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A quick overview: some highlights in the last 60 years!

[Ashtekar, 1409.1800],

[Strominger & Zhiboedov, 1411.5745]

1962 the BMS group = Lorentz x supertranslations:

asymptotic symmetry group for (asymptotically) flat spacetimes.

1965 Weinberg’s graviton soft theorems:

relations among scattering amplitudes in the infrared regime.

1974 Gravitational memory/hereditary effects:

permanent shift in the relative position of two inertial detectors after GW passed.

Strominger’s triangle arises new theoretical questions → new gravitational effects.

E.g., the larger the symmetry group → the more soft theorems/memory effects.

Main question today: What is the largest asymptotic symmetry group in gravity?

It serves as an organising principle.
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The Weyl-BMS group



The Bondi-Sachs gauge

[Madler&Winicour, 1609.01731]

Bondi coordinates: xµ = (u, r , xA),

Bondi gauge: grr = 0, grA = 0, ∂r det
(
gAB/r

2
)

= 0.

Bondi-Sachs metric:

ds2 = −2e2βdu(Fdu + dr) + r2qAB(dxA − UAdu)(dxB − UBdu),

where β, F , UA, and qAB are functions of (u, r , xA).

What are the asymptotic boundary conditions for these quantities?
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The boundary conditions

The ur and uA components obey the fall-off conditions:

gur = −1 +O(r−2), guA = O(1).

More “freedom” in the uu and AB components:
guu = −1 +O(r−1), qAB =

◦
qAB +O(r−1) (original BMS)

guu = O(r), qAB = e2φ(u)◦qAB +O(r−1) (extended BMS)

guu = O(1), qAB = q̄AB +O(r−1) (generalized BMS)

original BMS:
◦
qAB round metric on S2 with Ricci scalar

◦
R = 2 [Bondi-Metzner-Sachs, 1962]

extended BMS: conformally related to
◦
qAB with u-dependence [Barnich-Troesseart, 2010]

generalized BMS: ∂u q̄AB = 0 and δ
√
q̄ = 0 [Campiglia-Laddha, 2014] [Compère et al., 2018]

Weyl-BMS: ∂u q̄AB = 0 and δ
√

q̄ 6= 0 [Freidel-RO-Pranzetti-Speziale, 2021]

———– o ———–

Remark 1: ∂u q̄AB = 0 implies that guu = O(1).

Enough to describe MPM spacetimes [Blanchet et al, 2021]

Remark 2: relaxing bcs → divergences → phase-space renormalization!

in AdS/CFT adding boundary action counter-terms [deHaro-Solodukhin-Skenderis, 2001], [Compère-Marolf, 2008]

in generalized BMS adding boundary Lagrangian (and associated symplectic potential) [Compère et al., 2018]

Additional investigation of this issue in [Freidel-Geiller-Pranzetti, 2020]
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The asymptotic symmetry group: generators

We seek vector fields ξ = ξu∂u + ξr∂r + ξA∂A

a) preserving the Bondi gauge:

ξu = τ, ξr = −rW +
r

2

[
DA

(
IAB∂Bτ

)
+ UA∂Aτ

]
, ξA = Y A − IAB∂Bτ

Here τ , W , and Y A are functions of (u, xA), and IAB =
∫ +∞
r dr ′e2βqAB/r ′2.

Moreover, we allow the scale structure to vary:

δξ
√

q̄ =
(
DAY

A − 2W
)√

q̄

b) preserving the boundary conditions:

τ = T + uW , ∂uW = 0 = ∂uT , ∂uY
A = 0

Weyl-BMS generators at null infinity:

ξ̄(T ,W ,Y ) := T∂u + W (u∂u − r∂r ) + Y A∂A

T (xA): super-translations; W (xA): Weyl rescaling of S2; Y A(xB): diffeos of S2.
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The asymptotic symmetry group: algebra

Weyl-BMS generators at null infinity:

ξ̄(T ,W ,Y ) := T∂u + W (u∂u − r∂r ) + Y A∂A

Weyl-BMS Lie algebra: (
diff(S2) iWS2

)
i TS2

from the Lie commutators [ξ̄(T1,W1,Y1), ξ̄(T2,W2,Y2)] = ξ̄(T12,W12,Y12) with

T12 = Y1[T2]−W1T2 − (1↔ 2), W12 = Y1[W2]− Y2[W1], Y12 = [Y1, Y2]

background structure restriction parametrisation

Weyl-BMS ∅ ∅ (T ,W ,Y )

generalized BMS scale structure δ
√
q = 0 (T , 1

2
DAY

A,Y )

extended BMS conformal structure δ[qAB ] = 0
(
eφt, 1

2
(DAY

A − w),Y
)

original BMS round sphere structure δqAB = 0 (T , 1
2
DAY

A,Y )

• Weyl-BMS group: (Diff(S2) nWS2 ) n TS2 [Freidel, RO, Pranzetti, Speziale, 2021]

• generalized BMS group: Diff(S2) n TS2 [Campiglia-Laddha, 2014]-[Compère et al., 2018]

• extended BMS group: (Vir× Vir) n TS2 [Barnich-Troessaert, 2010]

• original BMS group: SL(2,C) n TS2
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The Weyl-BMS charge algebra and
asymptotic Einstein’s equations



Canonical analysis

Nomenclature:

{d , iξ,Lξ}, spacetime diff., contraction and Lie derivative: Lξ = diξ + iξd

{δ, Iξ := ILξ , δξ := δLξ}, field-space diff., contraction and variation: δξ = δIξ + Iξδ.

Given a Lagrangian L, δL = dθL − E .

E stands for the e.o.m., and θL is the symplectic potential.

Noether’s theorems say that

IξE = dCξ, jξ := IξθL − iξL = Cξ + dqξ (djξ ≈ 0)

In gravity: E = Gµνδg
µνε, Cξ = ξνG µ

ν εµ, θL = 2gρ[σδΓ
µ]
ρσεµ, where εν = i∂ν ε; and qξ = ∇µξνεµν .

The symplectic 2-form, the Noether charge and the flux read as

Ω =

∫
Σ
δθL, Qξ =

∫
S2

qξ, Fξ =

∫
S2

(iξθL + qδξ )

obey the fundamental canonical relation (see e.g., [Lee-Wald, 1990], [Iyer-Wald, 1994])

−IξΩ ≈ δQξ −Fξ

Contracting again with Iχ:

δξQχ − IχFξ ≈ −
(
δχQξ − IξFχ

)
Remark 1: invariant under the change of boundary Lagrangian L→ L + dl ;

Remark 2: insensitive to phase-space renormalization: divergences cancel out! 7



Charge bracket

The antisymmetry of the symplectic form Ω suggests the charge bracket

(generalizes [Barnich-Troessaert, 2011], related work [Wieland, 2021])

{Qξ,Qχ}L := δξQχ − IχFξ +

∫
S2

iξ iχL

Consider two (field-dependent) vector fields ξ and χ with modified Lie bracket

Jξ, χK := [ξ, χ]Lie + δχξ − δξχ

s.t. the commutator of two field space variations is still a symmetry transformation

[δξ, δχ] = −δJξ,χK

It can be proven that [technical step: ∆ξQχ := (δξ − Lξ − Iδξ
)Qχ = Qδχξ − QJξ,χK]

{Qξ,Qχ}L = −QJξ,χK −
∫
S2

iξCχ ≈ −QJξ,χK

Property 1: it provides a representation of the vector field algebra on-shell.

Property 2: it is invariant under L→ L + dl .

This is the flux-balance relation, equivalent to the (asymptotic) Einstein’s equations.
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Obtaining the asymptotic Einstein’s equations

Interplay among: geometric data – phase-space data – dynamics

{Qξ,Qχ}L + QJξ,χK ≈ 0⇐⇒ δξQχ + QJξ,χK ≈ IχFξ +

∫
S2

iχiξL

Weyl-BMS generators (ξ, χ) {Qξ,Qχ} + QJξ,χK = 0 Einstein’s equations

(∂u, ξT ) 2EM − 1
4 ∆̄EF̄ = 0 ξµTG

r
µ = 0

(ξT , ∂u) 2EM + D̄AĖŪA
+ 1

4 ∆̄EF̄ = 0 ξuTG
r

u − ξ
r
TG

u
u = 0

(∂u, ξW ) D̄AEŪA
+ u

(
2EM − 1

4 ∆EF̄

)
= 0 ξµWG r

µ = 0

(ξW , ∂u) −D̄AEŪA
+ u

(
2EM + D̄AĖŪA

+ 1
4 ∆EF̄

)
= 0 ξuWG r

u − ξ
r
WG u

u = 0

(∂u, ξY ) EP̄A
+ 2D̄AĖβ̄ − 2F̄EŪA

− 1
2 ŪAEF̄ = 0 ξµYG

r
µ = 0

(ξY , ∂u) 0 = 0 0 = 0

- original BMS: 1 flux-balance (energy);

- generalized BMS: 3 flux-balances (energy, angular mom) – importance of diff(S2);

- Weyl-BMS: 5 flux-balances – importance of the Weyl rescalings.
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Phase space renormalization

Rule-of-thumb: the weaker the boundary conditions, the more the divergences!

The divergent part of the symplectic potential reads as

θdiv = dϑdiv −
r

2
δ
(√

q̄ (R̄ − 4F̄ )
)
du d2σ

where (recall that δ
√
q̄ 6= 0)

ϑdiv =

(
r2

2
δ
√

q̄ −
r

4

√
q̄CABδq̄AB

)
d2σ + r ϑ̄AεABdσ

B ∧ du, ∂Aϑ̄
A =

1

2
δ(
√

q̄R̄)

Strategy: make use of a boundary Lagrangian LR = L + d` to renormalize

θR = θ − dϑ+ δ`, QR
ξ = Qξ +

∫
S2

(
iξ`− Iξϑ

)
, FR

ξ = Fξ +

∫
S2

(
δiξ`− δξϑ

)
Remark: we recover Barnich-Troessaert (and Wald-Zoupas) prescriptions for ` =

√
q
(
M − CABNAB/8

)
dud2σ.

Renormalized expression for the symplectic 2-form at null infinity:

ΩR =

∫
I

[
+

1

4
δNAB ∧ δ(

√
q̄CAB) (δ

√
q̄ = 0 = δq̄AB , [Ashtekar & Streubel, 1981])

−
1

4
δ

(
R̄

2
CAB − D〈AD

CCB〉C

)
∧ δ(

√
q̄q̄AB) (δ

√
q̄ = 0 6= δq̄AB , [Compère et al., 2018])

+ δ

(
M +

1

4
DADBC

AB

)
∧ δ
√

q̄

]
du d2σ
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Rediscovering the Weyl-BMS group:
pushing extended corner symmetry
to scri



Extended corner symmetry

Corner symmetry group: surface diffeomorphisms “plus” surface boosts

[Donnelly-Freidel, 2016], [Donnelly-Freidel-Moosavian-Speranza, 2020]

gS2 = diff(S2) i sl(2,R)

Extended corner symmetry includes surface translations (see also [Ciambelli-Leigh, 2021])

gext
S2 =

(
diff(S2) i sl(2,R)

)
i R2

To prove this, consider the following metric around the corner S2:

ds2 = habdx
adxb + γAB(dσA − UA

a dx
a)(dσB − UB

b dxb)

One defines Y A = ξA|xa=0, W b
a = ∂aξb|xa=0, T a = ξa|xa=0 and the associated charges

PA =
1

2
γABε

ab(∂a + UA
a ∂A)UB

b , N a
b =

1

2
hbcε

ca

Qa =
1

2
εcb(∂b + UA

b ∂A)hac − UB
a PB − DC (N b

a UC
b ),

Pushing these charges to scri, one gets (after renormalization) the Weyl-BMS algebra

gext
S2 =

(
diff(S2) i sl(2,R)

)
i R2 I−→ bmsw =

(
diff(S2) iWS2

)
i TS2

The factor sl(2,R) is typical of GR; it might change in modified theories of gravity.

Deformation/extension of diff(S2)? [Rojo-Prochazka-Sachs, 2021]
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Conclusions and future directions



Conclusions

Recap:

• new asymptotic symmetries in GR: the Weyl-BMS group;

• derivation of (asymptotic) Einstein’s equations from first principles;

• phase-space renormalization.

Follow-ups:

• relax ∂u q̄AB = 0 and extend the Weyl-BMS group;

• explore the consequences of Weyl-BMS for memory effects and soft theorems.

Other interesting directions:

• make advantage of asymptotic symmetries to improve gravitational waveforms;

e.g., [Ashtekar et al., 2019, 2020], [Mitman et al, 2020, 2021a,b]

• coupling QNM and BMS modes [Gasperin-Jaramillo, 2021]

• asymptotic symmetries in dS; [Fernández-Álvarez & Senovilla, 2020-2021], [Compère et al., 2020]

asymptotically and spatially flat FLRW; [Bonga-Prabhu, 2020], [Rojo-Heckelbacher-RO, 2022]

• investigate the “triangle” in the cosmological setting;

• explore the role of asymptotic symmetries in modified theories of gravity.
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THANK YOU FOR YOUR ATTENTION!
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