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Effectivity

Theorem (Faltings Theorem)
The set of rational points on an algebraic curve of genus ≥ 2 is finite.

The result of Faltings is not effective, in the sense that it does not give any
method for finding the rational points on C.

This is due to the non existence of an effective bound for the height of the
points in C(Q).
Points of bounded height and bounded degree are finitely many.
(Only finitely many integral points in Rn in a ball of given a radius)
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Effective Methods

The method of Chabauty-Coleman provides a bound on the number of rational
points on curves with Jacobian of Q-rank strictly smaller than the genus.

Example
Flynn gives explicit examples: he finds the rational points for a selection of
curves of genus 2 with Jacobian of Q-rank 1.

An innovative application in the context of Chabauty’s method is given by
J. Balakrishnan, N. Dogra, J. S. Müller, J. Tuitman and J. Vonk,
Explicit Chabauty-Kim for the split Cartan modular curve of level 13.
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The Manin-Dem’janenko method applies to curves that admit many
Q-independent morphisms towards an abelian variety.

Example
Kulesz, Girard, Matera, Schost and others find all rational points on some
families of curves: these curves have genus 2 (resp. 3) and elliptic Jacobian of
Q-rank 1 (resp. 2) with some special properties. For instance with factors given
by a Weierstrass equation y2 = x3 +a2x , with a square-free integer and such
that the Mordell-Weil group has rank 1.

No explicit height’s bound
The bounds for the height must be worked out with ad hoc methods case by
case and for the technique to be successful the equations of the curve must be
of a special shape and small genus.
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Notations

Ambient variety:
E an elliptic curve defined over Q.
EN = E ×·· ·×E .

The k -rational points for k a number field and C an algebraic curve are
denoted by C (k).
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Anomalous Intersections

Algebraic subgroups of EN

An algebraic subgroup B of dimension N − s is the kernel of a matrix
φB ∈ Mats,N(End(E)) of rank s

φB =

 b11 . . . b1,N
...

...
...

bs,1 . . . bs,N

 : EN → Es

φB : (x1, . . . ,xN)→ (b11x1 + ...+b1NxN , . . . ,bs1x1 + ...+bsNxN).

Up to constants, degB is the volume of the lattice generated by the rows.

6



Case N = 2

An algebraic Subgroup of E2 is given, up to some torsion, by

B = {b1X1 +b2X2 = 0

Consider an algebraic curve C ⊂ E2 with rank E(Q) = 1, i.e. E(Q) = ⟨g1⟩
Then a point P = (P1,P2) ∈ C (Q)⊂ E(Q)2 has the form

P = (a1g1,a2g1)

and therefore is a point in

B = {a2X1 −a1X2 = 0

So
P ∈ C ∩B.

If the set
C ∩

⋃
dimB=1

B

has bounded height, then C (Q) has bounded height.
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For C of genus ≥ 2,
C ∩

⋃
dimB=1

B

has bounded height.
This is part of the Anomalous Intersection Conjecture (AIC).
If E(Q) has rank 1 and C ∈ E2, the proof is effective.

Theorem (AIC)

Let C be weak-transverse in EN . Then the set

C ∩∪dimB≤N−2B is finite.

Here B ranges over all algebraic subgroups of dimension ≤ N −2.

This theorem implies Faltings Theorem for C ∈ EN .
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Weakness of the method

If C ⊂ E2 and rank E(Q) = 2, then there is no subgroup containing P, so no
equation and therefore no intersection and no result and maybe no hope.

This is the limit for the effective Mordell Conjecture.
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Families of curves of increasing genus

Consider the elliptic curve

E : {y2 = x3 + x −1

and the cartesian product
E ×E ⊂ P2 ×P2

where (x1,y1) resp. (x2,y2) are the affine coordinates of the first resp. second
factor.

E(Q) has rank 1.
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The Family Cn

Definition

Let {Cn}n be the family of curves Cn ⊆ E2 defined for n ≥ 1 via the additional
equation

xn
1 = y2.

In affine coordinates

Cn =


y2

1 = x3
1 + x1 −1

y2
2 = x3

2 + x2 −1

xn
1 = y2

The Cn have genus 4n+2.

Our explicit bound on the height of Cn(Q) implies:
The rational points on the curves are

Cn(Q) = {(1,±1)× (1,1)}.
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The Family Dn

Definition

Let {Dn}n be the family of curves Dn ⊆ E2 defined for n ≥ 1 via the additional
equation

Φn(x1) = y2,

where Φn(x) is the n-th cyclotomic polynomial.
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In affine coordinates

Dn =


y2

1 = x3
1 + x1 −1

y2
2 = x3

2 + x2 −1

Φn(x1) = y2

The Dn have increasing genus.

Our explicit bound on the height of Dn(Q) implies that:

D1(Q) = (2,±3)× (1,1)

D2(Q) = (2,±3)× (2,3)

D3k (Q) = (1,±1)× (2,3)

D47k (Q) = (1,±1)× (13,47)

Dpk (Q) =∅ if p ̸= 3,47 or p = 2 and k > 1

D6(Q) = (1,±1)× (1,1) and (2,±3)× (2,3)

Dn(Q) = (1,±1)× (1,1) if n ̸= 6 has at least two distinct prime factors.
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The Q(
√
−3)-rational points

Let E be defined by the equation

y2 = x3 +2.

Consider the family Cn ∈ E2

E(Q(
√
−3)) has rank 2.

But E has CM by Z[ζ] and E(Q(
√
−3)) has Z[ζ]-rank 1.

So there is B = {a1X1 +a2X2 = 0 that contains P

Then End(E) = Z[ζ] for ζ = −1+
√
−3

2 a primitive cube root of 1.
Let g = (−1 : 1 : 1) and O = (0 : 1 : 0) in E(Q).
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The Q(
√
−3)-rational points on the family Cn ∈ E2

In affine coordinates

Cn =


y2

1 = x3
1 +2

y2
2 = x3

2 +2

xn
1 = y2

Our explicit bound on the height of Cn(Q(
√
−3)) implies:

Cn(Q(
√
−3))\{(O,O)}=

= {(ag,bg) | a =±1,±ζ,±ζ
2 and b = 1,ζ,ζ2} if n ≡ 0 (mod 6)

= {(ag,bg) | a =±1 and b =−1,−ζ,−ζ
2} if n ≡±1 (mod 6)

= {(ag,bg) | a =±1 and b = 1,ζ,ζ2} if n ≡±2 (mod 6)

= {(ag,bg) | a =±1,±ζ,±ζ
2 and b =−1,−ζ,−ζ

2} if n ≡ 3 (mod 6),
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The Q(
√
−3)-rational points on the family Dn

In affine coordinates

Dn =


y2

1 = x3
1 +2

y2
2 = x3

2 +2

Φn(x1) = y2

Our explicit bound on the height of Dn(Q(
√
−3)) implies that:

Dn(Q(
√
−3)) = {(O,O)}

if n = 1,2, or n = 2pk for k ≥ 1 and p a prime number

Dn(Q(
√
−3)) = {(±g,g)}∪{(O,O)} otherwise.
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Main results on Bounded Height

Let E be an elliptic curve given in the form

y2 = x3 +Ax +B.

with A, B algebraic integers.
Let ĥ be the Néron-Tate height on EN .
Let h(C ) be the normalised height of C .
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Theorem (VV2022: Veneziano, V. (generalization of N=2 Checcoli,
Veneziano, V. 2018))

Let E be a non-CM elliptic curve and let C be a curve transverse in EN . Then
all the points P of rank at most N −1 on C have Néron-Tate height explicitely
bounded as follows:

ĥ(P)≤ D(N) ·h(C )(degC )N−1 +D2(N,E)(degC )N +D3(N,E).

The constants are given by:

D(N) = 4N!

(
N2(N −1)23N

4N−3 N!(N −1)!4
)N−1

,

D2(N,E) = D1(N)
(
N2C(E)+3N log2

)
,

D3(N,E) = (N +1)C(E)+1,
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Theorem (VV2022: Veneziano, V.)
Let E be an elliptic curve with Complex Multiplication by the field K and let C
be a curve transverse in EN . Then all the points P of End(E)-rank at most
N −1 on C have Néron-Tate height explicitely bounded as follows:

ĥ(P)≤ C1(N,E) ·h(C )(degC )N−1 +C2(N,E)(degC )N +C3(N,E).

The constants are given by:

C(N) = N!
(
N ·N! · (2N)!2

)N−1
,

C1(N,E) = c(N)f N |DK |N
2− 3

2 N+1 +1,

C2(N,E) = c(N)f N |DK |N
2− 3

2 N+1 (N2C(E)+3N log2+1
)
,

C3(N,E) = N(N +1)C(E)+3N log2+1.

where DK is the discriminant of the field of complex multiplication and f is the
conductor of End(E).
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Invariants of the curves

Theorem

Let C be the curve given in E2 cut by the additional equation

p(x1) = y2,

with p(X) ∈ k [X ] a non-constant polynomial of degree n. Then

degC = 6n+9

and
h(C )≤ 2degC (hW (p)+ logn+2c1(E))

where hW (p) = hW (1 : p0 : . . . : pn) is the height of the coefficients of p(X).

20



Applying Theorem VV in Explicit Examples

Choice of the ambient variety. Elliptic curves without CM and of rank 1 over Q:

E1 : y2 = x3 + x −1,

E2 : y2 = x3 −26811x −7320618,

E3 : y2 = x3 −675243x −213578586,

E4 : y2 = x3 −110038419x +12067837188462,

E5 : y2 = x3 −2581990371x −50433763600098.
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degCn = 6n+9,

h(Cn)≤ 6(2n+3) log(3+ |A|+ |B|).

The Cn have genus 4n+2 .

degDn = 6ϕ(n)+9,

h(Dn)≤ 6(2ϕ(n)+3)
(

2ω2(n) log2+2 log(3+ |A|+ |B|)
)
,

where ϕ(n) is the Euler function, ω2(n) is the number of distinct odd prime
factors of n.
The Dn have increasing genus.

22



Plug the invariants in Theorem VV

For every n ≥ 1 and every point P ∈ Cn(Q) we have

ĥ(P)≤ 1301(4c6(E))(2n+3)2 +4c6(E).

For every n ≥ 2 and every point P ∈ Dn(Q) we have

ĥ(P)≤ 1302
(

2ω2(n) log2+4c6(E)
)
(2ϕ(n)+3)2 +4c6(E)

were c6(E) = log(3+ |A|+ |B|).
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Applying Theorem VV to explicit examples

Let E be the elliptic curve
E : y2 = x3 +2.

This curve E has complex multiplication by a third root of 1, given by

(x ,y) 7→ (ζx ,y)

with ζ = −1+
√
−3

2 .
Its discriminant is 1728 and its j-invariant is 0.
The field of complex multiplication is K =Q(ζ), which has discriminant
DK =−3, End(E) = Z[ζ] and conductor f = 1.
The set

E(K ) = ⟨g,ζ ·g⟩Q
for g = (−1,1). Moreover ĥ(g)≈ 1.1319.
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Computing the relevant coefficients we get

C(E)≤ 6.211

C1(2,E)≤ 2101

C2(2,E)≤ 67638

C3(2,E)≤ 13.1

We proved that

degCn = 6n+9,

h(Cn)≤ 6 log5(2n+3),

degDn = 6ϕ(n)+9,

h(Dn)≤ 6(2ϕ(n)+3)(ϕ(n) log2+log5) .
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Plagging all in our CM theorem VV it follows that

ĥ(P)≤ 644391 · (2n+3)2 +28 (1)

if P ∈ Cn(K ), while

ĥ(P)≤ 644391 · (2ϕ(n)+3)2 +28 (2)

if P ∈ Dn(K ).
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Applying a generalisation of a result of Stoll, we see that

Cn(K ) = Cn(OK ) for n > 21

and only the curves with n ≤ 20 need to be checked for additional points.
It can be checked that E(OK ) = {±g,±ζg,±ζ2g}, from which we obtain the
points listed above.
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A computer calculation shows that there are no other points on Cn(K ) for
n ≤ 20, which completes the proof of the theorem.
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Search algorithm by K. Belabas, B. Allombert

20

Algorithm 1 Checking for rational points on Cn(K)

1: E := the elliptic curve defined by y2 = x3 + 2
2: g := the point (�1, 1) 2 E(Q)
3: ⇣ a primitive third root of unity
4: for n = 1 to 20 do
5: Ma := the upper bound for |a| in equation (22)
6: Mb := the upper bound for |b| in equation (23)
7: p := 7
8: Initialize L to a list containing all pairs of integers (a, b) with |a|  Ma and

1  b  Mb

9: c := 0
10: while true do
11: g2 := the reduction modulo p of the point ⇣g
12: NL := the cardinality of L
13: Ep := the reduction of E modulo p

14: Np := the cardinality of Ep

15: Mpa := min(Ma, Np� 1)
16: Mpb := min(Mb, Np� 1)
17: for a = �Mpa to Mpa do
18: ag := the point [a]g 2 Ep

19: for b = 1 to Mpb do
20: ag := the point ag + g2 in Ep

21: if ag is the point at infinity then
22: Remove the pair (a, b) from L

23: next
24: end if
25: x := the first coordinate of the point ag
26: if The congruence X3 + 2 ⌘ x2*n (mod p) has no solution then
27: Remove from L all pairs (a, b) such that a ⌘ a (mod Np) and b ⌘ b

(mod Np)
28: end if
29: end for
30: end for
31: if The cardinality of L is equal to c then
32: c := c + 1
33: end if
34: if The cardinality of L is zero, or c > 15 then
35: break
36: end if
37: p := the next prime after p which is congruent to 1 modulo 3
38: end while
39: end for
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Example for N = 3

Let C ∈ E3 with rank E(Q) = 2.
For instance E := {y2 = x3 −3x +1 has rank 2. Let C be defined in E3 by the
equations x1 = y2 and x2 = y3. Compute all invariants, plug them in Theorem
VV and for P ∈ C (Q) you get

ĥ(P)≤ 1022

NOT IMPLEMENTABLE

Use the fact that there are generators of E(Q) with angle of 45 degree to
improve the bound to

ĥ(P)≤ 1019

Use sharp comparison of h(P) and ĥ(P) to improve the bound to

ĥ(P)≤ 1016

Maybe implementable
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A hope to overcome the rank condition

Consider E := {y2 = x3 −3x +1 has rank 2.
Let C be defined in E2 by the equation x1 = y2.

No effective theorem applies in this case.

With Fabien Pazuki we investigate the possibility to reduce the problem of
bounding the height of the rational points to some strong conjectures on the
height properties of the generators of E(Q). It seams that in this specific case
the conjectures can be checked by hand using a computer program.
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