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Motivation

Detection of defects (cavities, inclusions, cracks) inside an elastic body from
boudary measurements.
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Motivation
Detection of defects (cavities, inclusions, cracks) inside an elastic body from
boudary measurements.

Possible applications: medical imaging, non-destructive testing of materials...

Shao et al., Advancements of ultrasound elastography in the cervix, Ultrasound in Med. & Biol., 2021
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Detection of Cavities
Ω is a bounded Lipschitz domain, ∂Ω := ΣD ∪ ΣN ;

div(C0∇̂u) = 0 in Ω \ C ,
(C0∇̂u)n = 0 on ∂C ,
(C0∇̂u)ν = g on ΣN ,

u = 0 on ΣD ,

(1)

I C0 is the fourth-order isotropic elasticity tensor, uniformly bounded,
and strongly convex;

I C b Ω is a bounded Lipschitz domain (C= cavity);

I ∇̂u = 1
2 (∇u + (∇u)T );

I g ∈ L2(ΣN);

Forward Problem
Given (C ,C0, g)  find u ∈ H1

ΣD
(Ω \ C).

Inverse Problem
Given C0, g , and um on ΣN  find C s.t. u(C)bΣN = um (u(C) sol. to (1)).
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Inverse pb: known results
Uniqueness: a single pair of Cauchy data {g , um} on ΣN is sufficient to
identify C , when

I C is a Lipschitz domain;
I C0 satisfies a C0,1 regularity condition;

(Morassi-Rosset, Ang-Trong-Yamamoto, Lin-Wang-Nakamura,...)

Stability: very weak stability estimates (of log-log type) hold

dH(C1,C2) ≤ C(log | log(‖u1m − u2m‖L2(ΣN ))|)−η,

with C > 0 and 0 < η ≤ 1

when
I C1, C2 are C1,α-domains;
I C0 satisfies a C1,1 regularity condition;

(Morassi-Rosset)

Remark: in analogy to the case of a scalar elliptic equation, the stability estimate
is quite optimal.
(Alessandrini, Mandache, Rondi, Di Cristo-Rondi)
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Inverse pb (cont.)

We set our analysis in the following framework

Unknown: C ∈ C:={C ⊂ Ω : compact, simply connected, with ∂C
Lipschitz, and dist(C , ∂Ω) ≥ d0 > 0};

Main issues
– Nonlinearity

– Ill-posedness
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Inverse pb (cont.)
We set our analysis in the following framework

Unknown: C ∈ C:={C ⊂ Ω : compact, simply connected, with ∂C
Lipschitz, and dist(C , ∂Ω) ≥ d0 > 0};

Main issues
– Nonlinearity

– Ill-posedness ( noise in the measurements)

Available measured data: umeas ∈ L2(ΣN) s.t.

‖umeas − um‖L2(ΣN ) ≤ η, η > 0 is the noise level

Reconstruction algorithms: level set methods, topological derivative, shape
derivative, monotonicity method, method of fundamental solutions,...
(Ameur-Burger-Hackl, Ammari-Kang-Nakamura-Tanuma, Belhachmi-Meftahi, Ben
Abda-Jaïem-Khalfallah-Zine, Bonnet-Constantinescu, Carpio-Rapún,
Eberle-Harrach,Ikehata-Itou, Kaltenbacher, Kang-Kim-Lee, Karageorghis-Lesnic-Ma,
Martínez–Castro-Faris-Gallego,...)
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Variational Approach

Approach the inverse problem as a
minimization problem

min
C∈C

J(C) = 1
2

∫
ΣN

|u(C)− umeas |2 dσ(x)︸ ︷︷ ︸
Misfit functional

I u(C) solution to the boundary value
problem (1);

Scherzer et al., Variational Methods in Imaging, Applied Mathematical Sciences 167, Springer, 2009.
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Variational Approach (cont.)

To mitigate the ill-posedness of the inverse problem a regularization term is
needed.

Add the perimeter of C as a regularization term in the functional
(Rondi, Deckelnick-Elliot-Styles, Beretta-Ratti-Verani,A.-Beretta-Cavaterra-Rocca-Verani)

min
C∈C

Jreg (C) = 1
2

∫
ΣN

|u(C)− umeas |2 dσ(x)︸ ︷︷ ︸
Misfit func.

+ αPer(C)︸ ︷︷ ︸
Regularization func.

I u(C) is the solution to the boundary value problem (1);
I α > 0 is a regularization parameter;
I Per(C) is the perimeter of C .
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Analytical Results

min
C∈C

Jreg (C) = 1
2

∫
ΣN

|u(C)− umeas |2 dσ(x) + αPer(C)

Continuity properties of u(C) with respect to perturbations of C ;

Theorem (A.,Beretta,Cavaterra,Rocca,Verani (2022))
Let Cn ∈ C be a sequence of sets converging to C in the Hausdorff metric, and let
u(Cn) =: un ∈ H1

ΣD
(Ω \ Cn), u(C) =: u ∈ H1

ΣD
(Ω \ C) be solutions of (1) in

Ω \ Cn, Ω \ C , respectively. Then

lim
n→+∞

∫
ΣN

|un − u|2 dσ(x) = 0.
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Analytical Results (cont.)
Consequences

Existence of minima for Jreg(C);

Stability with respect to noisy data

if un → umeas then dH(Cn, C̃)→ 0, n→ +∞

where C̃ is a solution of minC∈C Jreg(C);

Convergence of minimizers as α→ 0 to the solution of the inverse
problem;

How to proceed numerically?

...use suitable “relaxations” of the functional Jreg to overcome issues
arising from non-convexity and non-differentiability of Jreg ...
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Towards Numerical Algorithm

First step: Problem

min
C∈C

Jreg (C) = 1
2

∫
ΣN

|u(C)− umeas |2 dσ(x) + αPer(C)

is equivalent to

min
v∈X0,1

Jreg (v) = 1
2

∫
ΣN

|u(v)− umeas |2 dσ(x) + αTV (v)

TV (v) = sup
{∫

Ω vdiv(ϕ); ϕ ∈ C1
0 (Ω), ‖ϕ‖L∞(Ω) ≤ 1

}
;

X0,1(Ω) := {v ∈ BV (Ω) : v = χC a.e. in Ω, C ∈ C};

I BV (Ω) = {v ∈ L1(Ω) : TV (v) <∞}.
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Towards Numerical Algorithm (cont.)
Second step (filling the cavity): let δ > 0 be sufficiently small; then, consider

min
v∈X0,1

J reg (v) = 1
2

∫
ΣN

|uδ(v)− umeas |2 dσ(x) + αTV (v)

where 
div(Cδ(v)∇̂uδ(v)) = 0 in Ω,

(Cδ(v)∇̂uδ(v))ν = g on ΣN ,

uδ(v) = 0 on ΣD ,

(2)

Cδ(v) = C0+(C1−C0)v , with C1 = δC0.
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Approximation of Characteristic Functions

K(Ω) = {v ∈ H1(Ω) : 0 ≤ v(x) ≤ 1 a.e. in Ω, v(x) = 0 a.e. in Ω1},

I Ω1 = {x ∈ Ω : dist(x , ∂Ω) ≤ d0}.

v is the phase-field variable.

Andrea Aspri (Math Dept. “F. Enriques”) Phase-field approaches for reconstruction of elastic cavities



Approximation of Characteristic Functions

K(Ω) = {v ∈ H1(Ω) : 0 ≤ v(x) ≤ 1 a.e. in Ω, v(x) = 0 a.e. in Ω1},

I Ω1 = {x ∈ Ω : dist(x , ∂Ω) ≤ d0}.

v is the phase-field variable.

Andrea Aspri (Math Dept. “F. Enriques”) Phase-field approaches for reconstruction of elastic cavities



...approximation of the Perimeter Functional
Perimeter functional: Let P : L1(Ω)→ [0,+∞] s.t.

P(v) =
{
TV (v) if v ∈ X0,1(Ω)
+∞ otherwise

Modica-Mortola functional: For any ε > 0, let Mε : L1(Ω)→ [0,+∞] s.t.

Mε(v) =


4
π

∫
Ω

(
ε|∇v |2 + 1

εv(1− v)
)

if v ∈ K(Ω)
+∞ otherwise

Modica-Mortola (1977)
Mε Γ-converges to P as ε→ 0.

Issue: by Modica-Mortola, as ε→ 0, the limit v is the characteristic
function of a finite perimeter set only.
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Phase-field Approach
For ε, δ > 0, find

min
v∈K(Ω)

Jδ,ε(v) := 1
2

∫
ΣN

|uδ(v)− umeas |2 + 4α
π

∫
Ω

(
ε|∇v |2 + 1

ε
v(1− v)

)

K(Ω) = {v ∈ H1(Ω) : 0 ≤ v(x) ≤ 1 a.e. in Ω, v(x) = 0 a.e. in Ω1};
I Ω1 = {x ∈ Ω : dist(x , ∂Ω) ≤ d0};

uδ(v) solution to 
div(Cδ(v)∇̂uδ(v)) = 0 in Ω,
(Cδ(v)∇̂uδ(v))ν = g on ΣN ,

uδ(v) = 0 on ΣD ,

where

Cδ(v) = C0 + v(δ − 1)C0.
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Analytical Results

Continuity : For any δ > 0, the map F : v → uδ(v)bΣN is continuous from
K(Ω) to L2(ΣN) in the L1 topology,

lim
n→+∞

∫
ΣN

|uδ(vn)− uδ(v)|2 dσ(x) = 0.

Existence of solutions: For any δ, ε > 0, Problem minv∈K(Ω) Jδ,ε(v) admits a
solution v = vδ,ε ∈ K(Ω).
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Analytical Results (cont.)

Necessary opt. cond. (A.,Beretta,Cavaterra,Rocca,Verani (2022))
Any minimizer vδ,ε ∈ K(Ω) satisfies

J ′δ,ε(vε)[ω − vε] ≥ 0, ∀ω ∈ K(Ω),

where,

J ′δ,ε(v)[ϑ] =
∫

Ω
ϑ(C0 − C1)∇̂uδ(v) : ∇̂pδ(v)

+ 8αε
π

∫
Ω
∇̂v : ∇̂ϑ+ 4α

επ

∫
Ω

(1− 2v)ϑ.

and pδ ∈ H1
ΣD

(Ω) is the solution to the adjoint problem∫
Ω
Cδ(v)∇̂pδ(v) : ∇̂ψ =

∫
ΣN

(uδ(v)− umeas)ψ, ∀ψ ∈ H1
ΣD

(Ω).
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Proof
1. The map F : K(Ω)→ H1(Ω), F (v) = uδ(v) is Fréchet differentiable in
K(Ω) ∩ L∞(Ω), i.e.

F ′(v)[ϑ] = u](v), for ϑ ∈ L∞(Ω) ∩ (K − v),
where u](v) is the solution in H1

ΣD
(Ω) of∫

Ω
Cδ(v)∇̂u](v) : ∇̂ϕ =

∫
Ω
ϑ(C0 − C1)∇̂uδ(v) : ∇̂ϕ, ∀ϕ ∈ H1

ΣD
(Ω);

(...using energy estimates for uδ and the fact that ϑ ∈ L∞(Ω)...)
2. By chain rule

J ′δ,ε(v)[ϑ] =
∫

ΣN

(F (v)− umeas)F ′(v)[ϑ] + α̃

∫
Ω

(
2ε∇v : ∇ϑ+ 1

ε
(1− 2v)ϑ

)
and ∫

ΣN

(F (v)− umeas)F ′(v)[ϑ] =
∫

ΣN

(F (v)− umeas)u](v) =

=
∫

Ω
(C0 − C1)ϑ∇̂F (v) : ∇̂pδ(v).

�
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∫

ΣN

(F (v)− umeas)F ′(v)[ϑ] + α̃

∫
Ω

(
2ε∇v : ∇ϑ+ 1

ε
(1− 2v)ϑ

)
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ΣN

(F (v)− umeas)F ′(v)[ϑ] =
∫

ΣN

(F (v)− umeas)u](v) =

=
∫

Ω
(C0 − C1)ϑ∇̂F (v) : ∇̂pδ(v).

�
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A Parabolic Obstacle Problem
Natural strategy: to find a phase-field critical point v ∈ K(Ω) satisfying
J ′δ,ε(v)[ω − v ] ≥ 0, ∀ω ∈ K(Ω) ( i.e. to find at least a local minimum of Jδ,ε)
we use the following Parabolic Obstacle Problem:

find v(·, t) ∈ K(Ω), t ≥ 0 s.t. v(·, 0) = v0 and∫
Ω
∂tv(ω − v) + J ′δ,ε(v)[ω − v ] ≥ 0, ∀ω ∈ K, t ∈ (0 +∞). (3)

In fact,
I choosing ω = v(·, t −∆t) in (3);
I dividing by ∆t;
I sending ∆t → 0

‖vt‖2 + J ′δ,ε(v)vt ≤ 0, that is d
dt Jδ,ε(v(·, t)) ≤ 0

If lim
t→+∞

v(·, t) := v∞ exists, we expect that v∞ is a solution of
J ′δ,ε(v)[ω − v ] ≥ 0.
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Discretization
Let (Th)0<h≤h0 be a regular triangulation of Ω and define

Vh := {vh ∈ C(Ω) : vh|T ∈ P1(T ), ∀ T ∈ Th},
where P1(T ) is the set of polynomials of first degree on T , and

Kh := Vh ∩ K, Vh,ΣD := Vh ∩ H1
ΣD

(Ω).

We denote by {vnh }n∈N ⊂ Kh the sequence of approximations vnh ' v(·, tn)
obtained as follows: given v0h = v0 ∈ Kh,

vn+1
h ∈ Kh : 1

τn

∫
Ω

(vn+1
h − vnh )(ωh − vn+1

h )

+
∫

Ω
(C0 − C1)(ωh − vn+1

h )∇̂unh : ∇̂pnh + 2α̃ε
∫

Ω
∇vn+1

h · ∇(ωh − vn+1
h )

+ α̃

ε

∫
Ω

(1− 2vnh )(ωh − vn+1
h ) ≥ 0, ∀ωh ∈ Kh, n ≥ 0, (4)

I τn is the time step, α̃ = 4/π;
I unh , pnh ∈ Vh,ΣD are the discrete solutions of the forward problem and

adjoint problem for vh = vnh .
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Algorithm & Numerical Results

Algorithm 1 Discrete Parabolic Obstacle Problem

Set n = 0 and v0h = v0, the initial guess for the inclusion
while ‖vnh − vn−1h ‖ > tol do

find uh(vnh ) solution of the forward problem with v = vnh
find ph(vnh ) solution of the adjoint problem with v = vnh
find vn+1 solving (4)
update n = n + 1;

end while
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Meshes and Refinement
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Some numerical results (initial guess v0 ≡ 0)

Figure: Example 1: noise 2%. Example 2: noise 5%. Example 3: no noise.
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Before concluding...an alternative
The use of the misfit functional is not the only possible one.
An energy-gap functional can be used.
Consider the two boundary value problems

div(C0∇̂uN) = 0 in Ω \ C
(C0∇̂uN)n = 0 on ∂C
(C0∇̂uN)ν = g on ΣN

uN = 0 on ΣD ,

and


div(C0∇̂uD) = 0 in Ω \ C
(C0∇̂uD)n = 0 on ∂C
uD = umeas on ΣN

uD = 0 on ΣD .

Kohn-Vogelius type functional

min
C∈C

JKV (C) := 1
2

∫
Ω\C

C0∇̂(uN(C)− uD(C)) : ∇̂(uN(C)− uD(C)) dx︸ ︷︷ ︸
Kohn-Vogelius func.

+αPer(C)

...one can repeat an analogous analysis as done in the previous slides(A. (2022))
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Relaxation of Kohn-Vogelius func.
For any δ, ε > 0, find

min
v∈K(Ω)

Jδ,ε(v) := JδKV (v) + α̃

∫
Ω

(
ε|∇v |2 + 1

ε
v(1− v)

)
dx ,

where JδKV (v) = JND + JδN(v) + JδD(v) and

JδN(v) = 1
2

∫
Ω
Cδ(v)∇̂uδN(v) : ∇̂uδN(v), JδD(v) = 1

2

∫
Ω
Cδ(v)∇̂uδD(v) : ∇̂uδD(v),

JND = −
∫

ΣN

g · umeas .

Functions uδN and uδD are solutions to the following problems
div(Cδ(v)∇̂uδN(v)) = 0 in Ω,
(Cδ(v)∇̂uδN(v))ν = g on ΣN ,

uδN(v) = 0 on ΣD ,


div(Cδ(v)∇̂uδD(v)) = 0 in Ω,
uδD(v) = umeas on ΣN ,

uδD(v) = 0 on ΣD .
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Necessary optimality condition

Any minimizer vε of Jδ,ε satisfies the variational inequality

J ′δ,ε(vε)[ω − vε] ≥ 0, ∀ω ∈ K,

where
J ′δ,ε(v)[ϑ] =1

2

∫
Ω
ϑ(C1 − C0)∇̂uδD(v) : ∇̂uδD(v) dx

− 1
2

∫
Ω
ϑ(C1 − C0)∇̂uδN(v) : ∇̂uδN(v) dx

+ 2α̃ε
∫

Ω
∇̂v : ∇̂ϑ+ α̃

ε

∫
Ω

(1− 2v)ϑ.
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Numerical results - Kohn-Vogelius func.

Some numerical results (initial guess v0 ≡ 0)

Figure: Example 1: noise 5%. Example 2: noise 5%. Example 3: noise 2%.
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Conclusions
We have introduced a phase-field approach in elastic inverse problems;
The method is more versatile than others since no a priori information is
needed (initial guess could also be v0 = 0);

Open problems:
Prove Γ-convergence of Jδ,ε to J as δ, ε→ 0, i.e.

Jδ,ε(v) : = 1
2

∫
ΣN

|uδ(v)− umeas |2 + 4α
π

∫
Ω

(
ε|∇v |2 + 1

ε
v(1− v)

)

?? Γ− converges to ?? (as δ, ε→ 0)

J(v) = 1
2

∫
ΣN

|u(v)− umeas |2 dσ(x) + αTV(v)

Extend analytical and numerical results to other differential operators (e.g.
evolution PDE systems, non-linear forward problems...);
Improve numerical results in the case of non-convex cavities, working on the
regularization term.
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Figure: Some of the Great Moments in Banff

Thank you for your attention
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