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Markoff triples

The Markoff surface is given by the equation
X:x?+y?+22—xyz=0

Let I' denote the group of automorphisms of X generated by permutations of
coordinates and the “Vieta involution” Rs : (x,y,z) — (x,y,xy — z).

Theorem 1 (Markoff, 1879)

The group T acts on X(Z) with 5 orbits, represented by
(07 07 0)7 (37 37 3)7 (_37 _37 3)7 (_3a 37 _3)7 (37 _37 _3)

Conjecture 1 (Baragar 1991, Bourgain, Gamburd, Sarnak 2016)

For all primes p, I acts transitively on X*(p) := X(F,) — {(0,0,0)}. In particular,
X(Z) — X(Fp) is surjective. “X satisfies strong approximation”.

Theorem 2 (Bourgain, Gamburd, Sarnak 2016)

Let Epgs := {p prime | T is not transitive on X*(p)}. Then
(a) Ve >0, #{p < x | p € Epgs} = O(x°).
(b) Ve >0, Vp, there is a large orbit C(p) C X*(p) s.t. [X*(p) —C(p)| < p°.
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Connectedness of Hurwitz stacks

Let Hg, n be the moduli stack of finite covers of genus g curves with n branch pts.
For a finite group B, let Hz »[B] C Hg,n denote the substack of B-Galois covers.

Question: Classify the connected components of H, , using discrete invariants.
Examples: degree, monodromy group, ramification type, homological invariants...

Theorem 3

(a) (Clebsch-Hurwitz 1870's) The substack of Ho. , classifying covers with simple
branching is connected.

(b) (Conway-Parker 1980's, Dunfield-Thurston 2007, Catanese, Lénne, Perroni...)
For fixed B, the components of H, ,[B] are understood for g >0 or n > 0.

(c) (Deligne-Mumford 1969) For B = (Z/nZ)?, the components of Hzo(B) are
classified by the cup product.

4

Conjecture 2 (McCullough-Wanderley 2013)

The connected components of H1 1[SL2(Fg)] are classified by the trace of the
local monodromy around the branch point.

Note: Every noncongruence/congruence modular curve is a component of Hj 1!

(C., Asada, Ellenberg-McReynolds).
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Relating the two problems

Let (E, O) be an elliptic curve, let I := m1(E — O, x) = (a, b). Let H, be the
substack of H1 1[SL2(F,)] classifying covers whose local monodromy at O € E
has trace —2. The natural forgetful map q : H, — My 1 is finite étale.

There are index 2 subgroups '™ < T, Out™ (M) < Out(M), such that
M o X*(p)

l: “SLa-character variety of "
Out™ (M) © Epi(M, SLa(Fp))er (o, 1)~ —2/ GL2(Fp)
lg “Galois correspondence”
m1 (M, E) O g H(E)
Recall, again using the Galois correspondence:
{m1(Ma 1, E)-orbits on g 1(E)} > mo(H,)

O +—  The component Y C H, containing O
|O| = deg(y — M171)

Thus, the strong approx. conjecture is equivalent to the connectedness of H,,.
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Theorem 4 (C. 2021)

The degree of every component of H, over M 1 is divisible by p. In other words,
every m1(Ma 1, E)-orbit on q~Y(E), or equivalently every [ -orbit on X*(p), has
cardinality =0 mod p.

Corollary 5 (C., Fuchs, Lipman, Tran, 2022)

Epgs is finite, and contains only primes p < 3 - 10%.

Corollary 6

(a) For all p ¢ Epgs, the reduction map X(Z) — X(F,) is surjective.

(b) For all p ¢ Epgs, the Hurwitz stack H,, classifying SL,(F)-covers of elliptic
curves only branched above the origin, with local monodromy trace -2 is
connected.

Corollary 7

Let H, be the coarse scheme of H,,. Then genus(H,) ~ &p? + O(p*?), and
genus(H,) > 2 for all p > 13.
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Proof sketch of the divisibility result

Let Y C H,, be any connected component. We have a diagram (solid arrows)

c "5 —15¢0)

) ).

Yy s My,

Suppose there exists a section 7 such that w o 7 = 0. Let e be the ramification
index of 7 along 7. Then we have

0 01y M = 0 G ey men = 0 Qe gy = T,
A

Taking “degrees”, we get

“deg(g*\) = deg(q) - deg(\) = deg(q) =0 mode”

24

To make sense of this, one needs to work over proper stacks, deal with the
possible nonexistence of 7, and the possibility of fractional degrees.
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Thank you!
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The SL,-character variety of Il

The SL,-representation variety of 1 = (a, b) is the Z-scheme
Hom(M, SLy) =2 SL, x SLy. The character variety is the GIT quotient

)<S|_2 = Hom(ﬂ, SLQ)//GLz

Theorem 8 (Fricke-Vogt 1890, Brumfiel-Hilden 1995, Nakamoto
2000)

(a) The map T : Xsi, — A3 sending o +— (tr¢(a), tr p(b),tr p(ab)) is an
isomorphism.

(b) The map LM : Xs., — A} sending ¢ — tr¢([a, b]) is given in coordinates by
(x,y,2) = x>+ y?> + 22 — xyz — 2

Thus X = LM} (=2) C Xsy,.

(c) Away from LM™Y(2), the map Hom(I,SLy(F,))/ GL2(F,) — Xsi,(Fq) is a
bijection.

4

The action of Out™ (M) preserves the conjugacy class of the local monodromy, and
hence acts on the fibers of LM.

William Chen (1AS) Markoff triples and Hurwitz stacks August 31, 2022 8/8



