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1. Introduction: cubic Vinogradov systems
Consider s > 0 and h = (h1, h2, h3) ∈ Z3. When X is large, write

f (α;X ) =
∑

1≤x≤X
e(α1x + α2x

2 + α3x
3),

where e(z) denotes e2πiz . We consider the twisted mean value

Bs(X ; h) =

∫
[0,1)3

|f (α;X )|2se(−α · h)dα,

in which α · h = α1h1 + α2h2 + α3h3.

Note: when s ∈ N, it follows via orthogonality that Bs(X ; h) counts the
number of integral solutions of the system

s∑
i=1

(x ji − y ji ) = hj (1 ≤ j ≤ 3),

with 1 ≤ xi , yi ≤ X (1 ≤ i ≤ s).
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Observe that by the triangle inequality, one has

Bs(X ; h) =

∫
[0,1)3

|f (α;X )|2se(−α · h) dα

≤
∫

[0,1)3

|f (α;X )|2s dα = Bs(X ; 0)

� X s+ε + X 2s−6,

as a consequence of the (now proven) main conjecture in the cubic case of
Vinogradov’s mean value theorem (W., 2016 – arxiv:1401.3150).

This is the (classical) convexity bound, and in particular, for any ε > 0,
one has

B6(X ; h) ≤ B6(X ; 0)� X 6+ε.

This classical convexity bound amounts to square-root cancellation in the
exponential sum f (α;X ) of length X .
Analogous statements and conclusions for degree exceeding 3.
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2. Subconvexity: an asymptotic formula
We require some notation. Write

I (β) =

∫ 1

0
e(β1γ + β2γ

2 + β3γ
3) dγ

S(q, a) =

q∑
r=1

e((a1r + a2r
2 + a3r

3)/q).

Next, put nj = hjX
−j (1 ≤ j ≤ 3), and define

J(h) =

∫
R3

|I (β)|12e(−β · n)dβ

S(h) =
∞∑
q=1

∑
1≤a1,a2,a3≤q
(q,a1,a2,a3)=1

∣∣q−1S(q, a)
∣∣12

e(−a · h/q).

We note that the singular integral J(h), and singular series S(h), are
known to converge absolutely (see Arkhipov, Chubarikov and Karatusuba
(2004)).
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Theorem (W., 2022; arxiv:2202.05804)

Suppose that h ∈ Z3 and h1 6= 0. Then whenever X is sufficiently large,
one has

B6(X ; h) = J(h)S(h)X 6 + o(X 6),

in which 0 ≤ J(h)� 1 and 0 ≤ S(h)� 1. If the system below possesses
a non-singular real solution with positive coordinates, moreover, then
J(h)� 1. Likewise, if the system below possesses primitive non-singular
p-adic solutions for each prime p, then S(h)� 1.

x3
1 − x3

2 + . . .+ x3
11 − x3

12 = h3

x2
1 − x2

2 + . . .+ x2
11 − x2

12 = h2

x1 − x2 + . . .+ x11 − x12 = h1

with 1 ≤ xi ≤ X .
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Why does this amount to subconvexity?

Define a Hardy-Littlewood dissection of the unit cube [0, 1)3 into major
and minor arcs. Put L = X 1/72, and define the set of major arcs M to be
the union of the arcs

M(q, a) = {α ∈ [0, 1)3 : |αj − aj/q| ≤ LX−j (1 ≤ j ≤ 3)},

with 1 ≤ q ≤ L, 0 ≤ aj ≤ q (1 ≤ j ≤ 3) and (q, a1, a2, a3) = 1. We then
define the complementary set of minor arcs m = [0, 1)3 \M(L).

It is straightforward to show that∫
M
|f (α;X )|12e(−α · h)dα = J(h)S(h)X 6 + o(X 6).

Thus, since the theorem shows that B6(X ; h) = J(h)S(h)X 6 + o(X 6), we
deduce that∫

m
|f (α;X )|12e(−α · h) dα = B6(X ; h)−

∫
M
|f (α;X )|12e(−α · h)dα

= o(B6).

Trevor D. Wooley∗ (Purdue University) Subconvexity Banff 01-09-2022 6 / 21



Why does this amount to subconvexity?
Define a Hardy-Littlewood dissection of the unit cube [0, 1)3 into major
and minor arcs. Put L = X 1/72, and define the set of major arcs M to be
the union of the arcs

M(q, a) = {α ∈ [0, 1)3 : |αj − aj/q| ≤ LX−j (1 ≤ j ≤ 3)},

with 1 ≤ q ≤ L, 0 ≤ aj ≤ q (1 ≤ j ≤ 3) and (q, a1, a2, a3) = 1. We then
define the complementary set of minor arcs m = [0, 1)3 \M(L).

It is straightforward to show that∫
M
|f (α;X )|12e(−α · h)dα = J(h)S(h)X 6 + o(X 6).

Thus, since the theorem shows that B6(X ; h) = J(h)S(h)X 6 + o(X 6), we
deduce that∫

m
|f (α;X )|12e(−α · h) dα = B6(X ; h)−

∫
M
|f (α;X )|12e(−α · h)dα

= o(B6).

Trevor D. Wooley∗ (Purdue University) Subconvexity Banff 01-09-2022 6 / 21



Why does this amount to subconvexity?
Define a Hardy-Littlewood dissection of the unit cube [0, 1)3 into major
and minor arcs. Put L = X 1/72, and define the set of major arcs M to be
the union of the arcs

M(q, a) = {α ∈ [0, 1)3 : |αj − aj/q| ≤ LX−j (1 ≤ j ≤ 3)},

with 1 ≤ q ≤ L, 0 ≤ aj ≤ q (1 ≤ j ≤ 3) and (q, a1, a2, a3) = 1. We then
define the complementary set of minor arcs m = [0, 1)3 \M(L).

It is straightforward to show that∫
M
|f (α;X )|12e(−α · h)dα = J(h)S(h)X 6 + o(X 6).

Thus, since the theorem shows that B6(X ; h) = J(h)S(h)X 6 + o(X 6), we
deduce that∫

m
|f (α;X )|12e(−α · h) dα = B6(X ; h)−

∫
M
|f (α;X )|12e(−α · h)dα

= o(B6).

Trevor D. Wooley∗ (Purdue University) Subconvexity Banff 01-09-2022 6 / 21



Why does this amount to subconvexity?
Define a Hardy-Littlewood dissection of the unit cube [0, 1)3 into major
and minor arcs. Put L = X 1/72, and define the set of major arcs M to be
the union of the arcs

M(q, a) = {α ∈ [0, 1)3 : |αj − aj/q| ≤ LX−j (1 ≤ j ≤ 3)},

with 1 ≤ q ≤ L, 0 ≤ aj ≤ q (1 ≤ j ≤ 3) and (q, a1, a2, a3) = 1. We then
define the complementary set of minor arcs m = [0, 1)3 \M(L).

It is straightforward to show that∫
M
|f (α;X )|12e(−α · h)dα = J(h)S(h)X 6 + o(X 6).

Thus, since the theorem shows that B6(X ; h) = J(h)S(h)X 6 + o(X 6), we
deduce that∫

m
|f (α;X )|12e(−α · h) dα = B6(X ; h)−

∫
M
|f (α;X )|12e(−α · h) dα

= o(B6).

Trevor D. Wooley∗ (Purdue University) Subconvexity Banff 01-09-2022 6 / 21



Theorem (W., 2022; arxiv:2202.05804)

Suppose that h ∈ Z3 and h1 6= 0. Then whenever X is sufficiently large,
one has

B6(X ; h) = J(h)S(h)X 6 + o(X 6),

in which 0 ≤ J(h)� 1 and 0 ≤ S(h)� 1. If the system above possesses
a non-singular real solution with positive coordinates, moreover, then
J(h)� 1. Likewise, if the system above possesses primitive non-singular
p-adic solutions for each prime p, then S(h)� 1.

What about the situation when h1 = 0?

Theorem (W., 2022; arxiv:2202.05804)

Let s be a natural number with s ≥ 6. Then the asymptotic formula

B6(X ; h) = J(h)S(h)X 6 + o(X 6),

holds when h2 6= 0, and X is sufficiently large in terms of h2.

(Uses work on small cap decouplings by Demeter, Guth and Wang (2020)).
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3. Related results
Work of Brandes and Hughes (2021) shows that when one of
(h1, h2) 6= (0, 0), then

Bs(X ; h) = o(X s) for 1 ≤ s ≤ 5.

Quantitatively, this has recently been improved in W., 2022
(arxiv:2202.14003) – but the work of Brandes and Hughes does not extend
to handle B6(X ; h).
Note that by applying the circle method, when s > 6 and appropriate real
and p-adic solubility conditions are satisfied, one has

Bs(X ; h)� X 2s−6,

and in such circumstances, subconvex estimates willl not be possible.
Also, when s > 1, there are values of h for which one has the lower bound

Bs(X ; h)� X s−1.

Just take hi = ai − bi for integers a 6= b. (Note: have h 6= 0).
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Let Js,k(X ; h) denote the number of integral solutions of the system

s∑
i=1

(x ji − y ji ) = hj (1 ≤ j ≤ k),

with 1 ≤ x, y ≤ X . Improving on Brandes and Hughes (2022) we obtain:

Theorem (W., 2022; arxiv:2202.14003)

Suppose that k ≥ 3 and h ∈ Zk \ {0}. Let l be the smallest index with
hl 6= 0. Then, whenever l < k and s is an integer with

1 ≤ s ≤ 1
2k(k + 1)− 1

2
− l

k − l + 1
,

one has
Js,k(X ; h)� X s−1/2+ε.

In particular, this holds when 1 ≤ l ≤ (k + 1)/3 and s < k(k + 1)/2.
Moreover, when 1 ≤ s ≤ l(l + 1)/2, one has

Js,k(X ; h)� X s−1+ε
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4. Ideas in the proof
Recall

f (α;X ) =
∑

1≤x≤X
e(α1x + α2x

2 + α3x
3).

When h ∈ Z3 and B ⊆ R is measurable, we put

Is(B;X ; h) =

∫
B

∫ 1

0

∫ 1

0
|f (α;X )|2se(−α · h) dα,

where dα = dα1 dα2 dα3. Thus, in particular, Is([0, 1);X ; h) = Bs(X ; h).

We also make use of the auxiliary generating function

g(α, θ;X ) =
∑

1≤y≤X
e
(
yθ + 2h1yα2 + (3h2y + 3h1y

2)α3

)
.

Lemma

Suppose that s ∈ N, h ∈ Z3 and B ⊆ R is measurable. Then

Is(B;X ; h)� X−1(logX )2s sup
Γ∈[0,1)

∫
B

∫ 1

0

∫ 1

0
|f (α; 2X )2sg(α, Γ;X )|dα.
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Lemma

Suppose that s ∈ N, h ∈ Z3 and B ⊆ R is measurable. Then

Is(B;X ; h)� X−1(logX )2s sup
Γ∈[0,1)

∫
B

∫ 1

0

∫ 1

0
|f (α; 2X )2sg(α, Γ;X )|dα.

This has essentially introduced a new variable underlying the exponential
sum g with an accompanying factor X ε−1, and so generates extra
cancellation. The idea originates with earlier work (W., 2012) on the
asymptotic formula in Waring’s problem.

To get an idea of how the proof here works, simplify to the situation where
s = 6, B = [0, 1) and apply orthogonality. The left hand side counts the
number of solutions with 1 ≤ xi ≤ X of

x3
1 − x3

2 + . . .+ x3
11 − x3

12 = h3

x2
1 − x2

2 + . . .+ x2
11 − x2

12 = h2

x1 − x2 + . . .+ x11 − x12 = h1
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s = 6, B = [0, 1) and apply orthogonality. The left hand side counts the
number of solutions with 1 ≤ xi ≤ X of

x3
1 − x3

2 + . . .+ x3
11 − x3

12 = h3

x2
1 − x2

2 + . . .+ x2
11 − x2

12 = h2

x1 − x2 + . . .+ x11 − x12 = h1
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1 − x2

2 + . . .+ x2
11 − x2

12 = h2

x1 − x2 + . . .+ x11 − x12 = h1

Shift by any y with 1 ≤ y ≤ X to obtain

(x1 + y)3 − (x2 + y)3 + . . .+ (x11 + y)3 − (x12 + y)3 = h3 + 3h2y + 3h1y
2

(x1 + y)2 − (x2 + y)2 + . . .+ (x11 + y)2 − (x12 + y)2 = h2 + 2h1y

(x1 + y)− (x2 + y) + . . .+ (x11 + y)− (x12 + y) = h1

with 1 ≤ y + xi ≤ 2X . Average over y and apply orthogonality to get

B6(X ; h)� X−1

∫
[0,1)3

|f (α; 2X )|12g(α, 0;X )dα.

(The conclusion of the lemma requires some standard harmonic analysis to
work over the set B in place of [0, 1).)
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g(α, θ;X ) =
∑

1≤y≤X
e
(
yθ + 2h1yα2 + (3h2y + 3h1y

2)α3

)
.

Lemma

Suppose that s ∈ N, h ∈ Z3 and B ⊆ R is measurable. Then

Is(B;X ; h)� X−1(logX )2s sup
Γ∈[0,1)

∫
B

∫ 1

0

∫ 1

0
|f (α; 2X )2sg(α, Γ;X )|dα.

Now seek to bound this mean value in terms of

Θm(X ; h) =

∫
[0,1)3

|f (α; 2X )2mg(α, 0;X )6|dα (m ∈ N).

Key difficulty here: the exponential sum g is only quadratic, and so less
efficient at saving powers of X than the cubic exponential sum f .

Lemma (essentially optimal)

When h ∈ Z3 and h1 6= 0, one has Θ5(X ; h)� X 10+ε.
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Lemma

When h ∈ Z3 and h1 6= 0, one has Θ1(X ; h)� X 4 log(2X ).

To see why this is true, observe that by applying orthogonality,∫ 1

0
|f (α; 2X )|2 dα1 ≤ 2X .

Since g(α;X ) is independent of α1,

Θ1(X ; h) ≤ 2X

∫
[0,1)2

|g(0, α2, α3;X )|6 dα2 dα3.

The integral here counts the number of integral solutions T0(X ) of

3h1

3∑
i=1

(x2
i − y2

i ) + 3h2

3∑
i=1

(xi − yi ) = 0,

2h1

3∑
i=1

(xi − yi ) = 0,

with 1 ≤ xi , yi ≤ X (1 ≤ i ≤ 3).
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The integral here counts the number of integral solutions T0(X ) of

3h1

3∑
i=1

(x2
i − y2

i ) + 3h2

3∑
i=1

(xi − yi ) = 0,

2h1

3∑
i=1

(xi − yi ) = 0,

with 1 ≤ xi , yi ≤ X (1 ≤ i ≤ 3).

Since, by hypothesis, one has h1 6= 0, we see that T0(X ) counts the
integral solutions of the Vinogradov system of equations

3∑
i=1

(x ji − y ji ) = 0 (j = 1, 2),

with the same conditions on x and y. Thus T0(X )� X 3 log(2X ), whence

Θ1(X ; h)� X · X 3 logX � X 4 logX .
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Lemma

When h ∈ Z3 and h1 6= 0, one has Θ1(X ; h)� X 4 log(2X ).

We have to estimate

Θ5(X ; h) =

∫
[0,1)3

|f (α; 2X )10g(0, α2, α3;X )6|dα.

Here, as a guide, we can observe that a version of Weyl’s inequality shows
that f (α; 2X )� X 3/4+ε on a set of minor arcs. By adapting a pruning
argument to the present situation, one may show that this guideline
applies on average for all α, yielding

Θ5(X ; h)� (X 3/4+ε)8

∫
[0,1)3

|f (α; 2X )2g(0, α2, α3;X )6|dα

� X 6+8εΘ1(X ; h)� X 10+9ε.

(Optimal estimate – saves X 6−ε).
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When Q is a real parameter with 1 ≤ Q ≤ X , we define the set of major
arcs M(Q) to be the union of the arcs

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ QX−3},

with 0 ≤ a ≤ q ≤ Q and (a, q) = 1. Also, put m(Q) = [0, 1) \M(Q).

From our earlier lemma (simplifying slightly),

I6(m(Q);X ; h)� X ε−1

∫
m(Q)

∫ 1

0

∫ 1

0
|f (α; 2X )12g(α, 0;X )|dα.

Apply Hölder’s inequality to obtain

I6(m(Q);X ; h)�
(

sup
α3∈m(Q)

sup
(α1,α2)∈[0,1)2

|f (α; 2X )|
)1/3

U
5/6
1 U

1/6
2 ,

where

U1 =

∫
[0,1)3

|f (α; 2X )|12 dα and U2 =

∫
[0,1)3

|f (α; 2X )10g(α, 0;X )6|dα.
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Apply Hölder’s inequality to obtain

I6(m(Q);X ; h)�
(

sup
α3∈m(Q)

sup
(α1,α2)∈[0,1)2

|f (α; 2X )|
)1/3

U
5/6
1 U

1/6
2 ,

where

U1 =

∫
[0,1)3

|f (α; 2X )|12 dα� X 6+ε

and
U2 = Θ5(X ; h)� X 10+ε.

Since Weyl’s inequality yields

sup
α3∈m(Q)

sup
(α1,α2)∈[0,1)2

|f (α; 2X )| � X 1+εQ−1/4,

we deduce that
I6(m(Q);X ; h)� X 6+εQ−1/12.

This is what provides our subconvex minor arc estimate. For the major
arcs, use technical pruning arguments and standard major arc technique.
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5. Further results

Define
fk(α;X ) =

∑
1≤x≤X

e(α1x + . . .+ αkx
k).

We have formulated an extension to the main conjecture in Vinogradov’s
mean value theorem as follows.

Conjecture (W., 2022; arxiv:2202.14003)

When k ∈ N, B ⊆ [0, 1)k is measurable and s ≥ 1
4k(k + 1) + 1,∫

B
|fk(α;X )|2s dα� X ε

(
X smes(B) + X 2s−k(k+1)/2

)
.

(Implies generalised small cap estimates of wide generality).

Notice that this is not a subconvex estimate.
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Conjecture (W., 2022; arxiv:2202.14003)

When k ∈ N, B ⊆ [0, 1)k is measurable and s ≥ 1
4k(k + 1) + 1,∫

B
|fk(α;X )|2s dα� X ε

(
X smes(B) + X 2s−k(k+1)/2

)
.

We now consider the twisted mean value

Bk(X ; h) =

∫
[0,1)k

|fk(α;X )|k(k+1)e(−α · h)dα,

in which α · h = α1h1 + . . .+ αkhk .

Theorem (W., 2022; arxiv:2202.14003)

Assume the above conjecture. Suppose that h ∈ Zk and hl 6= 0 for some
1 ≤ l < k. Then when X is sufficiently large in terms of h,

Bk(X ; h) = Jk(h)Sk(h)X k(k+1)/2 + o(X k(k+1)/2),

in which 0 ≤ Jk(h)� 1 and 0 ≤ Sk(h)� 1.
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THE END
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