u^{\sharp}(v)$ is the solution in $H^{1}_{\Sigma_{D}}(\Omega)$ of

$$\int_{\Omega} \mathbb{C}_{\delta}(v) \widehat{\nabla} u^{\sharp}(v) : \widehat{\nabla} \varphi = \int_{\Omega} \vartheta(\mathbb{C}_0 - \mathbb{C}_1) \widehat{\nabla} u_{\delta}(v) : \widehat{\nabla} \varphi, \quad \forall \varphi \in H^1_{\Sigma_D}(\Omega);$$

(...using energy estimates for u_{δ} and the fact that $\vartheta \in L^{\infty}(\Omega)$...)

2. By chain rule

$$J_{\delta,\varepsilon}'(\mathbf{v})[\vartheta] = \int_{\Sigma_N} (F(\mathbf{v}) - u_{meas})F'(\mathbf{v})[\vartheta] + \widetilde{\alpha} \int_{\Omega} \left(2\varepsilon \nabla \mathbf{v} : \nabla \vartheta + \frac{1}{\varepsilon} (1 - 2\mathbf{v})\vartheta \right)$$

and

$$\begin{split} \int_{\Sigma_N} (F(v) - u_{meas}) F'(v)[\vartheta] &= \int_{\Sigma_N} (F(v) - u_{meas}) u^{\sharp}(v) = \\ &= \int_{\Omega} (\mathbb{C}_0 - \mathbb{C}_1) \vartheta \widehat{\nabla} F(v) : \widehat{\nabla} \rho_{\delta}(v). \end{split}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A Parabolic Obstacle Problem

Natural strategy: to find a phase-field critical point $v \in \mathcal{K}(\Omega)$ satisfying $J'_{\delta,\varepsilon}(v)[\omega - v] \ge 0$, $\forall \omega \in \mathcal{K}(\Omega)$ (\rightsquigarrow i.e. to find at least a local minimum of $J_{\delta,\varepsilon}$) we use the following Parabolic Obstacle Problem:

• find
$$v(\cdot, t) \in \mathcal{K}(\Omega)$$
, $t \ge 0$ s.t. $v(\cdot, 0) = v_0$ and

$$\int_{\Omega} \partial_t v(\omega - v) + J'_{\delta,\varepsilon}(v)[\omega - v] \ge 0, \quad \forall \omega \in \mathcal{K}, t \in (0 + \infty).$$
(3)

In fact,

- choosing $\omega = v(\cdot, t \Delta t)$ in (3);
- dividing by Δt ;
- sending $\Delta t \rightarrow 0$

$$\|v_t\|^2 + J'_{\delta,\varepsilon}(v)v_t \leq 0, \quad ext{that is} \quad \frac{d}{dt}J_{\delta,\varepsilon}(v(\cdot,t)) \leq 0$$

If $\lim_{t \to +\infty} v(\cdot, t) := v_{\infty}$ exists, we expect that v_{∞} is a solution of $J_{\delta,\varepsilon}'(v)[\omega - v] \ge 0.$

(1) マン・ション・

A Parabolic Obstacle Problem

Natural strategy: to find a phase-field critical point $v \in \mathcal{K}(\Omega)$ satisfying $J'_{\delta,\varepsilon}(v)[\omega - v] \ge 0$, $\forall \omega \in \mathcal{K}(\Omega)$ (\rightsquigarrow i.e. to find at least a local minimum of $J_{\delta,\varepsilon}$) we use the following Parabolic Obstacle Problem:

• find
$$v(\cdot, t) \in \mathcal{K}(\Omega)$$
, $t \ge 0$ s.t. $v(\cdot, 0) = v_0$ and

$$\int_{\Omega} \partial_t v(\omega - v) + J'_{\delta,\varepsilon}(v)[\omega - v] \ge 0, \quad \forall \omega \in \mathcal{K}, t \in (0 + \infty).$$
(3)

In fact,

- choosing $\omega = v(\cdot, t \Delta t)$ in (3);
- ▶ dividing by ∆t;
- sending $\Delta t \rightarrow 0$

$$\|v_t\|^2 + J'_{\delta,\varepsilon}(v)v_t \leq 0, \quad ext{that is} \quad \frac{d}{dt}J_{\delta,\varepsilon}(v(\cdot,t)) \leq 0$$

If $\lim_{t \to +\infty} v(\cdot, t) := v_{\infty}$ exists, we expect that v_{∞} is a solution of $J_{\delta,\varepsilon}'(v)[\omega - v] \ge 0.$

A Parabolic Obstacle Problem

Natural strategy: to find a phase-field critical point $v \in \mathcal{K}(\Omega)$ satisfying $J'_{\delta,\varepsilon}(v)[\omega - v] \ge 0$, $\forall \omega \in \mathcal{K}(\Omega)$ (\rightsquigarrow i.e. to find at least a local minimum of $J_{\delta,\varepsilon}$) we use the following Parabolic Obstacle Problem:

• find
$$v(\cdot, t) \in \mathcal{K}(\Omega)$$
, $t \ge 0$ s.t. $v(\cdot, 0) = v_0$ and

$$\int_{\Omega} \partial_t v(\omega - v) + J'_{\delta,\varepsilon}(v)[\omega - v] \ge 0, \quad \forall \omega \in \mathcal{K}, t \in (0 + \infty).$$
(3)

In fact,

- choosing $\omega = v(\cdot, t \Delta t)$ in (3);
- ▶ dividing by ∆t;
- sending $\Delta t \rightarrow 0$

$$\|v_t\|^2 + J_{\delta,arepsilon}'(v)v_t \leq 0, \quad ext{that is} \quad rac{d}{dt} J_{\delta,arepsilon}(v(\cdot,t)) \leq 0$$

If $\lim_{t\to+\infty} v(\cdot,t) := v_{\infty}$ exists, we expect that v_{∞} is a solution of $J'_{\delta,\varepsilon}(v)[\omega-v] \ge 0.$

Discretization

Let (*T_h*)_{0<h≤h₀} be a regular triangulation of Ω and define
 V_h := {*v_h* ∈ *C*(Ω) : *v_h*|_{*T*} ∈ *P*₁(*T*), ∀*T* ∈ *T_h*}, where *P*₁(*T*) is the set of polynomials of first degree on *T*, and

$$\mathcal{K}_h := \mathcal{V}_h \cap \mathcal{K}, \quad \mathcal{V}_{h, \Sigma_D} := \mathcal{V}_h \cap H^1_{\Sigma_D}(\Omega).$$

• We denote by $\{v_h^n\}_{n\in\mathbb{N}} \subset \mathcal{K}_h$ the sequence of approximations $v_h^n \simeq v(\cdot, t^n)$ obtained as follows: given $v_h^0 = v_0 \in \mathcal{K}_h$,

$$\begin{aligned} \mathbf{v}_{h}^{n+1} &\in \mathcal{K}_{h}: \ \frac{1}{\tau_{n}} \int_{\Omega} (\mathbf{v}_{h}^{n+1} - \mathbf{v}_{h}^{n}) (\omega_{h} - \mathbf{v}_{h}^{n+1}) \\ &+ \int_{\Omega} (\mathbb{C}_{0} - \mathbb{C}_{1}) (\omega_{h} - \mathbf{v}_{h}^{n+1}) \widehat{\nabla} u_{h}^{n}: \widehat{\nabla} p_{h}^{n} + 2 \widetilde{\alpha} \varepsilon \int_{\Omega} \nabla \mathbf{v}_{h}^{n+1} \cdot \nabla (\omega_{h} - \mathbf{v}_{h}^{n+1}) \\ &+ \frac{\widetilde{\alpha}}{\varepsilon} \int_{\Omega} (1 - 2 \mathbf{v}_{h}^{n}) (\omega_{h} - \mathbf{v}_{h}^{n+1}) \geq 0, \quad \forall \omega_{h} \in \mathcal{K}_{h}, n \geq 0, \end{aligned}$$
(4)

- τ_n is the time step, $\widetilde{\alpha} = 4/\pi$;
- u_h^n , $p_h^n \in \mathcal{V}_{h,\Sigma_D}$ are the discrete solutions of the forward problem and adjoint problem for $v_h = v_h^n$.

Algorithm & Numerical Results

Algorithm 1 Discrete Parabolic Obstacle Problem

Set n = 0 and $v_h^0 = v_0$, the initial guess for the inclusion while $||v_h^n - v_h^{n-1}|| > \text{tol } \mathbf{do}$ find $u_h(v_h^n)$ solution of the forward problem with $v = v_h^n$ find $p_h(v_h^n)$ solution of the adjoint problem with $v = v_h^n$ find v^{n+1} solving (4) update n = n + 1; end while

A (1) A (

Meshes and Refinement

(b) Mesh \mathcal{T}_h : inverse problem.

Andrea Aspri (Math Dept. "F. Enriques")

◆ □ ▷ 《 @ ▷ 《 큰 ▷ 《 큰 ▷ 》 E ♡ ○
Phase-field approaches for reconstruction of elastic cavities

Meshes and Refinement

(a) Boundary condition in numerical experiments: Neumann boundary conditions are assigned on the red part. Homogeneous Dirichlet conditions are assigned on the blue part.

Andrea Aspri (Math Dept. "F. Enriques")

イロト イ 回 ト イ き ト イ き ト き う Phase-field approaches for reconstruction of elastic cavitie

Figure: Example 1: noise 2%. Example 2: noise 5%. Example 3: no noise.

Outline

Inverse problem: detection of cavities

- Motivation
- Analytical known results
- A variational method: a phase-field approach

Numerical aspects

- A parabolic obstacle problem
- Numerical results

3 A Kohn-Vogelius type functional

Conclusions & open problems

Before concluding...an alternative

The use of the misfit functional is not the only possible one. An energy-gap functional can be used. Consider the two boundary value problems

$$\begin{cases} \operatorname{div}(\mathbb{C}_0\widehat{\nabla} u_N) = 0 & \operatorname{in} \Omega \setminus C \\ (\mathbb{C}_0\widehat{\nabla} u_N)n = 0 & \operatorname{on} \partial C \\ (\mathbb{C}_0\widehat{\nabla} u_N)\nu = g & \operatorname{on} \Sigma_N \\ u_N = 0 & \operatorname{on} \Sigma_D, \end{cases} \quad \text{and} \quad \begin{cases} \operatorname{div}(\mathbb{C}_0\widehat{\nabla} u_D) = 0 & \operatorname{in} \Omega \setminus C \\ (\mathbb{C}_0\widehat{\nabla} u_D)n = 0 & \operatorname{on} \partial C \\ u_D = u_{meas} & \operatorname{on} \Sigma_N \\ u_D = 0 & \operatorname{on} \Sigma_D. \end{cases}$$

Kohn-Vogelius type functional

$$\min_{C \in \mathcal{C}} J_{KV}(C) := \underbrace{\frac{1}{2} \int_{\Omega \setminus C} \mathbb{C}_0 \widehat{\nabla}(u_N(C) - u_D(C)) : \widehat{\nabla}(u_N(C) - u_D(C)) \, dx + \alpha \operatorname{Per}(C)}_{\mathcal{O} \setminus \mathcal{O}}$$

Kohn-Vogelius func.

...one can repeat an analogous analysis as done in the previous slides(A. (2022))

《 □ ▷ 《 @ ▷ 《 클 ▷ 《 클 ▷ ③ 툴 · ♡) Phase-field approaches for reconstruction of elastic cavities

Before concluding...an alternative

The use of the misfit functional is not the only possible one. An energy-gap functional can be used. Consider the two boundary value problems

$$\begin{cases} \operatorname{div}(\mathbb{C}_0\widehat{\nabla} u_N) = 0 & \text{in } \Omega \setminus C \\ (\mathbb{C}_0\widehat{\nabla} u_N)n = 0 & \text{on } \partial C \\ (\mathbb{C}_0\widehat{\nabla} u_N)\nu = g & \text{on } \Sigma_N \\ u_N = 0 & \text{on } \Sigma_D, \end{cases} \quad \text{and} \quad \begin{cases} \operatorname{div}(\mathbb{C}_0\widehat{\nabla} u_D) = 0 & \text{in } \Omega \setminus C \\ (\mathbb{C}_0\widehat{\nabla} u_D)n = 0 & \text{on } \partial C \\ u_D = u_{meas} & \text{on } \Sigma_N \\ u_D = 0 & \text{on } \Sigma_D. \end{cases}$$

Kohn-Vogelius type functional

$$\min_{C \in \mathcal{C}} J_{KV}(C) := \underbrace{\frac{1}{2} \int_{\Omega \setminus C} \mathbb{C}_0 \widehat{\nabla}(u_N(C) - u_D(C)) : \widehat{\nabla}(u_N(C) - u_D(C)) \, dx}_{K \to \mathbb{C}} + \alpha \operatorname{Per}(C)$$

Kohn-Vogelius func.

... one can repeat an analogous analysis as done in the previous slides(A. (2022))

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Before concluding...an alternative

The use of the misfit functional is not the only possible one. An energy-gap functional can be used. Consider the two boundary value problems

$$\begin{cases} \operatorname{div}(\mathbb{C}_0\widehat{\nabla} u_N) = 0 & \text{in } \Omega \setminus C \\ (\mathbb{C}_0\widehat{\nabla} u_N)n = 0 & \text{on } \partial C \\ (\mathbb{C}_0\widehat{\nabla} u_N)\nu = g & \text{on } \Sigma_N \\ u_N = 0 & \text{on } \Sigma_D, \end{cases} \quad \text{and} \quad \begin{cases} \operatorname{div}(\mathbb{C}_0\widehat{\nabla} u_D) = 0 & \text{in } \Omega \setminus C \\ (\mathbb{C}_0\widehat{\nabla} u_D)n = 0 & \text{on } \partial C \\ u_D = u_{meas} & \text{on } \Sigma_N \\ u_D = 0 & \text{on } \Sigma_D. \end{cases}$$

Kohn-Vogelius type functional

Kohn-Vogelius func.

... one can repeat an analogous analysis as done in the previous slides(A. (2022))

Relaxation of Kohn-Vogelius func.

For any $\delta, \varepsilon > 0$, find

$$\begin{split} \min_{v \in \mathcal{K}(\Omega)} J_{\delta,\varepsilon}(v) &:= J_{KV}^{\delta}(v) + \widetilde{\alpha} \int_{\Omega} \left(\varepsilon |\nabla v|^2 + \frac{1}{\varepsilon} v(1-v) \right) dx, \\ \text{where } J_{KV}^{\delta}(v) &= \overline{J}_{ND} + J_{N}^{\delta}(v) + J_{D}^{\delta}(v) \text{ and} \\ J_{N}^{\delta}(v) &= \frac{1}{2} \int_{\Omega} \mathbb{C}_{\delta}(v) \widehat{\nabla} u_{N}^{\delta}(v) : \widehat{\nabla} u_{N}^{\delta}(v), \quad J_{D}^{\delta}(v) = \frac{1}{2} \int_{\Omega} \mathbb{C}_{\delta}(v) \widehat{\nabla} u_{D}^{\delta}(v) : \widehat{\nabla} u_{D}^{\delta}(v), \\ \overline{J}_{ND} &= - \int_{\Sigma_{N}} g \cdot u_{meas}. \end{split}$$

Functions u_N^δ and u_D^δ are solutions to the following problems

$$\begin{cases} \operatorname{div}(\mathbb{C}_{\delta}(v)\widehat{\nabla}u_{N}^{\delta}(v)) &= 0 & \text{ in } \Omega, \\ (\mathbb{C}_{\delta}(v)\widehat{\nabla}u_{N}^{\delta}(v))\nu &= g & \text{ on } \Sigma_{N}, \\ u_{N}^{\delta}(v) &= 0 & \text{ on } \Sigma_{D}, \end{cases} \begin{cases} \operatorname{div}(\mathbb{C}_{\delta}(v)\widehat{\nabla}u_{D}^{\delta}(v)) = 0 & \text{ in } \Omega, \\ u_{D}^{\delta}(v) = u_{meas} & \text{ on } \Sigma_{N}, \\ u_{D}^{\delta}(v) = 0 & \text{ on } \Sigma_{D}. \end{cases}$$

Necessary optimality condition

Any minimizer $v_{arepsilon}$ of $J_{\delta,arepsilon}$ satisfies the variational inequality

$$J_{\delta,\varepsilon}'(\mathbf{v}_{\varepsilon})[\omega-\mathbf{v}_{\varepsilon}]\geq 0, \qquad orall \omega\in\mathcal{K},$$

where

$$\begin{aligned} J_{\delta,\varepsilon}'(\mathbf{v})[\vartheta] = &\frac{1}{2} \int_{\Omega} \vartheta(\mathbb{C}_1 - \mathbb{C}_0) \widehat{\nabla} u_D^{\delta}(\mathbf{v}) : \widehat{\nabla} u_D^{\delta}(\mathbf{v}) \, d\mathbf{x} \\ &- \frac{1}{2} \int_{\Omega} \vartheta(\mathbb{C}_1 - \mathbb{C}_0) \widehat{\nabla} u_N^{\delta}(\mathbf{v}) : \widehat{\nabla} u_N^{\delta}(\mathbf{v}) \, d\mathbf{x} \\ &+ 2 \widetilde{\alpha} \varepsilon \int_{\Omega} \widehat{\nabla} \mathbf{v} : \widehat{\nabla} \vartheta + \frac{\widetilde{\alpha}}{\varepsilon} \int_{\Omega} (1 - 2\mathbf{v}) \vartheta. \end{aligned}$$

Phase-field approaches for reconstruction of elastic cavitie

A B M A B M

Numerical results - Kohn-Vogelius func.

Figure: Example 1: noise 5%. Example 2: noise 5%. Example 3: noise 2%.

Outline

Inverse problem: detection of cavities

- Motivation
- Analytical known results
- A variational method: a phase-field approach

Numerical aspects

- A parabolic obstacle problem
- Numerical results

A Kohn-Vogelius type functional

Conclusions & open problems

Conclusions

- We have introduced a phase-field approach in elastic inverse problems;
- The method is more versatile than others since no a priori information is needed (initial guess could also be v₀ = 0);

Open problems:

• Prove Γ -convergence of $J_{\delta,\varepsilon}$ to J as $\delta, \varepsilon \to 0$, i.e.

$$J_{\delta,\varepsilon}(v) := \frac{1}{2} \int_{\Sigma_N} |u_{\delta}(v) - u_{meas}|^2 + \frac{4\alpha}{\pi} \int_{\Omega} \left(\varepsilon |\nabla v|^2 + \frac{1}{\varepsilon} v(1-v) \right)$$

?? Γ – converges to ?? (as $\delta, \varepsilon \rightarrow 0$)

$$J(\overline{\nu}) = \frac{1}{2} \int_{\Sigma_N} |u(\overline{\nu}) - u_{meas}|^2 \, d\sigma(x) + \alpha \mathrm{TV}(\overline{\nu})$$

- Extend analytical and numerical results to other differential operators (e.g. evolution PDE systems, non-linear forward problems...);
- Improve numerical results in the case of non-convex cavities, working on the regularization term.

Andrea Aspri (Math Dept. "F. Enriques")

Conclusions

- We have introduced a phase-field approach in elastic inverse problems;
- The method is more versatile than others since no a priori information is needed (initial guess could also be v₀ = 0);

Open problems:

• Prove Γ -convergence of $J_{\delta,\varepsilon}$ to J as $\delta, \varepsilon \to 0$, i.e.

$$J_{\delta,arepsilon}(\mathbf{v}):=rac{1}{2}\int_{\mathbf{\Sigma}_N}|u_\delta(\mathbf{v})-u_{meas}|^2+rac{4lpha}{\pi}\int_\Omega\left(arepsilon|
abla\mathbf{v}|^2+rac{1}{arepsilon}\mathbf{v}(1-\mathbf{v})
ight)$$

?? Γ – converges to ?? (as $\delta, \varepsilon \rightarrow 0$)

$$J(\overline{\nu}) = \frac{1}{2} \int_{\Sigma_N} |u(\overline{\nu}) - u_{meas}|^2 \, d\sigma(x) + \alpha \mathrm{TV}(\overline{\nu})$$

- Extend analytical and numerical results to other differential operators (e.g. evolution PDE systems, non-linear forward problems...);
- Improve numerical results in the case of non-convex cavities, working on the regularization term.

Andrea Aspri (Math Dept. "F. Enriques")

Figure: Some of the Great Moments in Banff

Thank you for your attention

Andrea Aspri (Math Dept. "F. Enriques")

< A 1

A B < A B </p>

Figure: Some of the Great Moments in Banff

Thank you for your attention

Andrea Aspri (Math Dept. "F. Enriques")