The Weyl-BMS group and the asymptotic dynamics

Roberto Oliveri
LUTH, Observatoire de Paris - Meudon

At the Interface of Mathematical Relativity and Astrophysics
27th April 2022

Based on arXiv:2104.05793/2104.12881 with Laurent Freidel, Daniele Pranzetti and Simone Speziale

A quick overview: some highlights in the last 60 years!

[Ashtekar, 1409.1800],
[Strominger \& Zhiboedov, 1411.5745]

1962 the BMS group $=$ Lorentz \times supertranslations:
asymptotic symmetry group for (asymptotically) flat spacetimes.
1965 Weinberg's graviton soft theorems:
relations among scattering amplitudes in the infrared regime.
1974 Gravitational memory/hereditary effects:
permanent shift in the relative position of two inertial detectors after GW passed.
Strominger's triangle arises new theoretical questions \rightarrow new gravitational effects.
E.g., the larger the symmetry group \rightarrow the more soft theorems/memory effects.

Main question today: What is the largest asymptotic symmetry group in gravity?
It serves as an organising principle.

Outline

The Weyl-BMS group
The Bondi-Sachs gauge
The boundary conditions
The asymptotic symmetry group: generators and algebra

The Weyl-BMS charge algebra and asymptotic Einstein's equations
Basics
Charge bracket
Obtaining the asymptotic Einstein's equations
Phase space renormalization

Rediscovering the Weyl-BMS group: pushing extended corner symmetry to scri

Conclusions and future directions

The Weyl-BMS group

The Bondi-Sachs gauge

[Madler\&Winicour, 1609.01731]
Bondi coordinates: $x^{\mu}=\left(u, r, x^{A}\right)$,
Bondi gauge: $g_{r r}=0, g_{r A}=0, \partial_{r} \operatorname{det}\left(g_{A B} / r^{2}\right)=0$.
Bondi-Sachs metric:

$$
d s^{2}=-2 e^{2 \beta} d u(F d u+d r)+r^{2} q_{A B}\left(d x^{A}-U^{A} d u\right)\left(d x^{B}-U^{B} d u\right)
$$

where β, F, U^{A}, and $q_{A B}$ are functions of $\left(u, r, x^{A}\right)$.
What are the asymptotic boundary conditions for these quantities?

The boundary conditions

The $u r$ and $u A$ components obey the fall-off conditions:

$$
g_{u r}=-1+\mathcal{O}\left(r^{-2}\right), \quad g_{u A}=\mathcal{O}(1)
$$

More "freedom" in the $u u$ and $A B$ components:

$$
\left\{\begin{array}{lll}
g_{u u}=-1+\mathcal{O}\left(r^{-1}\right), & q_{A B}=\stackrel{\circ}{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & \\
g_{u u}=\mathcal{O}(r), & q_{A B}=e^{2 \phi(u)}{ }^{\circ}{ }_{A B}+\mathcal{O}\left(r^{-1}\right) & (\text { eriginal BMS) } \\
g_{u u}=\mathcal{O}(1), & q_{A B}=\bar{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & \\
\text { (generalized BMS) }
\end{array}\right.
$$

original BMS: $\stackrel{\circ}{9}_{A B}$ round metric on S^{2} with Ricci scalar $\stackrel{\circ}{R}=2$ [Bondi-Metzner-Sachs, 1962] extended BMS: conformally related to $\stackrel{\circ}{q}_{A B}$ with u-dependence [Barnich-Troesseart, 2010] generalized $\mathrm{BMS}: \partial_{u} \bar{q}_{A B}=0$ and $\delta \sqrt{\bar{q}}=0 \quad$ [Campiglia-Laddha, 2014] [Compère et al., 2018]

$$
\text { Weyl-BMS: } \partial_{u} \bar{q}_{A B}=0 \text { and } \delta \sqrt{\bar{q}} \neq 0
$$

[Freidel-RO-Pranzetti-Speziale, 2021]

Remark 1: $\partial_{u} \bar{q}_{A B}=0$ implies that $g_{u u}=\mathcal{O}(1)$.
Enough to describe MPM spacetimes [Blanchet et al, 2021]
Remark 2: relaxing bcs \rightarrow divergences \rightarrow phase-space renormalization! in AdS/CFT adding boundary action counter-terms [deHaro-Solodukhin-Skenderis, 2001], [Compère-Marolf, 2008] in generalized BMS adding boundary Lagrangian (and associated symplectic potential) [Compère et al., 2018] Additional investigation of this issue in [Freidel-Geiller-Pranzetti, 2020]

The asymptotic symmetry group: generators

We seek vector fields $\xi=\xi^{u} \partial_{u}+\xi^{r} \partial_{r}+\xi^{A} \partial_{A}$
a) preserving the Bondi gauge:

$$
\xi^{u}=\tau, \quad \xi^{r}=-r W+\frac{r}{2}\left[D_{A}\left(I^{A B} \partial_{B} \tau\right)+U^{A} \partial_{A} \tau\right], \quad \xi^{A}=Y^{A}-I^{A B} \partial_{B} \tau
$$

Here τ, W, and Y^{A} are functions of $\left(u, x^{A}\right)$, and $I^{A B}=\int_{r}^{+\infty} d r^{\prime} e^{2 \beta} q^{A B} / r^{\prime 2}$.
Moreover, we allow the scale structure to vary:

$$
\delta_{\xi} \sqrt{\bar{q}}=\left(D_{A} Y^{A}-2 W\right) \sqrt{\overline{\bar{q}}}
$$

b) preserving the boundary conditions:

$$
\tau=T+u W, \quad \partial_{u} W=0=\partial_{u} T, \quad \partial_{u} Y^{A}=0
$$

Weyl-BMS generators at null infinity:

$$
\bar{\xi}_{(T, W, Y)}:=T \partial_{u}+W\left(u \partial_{u}-r \partial_{r}\right)+Y^{A} \partial_{A}
$$

$T\left(x^{A}\right)$: super-translations; $W\left(x^{A}\right)$: Weyl rescaling of $S^{2} ; Y^{A}\left(x^{B}\right)$: diffeos of S^{2}.

The asymptotic symmetry group: algebra

Weyl-BMS generators at null infinity:

$$
\bar{\xi}_{(T, W, Y)}:=T \partial_{u}+W\left(u \partial_{u}-r \partial_{r}\right)+Y^{A} \partial_{A}
$$

Weyl-BMS Lie algebra:

$$
\left(\operatorname{diff}\left(S^{2}\right) \oplus \mathcal{W}_{S^{2}}\right) \oplus \mathcal{T}_{S^{2}}
$$

from the Lie commutators $\left[\bar{\xi}_{\left(T_{1}, w_{1}, \gamma_{1}\right)}, \bar{\xi}_{\left(T_{2}, w_{2}, \gamma_{2}\right)}\right]=\bar{\xi}_{\left(T_{12}, w_{12}, Y_{12}\right)}$ with

$$
T_{12}=Y_{1}\left[T_{2}\right]-W_{1} T_{2}-(1 \leftrightarrow 2), \quad W_{12}=Y_{1}\left[W_{2}\right]-Y_{2}\left[W_{1}\right], \quad Y_{12}=\left[Y_{1}, Y_{2}\right]
$$

	background structure	restriction	parametrisation
Weyl-BMS	\emptyset	\emptyset	(T, W, Y)
generalized BMS	scale structure	$\delta \sqrt{q}=0$	$\left(T, \frac{1}{2} D_{A} Y^{A}, Y\right)$
extended BMS	conformal structure	$\delta\left[q_{A B}\right]=0$	$\left(e^{\phi} t, \frac{1}{2}\left(D_{A} Y^{A}-w\right), Y\right)$
original BMS	round sphere structure	$\delta q_{A B}=0$	$\left(T, \frac{1}{2} D_{A} Y^{A}, Y\right)$

- Weyl-BMS group: $\left(\operatorname{Diff}\left(S^{2}\right) \ltimes \mathcal{W}_{S^{2}}\right) \ltimes \mathcal{T}_{S^{2}}$
- generalized BMS group: $\operatorname{Diff}\left(S^{2}\right) \ltimes \mathcal{T}_{S^{2}}$
- extended BMS group: $($ Vir \times Vir $) \ltimes \mathcal{T}_{S^{2}}$
[Freidel, RO, Pranzetti, Speziale, 2021]
[Campiglia-Laddha, 2014]-[Compère et al., 2018]
- original BMS group: $\mathrm{SL}(2, \mathbb{C}) \ltimes \mathcal{T}_{S^{2}}$

The Weyl-BMS charge algebra and asymptotic Einstein's equations

Canonical analysis

Nomenclature:

$\left\{d, i_{\xi}, \mathcal{L}_{\xi}\right\}$, spacetime diff., contraction and Lie derivative: $\mathcal{L}_{\xi}=d i_{\xi}+i_{\xi} d$ $\left\{\delta, I_{\xi}:=I_{\mathcal{L}_{\xi}}, \delta_{\xi}:=\delta_{\mathcal{L}_{\xi}}\right\}$, field-space diff., contraction and variation: $\delta_{\xi}=\delta I_{\xi}+I_{\xi} \delta$.
Given a Lagrangian $L, \delta L=d \theta_{L}-E$.
E stands for the e.o.m., and θ_{L} is the symplectic potential.

Noether's theorems say that

$$
I_{\xi} E=d C_{\xi}, \quad j_{\xi}:=I_{\xi} \theta_{L}-i_{\xi} L=C_{\xi}+d a_{\xi} \quad\left(d j_{\xi} \approx 0\right)
$$

In gravity: $E=G_{\mu \nu} \delta g^{\mu \nu} \epsilon_{,} C_{\xi}=\xi^{\nu} G_{\nu}^{\mu} \epsilon_{\mu}, \theta_{L}=2 g^{\rho[\sigma} \delta \Gamma_{\rho \sigma}^{\mu]} \epsilon_{\mu}$, where $\epsilon_{\nu}=i_{\partial \nu} \epsilon$; and $q_{\xi}=\nabla^{\mu} \xi^{\nu} \epsilon_{\mu \nu}$.
The symplectic 2-form, the Noether charge and the flux read as

$$
\Omega=\int_{\Sigma} \delta \theta_{L}, \quad Q_{\xi}=\int_{S^{2}} q_{\xi}, \quad \mathcal{F}_{\xi}=\int_{S^{2}}\left(i_{\xi} \theta_{L}+q_{\delta_{\xi}}\right)
$$

obey the fundamental canonical relation (see e.g., [Lee-Wald, 1990], [lyer-Wald, 1994])

$$
-I_{\xi} \Omega \approx \delta Q_{\xi}-\mathcal{F}_{\xi}
$$

Contracting again with I_{χ} :

$$
\delta_{\xi} Q_{\chi}-I_{\chi} \mathcal{F}_{\xi} \approx-\left(\delta_{\chi} Q_{\xi}-I_{\xi} \mathcal{F}_{\chi}\right)
$$

Remark 1: invariant under the change of boundary Lagrangian $L \rightarrow L+d$;
Remark 2: insensitive to phase-space renormalization: divergences cancel out!

Charge bracket

The antisymmetry of the symplectic form Ω suggests the charge bracket
(generalizes [Barnich-Troessaert, 2011], related work [Wieland, 2021])

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}:=\delta_{\xi} Q_{\chi}-I_{\chi} \mathcal{F}_{\xi}+\int_{S^{2}} i_{\xi} i_{\chi} L
$$

Consider two (field-dependent) vector fields ξ and χ with modified Lie bracket

$$
\llbracket \xi, \chi \rrbracket:=[\xi, \chi]_{L i e}+\delta_{\chi} \xi-\delta_{\xi \chi}
$$

s.t. the commutator of two field space variations is still a symmetry transformation

$$
\left[\delta_{\xi}, \delta_{\chi}\right]=-\delta_{\llbracket \xi, \chi \rrbracket}
$$

It can be proven that [technical step: $\left.\Delta_{\xi} Q_{\chi}:=\left(\delta_{\xi}-\mathcal{L}_{\xi}-I_{\delta_{\xi}}\right) Q_{\chi}=Q_{\delta_{\chi} \xi}-Q_{\llbracket \xi, \chi \rrbracket}\right]$

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}=-Q_{\llbracket \xi, \chi \rrbracket}-\int_{S^{2}} i_{\xi} C_{\chi} \approx-Q_{\llbracket \xi, \chi \rrbracket}
$$

Property 1: it provides a representation of the vector field algebra on-shell.
Property 2: it is invariant under $L \rightarrow L+d l$.
This is the flux-balance relation, equivalent to the (asymptotic) Einstein's equations.

Obtaining the asymptotic Einstein's equations

Interplay among: geometric data - phase-space data - dynamics

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}+Q_{\llbracket \xi, \chi \rrbracket} \approx 0 \Longleftrightarrow \delta_{\xi} Q_{\chi}+Q_{\llbracket \xi, \chi \rrbracket} \approx I_{\chi} \mathcal{F}_{\xi}+\int_{S^{2}} i_{\chi} i_{\xi} L
$$

Weyl-BMS generators (ξ, χ)	$\left\{Q_{\xi}, Q_{\chi}\right\}+Q_{\llbracket \xi, \chi \rrbracket}=0$	Einstein's equations
$\left(\partial_{u}, \xi_{T}\right)$	$2 \mathrm{E}_{M}-\frac{1}{4} \bar{\Delta} \mathrm{E}_{\bar{F}}=0$	$\xi_{T}^{\mu} G_{\mu}{ }^{r}=0$
$\left(\xi_{T}, \partial_{u}\right)$	$2 \mathrm{E}_{M}+\bar{D}^{A} \dot{\mathrm{E}}_{\bar{U}_{A}}+\frac{1}{4} \bar{\Delta} \mathrm{E}_{\bar{F}}=0$	$\xi_{T}^{u} G_{u}{ }^{r}-\xi_{T}^{r} G_{u}{ }^{u}=0$
$\left(\partial_{u}, \xi_{W}\right)$	$\bar{D}^{A} \mathrm{E}_{\bar{U}_{A}}+u\left(2 \mathrm{E}_{M}-\frac{1}{4} \Delta \mathrm{E}_{\bar{F}}\right)=0$	$\xi_{W}^{\mu} G_{\mu}{ }^{r}=0$
$\left(\xi_{W}, \partial_{u}\right)$	$-\bar{D}^{A} \mathrm{E}_{\bar{U}_{A}}+u\left(2 \mathrm{E}_{M}+\bar{D}^{A} \dot{\mathrm{E}}_{\bar{U}_{A}}+\frac{1}{4} \Delta \mathrm{E}_{\bar{F}}\right)=0$	$\xi_{W}^{u} G_{u}{ }^{r}-\xi_{W}^{r} G_{u}{ }^{u}=0$
$\left(\partial_{u}, \xi_{Y}\right)$	$\mathrm{E}_{\bar{P}_{A}}+2 \bar{D}_{A} \dot{\mathrm{E}}_{\bar{\beta}}-2 \bar{F} \overline{\mathrm{E}}_{\bar{U}_{A}}-\frac{1}{2} \bar{U}_{A} \mathrm{E}_{\bar{F}}=0$	$\xi_{Y}^{\mu} G_{\mu}{ }^{r}=0$
$\left(\xi_{Y}, \partial_{u}\right)$	$0=0$	$0=0$

- original BMS: 1 flux-balance (energy);
- generalized BMS: 3 flux-balances (energy, angular mom) - importance of diff(S^{2});
- Weyl-BMS: 5 flux-balances - importance of the Weyl rescalings.

Phase space renormalization

Rule-of-thumb: the weaker the boundary conditions, the more the divergences!
The divergent part of the symplectic potential reads as

$$
\theta_{d i v}=d \vartheta_{d i v}-\frac{r}{2} \delta(\sqrt{\bar{q}}(\bar{R}-4 \bar{F})) d u d^{2} \sigma
$$

where (recall that $\delta \sqrt{\bar{q}} \neq 0$)

$$
\vartheta_{d i v}=\left(\frac{r^{2}}{2} \delta \sqrt{\bar{q}}-\frac{r}{4} \sqrt{\bar{q}} C^{A B} \delta \bar{q}_{A B}\right) d^{2} \sigma+r \bar{\vartheta}^{A} \epsilon_{A B} d \sigma^{B} \wedge d u, \quad \partial_{A} \bar{\vartheta}^{A}=\frac{1}{2} \delta(\sqrt{\bar{q}} \bar{R})
$$

Strategy: make use of a boundary Lagrangian $L^{R}=L+d \ell$ to renormalize

$$
\theta^{R}=\theta-d \vartheta+\delta \ell, \quad Q_{\xi}^{R}=Q_{\xi}+\int_{S^{2}}\left(i_{\xi} \ell-I_{\xi} \vartheta\right), \quad \mathcal{F}_{\xi}^{R}=\mathcal{F}_{\xi}+\int_{S^{2}}\left(\delta i_{\xi} \ell-\delta_{\xi} \vartheta\right)
$$

Remark: we recover Barnich-Troessaert (and Wald-Zoupas) prescriptions for $\ell=\sqrt{q}\left(M-C_{A B} N^{A B} / 8\right) d u d^{2} \sigma$.
Renormalized expression for the symplectic 2-form at null infinity:

$$
\begin{aligned}
\Omega^{R}=\int_{\mathcal{I}}[& +\frac{1}{4} \delta N_{A B} \wedge \delta\left(\sqrt{\bar{q}} C^{A B}\right) \\
& -\frac{1}{4} \delta\left(\frac{\bar{R}}{2} C_{A B}-D_{\langle A} D^{C} C_{B\rangle C}\right) \wedge \delta\left(\sqrt{\bar{q}}=0=\delta \bar{q}_{A B},\right. \text { [Ashtekar \& Streubel, 1981]) } \\
& \left.+\delta\left(M+\frac{1}{4} D_{A} D_{B} C^{A B}\right) \wedge \delta \sqrt{\bar{q}}\right] d u d^{2} \sigma
\end{aligned}
$$

Rediscovering the Weyl-BMS group: pushing extended corner symmetry to scri

Extended corner symmetry

Corner symmetry group: surface diffeomorphisms "plus" surface boosts
[Donnelly-Freidel, 2016], [Donnelly-Freidel-Moosavian-Speranza, 2020]

$$
\mathfrak{g}_{S^{2}}=\operatorname{diff}\left(S^{2}\right) \oplus \mathfrak{s l}(2, \mathbb{R})
$$

Extended corner symmetry includes surface translations (see also [Ciambelli-Leigh, 2021])

$$
\mathfrak{g}_{S^{2}}^{\text {ext }}=\left(\operatorname{diff}\left(S^{2}\right) \oplus \mathfrak{s l}(2, \mathbb{R})\right) \oplus \mathbb{R}^{2}
$$

To prove this, consider the following metric around the corner S^{2} :

$$
d s^{2}=h_{a b} d x^{a} d x^{b}+\gamma_{A B}\left(d \sigma^{A}-U_{a}^{A} d x^{a}\right)\left(d \sigma^{B}-U_{b}^{B} d x^{b}\right)
$$

One defines $Y^{A}=\left.\xi^{A}\right|_{x^{a}=0}, W_{a}^{b}=\left.\partial_{a} \xi^{b}\right|_{x^{a}=0}, T^{a}=\left.\xi^{a}\right|_{x^{a}=0}$ and the associated charges

$$
\begin{gathered}
P_{A}=\frac{1}{2} \gamma_{A B} \epsilon^{a b}\left(\partial_{a}+U_{a}^{A} \partial_{A}\right) U_{b}^{B}, \quad N_{b}^{a}=\frac{1}{2} h_{b c} \epsilon^{c a} \\
Q_{a}=\frac{1}{2} \epsilon^{c b}\left(\partial_{b}+U_{b}^{A} \partial_{A}\right) h_{a c}-U_{a}^{B} P_{B}-D_{C}\left(N_{a}^{b} U_{b}^{c}\right),
\end{gathered}
$$

Pushing these charges to scri, one gets (after renormalization) the Weyl-BMS algebra

$$
\mathfrak{g}_{S^{2}}^{\text {ext }}=\left(\operatorname{diff}\left(S^{2}\right) \oplus \mathfrak{s l}(2, \mathbb{R})\right) \oplus \mathbb{R}^{2} \quad \xrightarrow{\mathcal{I}} \quad \mathfrak{b m s w}=\left(\operatorname{diff}\left(S^{2}\right) \oplus \mathcal{W}_{S^{2}}\right) \oplus \mathcal{T}_{S^{2}}
$$

The factor $\mathfrak{s l}(2, \mathbb{R})$ is typical of GR; it might change in modified theories of gravity. Deformation/extension of $\operatorname{diff}\left(S^{2}\right)$? [Rojo-Prochazka-Sachs, 2021]

Conclusions and future directions

Conclusions

Recap:

- new asymptotic symmetries in GR: the Weyl-BMS group;
- derivation of (asymptotic) Einstein's equations from first principles;
- phase-space renormalization.

Follow-ups:

- relax $\partial_{u} \bar{q}_{A B}=0$ and extend the Weyl-BMS group;
- explore the consequences of Weyl-BMS for memory effects and soft theorems.

Other interesting directions:

- make advantage of asymptotic symmetries to improve gravitational waveforms; e.g., [Ashtekar et al., 2019, 2020], [Mitman et al, 2020, 2021a,b]
- coupling QNM and BMS modes [Gasperin-Jaramillo, 2021]
- asymptotic symmetries in dS; [Fernández-Álvarez \& Senovilla, 2020-2021], [Compère et al., 2020] asymptotically and spatially flat FLRW; [Bonga-Prabhu, 2020], [Rojo-Heckelbacher-RO, 2022]
- investigate the "triangle" in the cosmological setting;
- explore the role of asymptotic symmetries in modified theories of gravity.

THANK YOU FOR YOUR ATTENTION!

