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Finitely generated domains

We consider Diophantine equations with unknowns taken from a finitely
generated domain of characteristic 0, i.e.

A = Z[z1, . . . , zr ] = {f (z1, . . . , zr ) : f ∈ Z[Z1, . . . ,Zr ]} ⊃ Z.

In case that z1, . . . , zr are all algebraic over Q, then A is a subring of the
ring of S-integers of a number field K , i.e.,

OK ,S = OK [(p1 · · · pt)−1],

where OK is the ring of integers of K and S = {p1, . . . , pt} a finite set of
prime ideals of OK .

We consider the most general case where z1, . . . , zr may be algebraic or
transcendental over Q.
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Equations over finitely generated domains

Lang (1960, see his ’Fundamentals of Diophantine geometry’) was the
first to prove finiteness results for various classes of Diophantine
equations over arbitrary f.g. domains A of char. 0, e.g., unit equations
ax + by = c in x , y ∈ A∗ with a, b, c ∈ A \ {0}, polynomial equations
P(x , y) = 0 in x , y ∈ A with P ∈ A[X ,Y ] but his proofs are ineffective.

Aim. To prove effective finiteness results over an arbitrary finitely
generated domain of char. 0 for certain classes of equations (i.e., results
that imply algorithms to find all solutions in principle, we do not care
about practical solubility).

There are various effective results for Diophantine equations over the
S-integers of a number field (e.g., unit equations, Thue equations, hyper-
and superelliptic equations, ...), all obtained by means of Baker’s method
(lower bounds for linear forms in logarithms).

Győry (1983/84) developed a method to prove effective results over a
more general class of f.g. domains containing transcendental elements.
Ev. and Győry (2013) extended Győry’s method to arbitrary f.g. domains
of char. 0.

In this talk we give an outline of their method, and to give some
applications.



4/34

Equations over finitely generated domains

Lang (1960, see his ’Fundamentals of Diophantine geometry’) was the
first to prove finiteness results for various classes of Diophantine
equations over arbitrary f.g. domains A of char. 0, e.g., unit equations
ax + by = c in x , y ∈ A∗ with a, b, c ∈ A \ {0}, polynomial equations
P(x , y) = 0 in x , y ∈ A with P ∈ A[X ,Y ] but his proofs are ineffective.

Aim. To prove effective finiteness results over an arbitrary finitely
generated domain of char. 0 for certain classes of equations (i.e., results
that imply algorithms to find all solutions in principle, we do not care
about practical solubility).

There are various effective results for Diophantine equations over the
S-integers of a number field (e.g., unit equations, Thue equations, hyper-
and superelliptic equations, ...), all obtained by means of Baker’s method
(lower bounds for linear forms in logarithms).
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Representation of finitely generated domains

To make sense of effective methods to solve Diophantine equations over
finitely generated domains, we need ways to represent such a domain and
to represent its elements.

Let A = Z[z1, . . . , zr ] be a f.g. domain of char. 0. Define the ideal

I := {f ∈ Z[Z1, . . . ,Zr ] : f (z1, . . . , zr ) = 0}.

By Hilbert’s basis theorem, there are f1, . . . , fM ∈ Z[Z1, . . . ,Zr ] such that
I = (f1, . . . , fM). We use {f1, . . . , fM} to represent A.

Note that

A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM), zi 7→ Zi mod (f1, . . . , fM).

Fact. A is an integral domain of characteristic 0
⇐⇒ I = (f1, . . . , fM) is a prime ideal of Z[Z1, . . . ,Zr ] with I ∩ Z = (0).

There are methods to check this, given f1, . . . , fM .



6/34

Representation of finitely generated domains

To make sense of effective methods to solve Diophantine equations over
finitely generated domains, we need ways to represent such a domain and
to represent its elements.

Let A = Z[z1, . . . , zr ] be a f.g. domain of char. 0. Define the ideal

I := {f ∈ Z[Z1, . . . ,Zr ] : f (z1, . . . , zr ) = 0}.

By Hilbert’s basis theorem, there are f1, . . . , fM ∈ Z[Z1, . . . ,Zr ] such that
I = (f1, . . . , fM). We use {f1, . . . , fM} to represent A.

Note that

A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM), zi 7→ Zi mod (f1, . . . , fM).

Fact. A is an integral domain of characteristic 0
⇐⇒ I = (f1, . . . , fM) is a prime ideal of Z[Z1, . . . ,Zr ] with I ∩ Z = (0).

There are methods to check this, given f1, . . . , fM .



7/34

Representatives for elements

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/I with I = (f1, . . . , fM)
be a finitely generated domain of characteristic 0.

We call α̃ ∈ Z[Z1, . . . ,Zr ] a representative for α ∈ A if α = α̃(z1, . . . , zr ),
i.e., if α corresponds to the residue class α̃ mod I.

We perform computations in A by doing computations on representatives.

For this, we must be able to check whether α̃, α̃′ ∈ Z[Z1, . . . ,Zr ]
represent the same element of A, i.e., α̃− α̃′ ∈ I.

This can be done by an ideal membership algorithm for Z[Z1, . . . ,Zr ],
i.e., an algorithm that decides for any given g , f1, . . . , fM ∈ Z[Z1, . . . ,Zr ]
whether g belongs to the ideal (f1, . . . , fM) of Z[Z1, . . . ,Zr ].

Such algorithms exist since the 1960s. The most recent one, due to
Aschenbrenner (2004), was of crucial importance in our investigations.
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Aschenbrenner’s ideal membership algorithm

For f ∈ Z[Z1, . . . ,Zr ], we define

deg f := total degree of f ,

h(f ) := log max |coeff. of f | = logarithmic height of f

Theorem (Aschenbrenner, 2004)

Let g , f1, . . . , fM ∈ Z[Z1, . . . ,Zr ] have total degrees at most d and
logarithmic heights at most h, where d ≥ 1, h ≥ 1.
Suppose that g ∈ (f1, . . . , fM).

Then there are u1, . . . , ur ∈ Z[Z1, . . . ,Zr ] with g = u1f1 + · · ·+ uM fM and

deg ui ≤ C1 := (4d)(6r)
r

h, h(ui ) ≤ C2 := (4d)(6r)
r+1

hr+1

for i = 1, . . . ,M.
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Solving Diophantine equations over finitely
generated domains

Let A ∼= Z[Z1, . . . ,Zr ]/I with I = (f1, . . . , fM) be a f.g. domain of char.
0.

We consider Diophantine equations

(*) P(x1, . . . , xm) = 0 in x1, . . . , xm ∈ A where P ∈ A[X1, . . . ,Xm].

Effectively solving (∗) means producing a list, consisting of a tuple of
representatives x̃1, . . . , x̃m ∈ Z[Z1, . . . ,Zr ] for each solution x1, . . . , xm.

To find all solutions of (*) it suffices to give an explicit upper bound for
the sizes (to be defined) of x1, . . . , xm.
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Sizes

The size of a polynomial f ∈ Z[Z1, . . . ,Zr ] is defined by

s(f ) := max(1, deg f , h(f )),

where
deg f is the total degree of f ,

h(f ) := log max |coeff. of f | is the logarithmic height of f .

The size of α ∈ A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) is given by

s(α) := inf
{
s(α̃) : α̃ ∈ Z[Z1, . . . ,Zr ] is a representative for α

}
.
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Solving Diophantine equations over finitely
generated domains by means of size bounds

Let A ∼= Z[Z1, . . . ,Zr ]/I with I = (f1, . . . , fM) be a f.g. domain of char.
0. Consider the Diophantine equation

(*) P(x1, . . . , xm) = 0 in x1, . . . , xm ∈ A,

where P =
∑

a(i)X i1
1 · · ·X im

m ∈ A[X1, . . . ,Xm].

Suppose we are given a representative ã(i) ∈ Z[Z1, . . . ,Zr ] for each a(i),

and put P̃ :=
∑

ã(i)X i1
1 · · ·X im

m .

Fact. We can solve (*) if we can compute a bound C = C (f1, . . . , fM , P̃)
such that for all x1, . . . , xm with (*) we have s(x1), . . . , s(xm) ≤ C .

Indeed, finding the solutions x1, . . . , xm ∈ A of (*) is equivalent to finding
representatives x̃1, . . . , x̃m ∈ Z[Z1, . . . ,Zr ] of size ≤ C such that

(+) P̃(x̃1, . . . , x̃m) ∈ I.

These can be found by going through the finitely many tuples
x̃1, . . . , x̃m ∈ Z[Z1, . . . ,Zr ] of size ≤ C and check whether they satisfy
(+) using an ideal membership algorithm for Z[Z1, . . . ,Zr ].
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How to compute size bounds

Given an equation over a f.g. domain A of char. 0, one maps this by
means of specializations to a finite number of equations over number
fields and over function fields, computes upper bounds for the heights of
the image equations (e.g., by Baker’s method for number fields and
Mason’s abc-theorem for function fields), and combines these into an
upper bound for the sizes of the solutions of the equation over A by
means of the effective specialization lemma (discussed later).

Roughly speaking, if one can compute height bounds for the solutions of
Diophantine equations of a particular type over number fields and also
over function fields, then one can compute size bounds for the solutions
of such equations over f.g. domains.
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Unit equations

Let A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of char. 0 and let
a, b, c be non-zero elements of A. Consider the unit equation

(U) ax + by = c in x , y ∈ A∗ (group of units of A)

Győry (1979) gave explicit upper bounds for the heights of x , y in case
that A is the ring of S-integers in a number field (by Baker’s method)
and Mason (1983) proved an analogue for function fields in one variable
(following from his celebrated abc-theorem). By combining these with
the effective specialization lemma we obtain size bounds for the solutions
of (U).

Theorem (Ev., Győry, 2013)

Suppose that f1, . . . , fM and some representatives of a, b, c have total
degrees ≤ d and logarithmic heights ≤ h, where d ≥ 1, h ≥ 1.

Then for all solutions x , y ∈ A∗ of (U) we have

s(x), s(y) ≤ exp
(
(2d)κ

r
h
)
,

where κ is an effectively computable absolute constant > 1.
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Further results

For the equations listed below, there are height bounds for the solutions
over the S-integers of a number field, and also over function fields,
obtained via Baker’s method and Mason’s abc-theorem.

Using the effective specialization lemma these can be combined to size
bounds similar to those for unit equations for the solutions of the
equations over a f.g. domain A of char. 0.

I (Bérczes, Ev., Győry, 2014) Thue equations F (x , y) = δ in x , y ∈ A
where F ∈ A[X ,Y ] is a binary form and δ ∈ A \ {0};

I (Bérczes, Ev., Győry, 2014) hyper- and superelliptic equations
yn = f (x) in x , y ∈ A, Schinzel-Tijdeman equation y z = f (x) in
x , y ∈ A, z ∈ Z>0 where f ∈ A[X ];

I (Koymans, 2015) Catalan equation xm − yn = 1 in x , y ∈ A,
m, n ∈ Z>0;

I (Bérczes, 2015) generalized unit equations f (x , y) = 0 in x , y ∈ A∗

where f ∈ A[X ,Y ] (see his talk);
I (Ev., Győry, 2022) decomposable form equations F (x1, . . . , xm) = δ

in x1, . . . , xm ∈ A where δ ∈ A \ {0} and F ∈ A[X1, . . . ,Xm] is a
decomposable form, i.e., it factorizes into linear forms over an
algebraic extension of the quotient field of A.
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I (Ev., Győry, 2022) decomposable form equations F (x1, . . . , xm) = δ

in x1, . . . , xm ∈ A where δ ∈ A \ {0} and F ∈ A[X1, . . . ,Xm] is a
decomposable form, i.e., it factorizes into linear forms over an
algebraic extension of the quotient field of A.



24/34

Ingredients of the effective specialization lemma

Let A = Z[z1, . . . , zr ] be a finitely generated domain of characteristic 0,
and K its quotient field.

Specializations.
If ϕ : A→ Q is a specialization, then ϕ(A) is contained in the ring of
Sϕ-integers of a number field Lϕ for some Lϕ, Sϕ depending on ϕ.

Most of our applications require that ϕ(e) 6= 0 for a particular non-zero
element e of A.

Function fields.
Assume wlog that z1, . . . , zq are algebraically independent and that
zq+1, . . . , zr are algebraic over Q(z1, . . . , zq). Let

ki := Q(z1, . . . , zi−1, zi+1, . . . , zq), Li := kiK (i = 1, . . . , q).

Note that A ⊂ Li , and that Li is a finite extension of ki (zi ), i.e., a
function field of transcendence degree 1 over ki .
The function field height associated to Li is given by
HLi (α) := [Li : ki (α)] for α ∈ Li \ ki .
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Effective specialization lemma

Let A = Z[z1, . . . , zr ] ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of
char. 0 and K its quotient field.

Let L1, . . . , Lq be the function fields from the previous slide.

Let e ∈ A \ {0} and ẽ ∈ Z[Z1, . . . ,Zr ] a representative for e.
Suppose f1, . . . , fM , ẽ have total degrees ≤ d and log. heights ≤ h.

Further, let
HLi the function field height on Li ,
hQ the absolute logarithmic Weil height on Q,

s(α) := inf{max
(
1, deg α̃, h(α̃)

)
: α̃ repr. of α} the size of α ∈ A.

Effective specialization lemma

Let α ∈ A. Let max1≤i≤q HLi (α) ≤ T. Then one can compute:

- a finite set S of specializations ϕ : A→ Q depending only on r , d , h,T
such that ϕ(e) 6= 0 for ϕ ∈ S;

- an effective upper bound for s(α) depending only on r , d , h, T and
max

{
hQ(ϕ(α)) : ϕ ∈ S

}
.
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- an effective upper bound for s(α) depending only on r , d , h, T and
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{
hQ(ϕ(α)) : ϕ ∈ S

}
.

α → T → S →max
{
hQ(ϕ(α)) : ϕ ∈ S

}
↘ ↙

bound for s(α)

Győry (1983/84) basically proved a version of this lemma for a special class
of domains A.

We extended this to arbitrary finitely generated domains A of characteristic
0 using the work of Aschenbrenner (2004).
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Effective specialization lemma

Let α ∈ A. Let max1≤i≤q HLi (α) ≤ T. Then one can compute:

- a finite set S of specializations ϕ : A→ Q depending only on r , d , h,T
such that ϕ(e) 6= 0 for ϕ ∈ S;

- an effective upper bound for s(α) depending only on r , d , h, T and
max

{
hQ(ϕ(α)) : ϕ ∈ S

}
.

α → T → S →max
{
hQ(ϕ(α)) : ϕ ∈ S

}
↘ ↙

bound for s(α)

To estimate s(x1), . . . , s(xm) for the solutions (x1, . . . , xm) ∈ Am of a Dio-
phantine equation, one first computes an upper bound T for maxi,j HLi (xj),
then S, then an upper bound for maxj,ϕ∈S hQ(ϕ(xj)), and finally an upper
bound for maxj s(xj).
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The proof of the result on unit equations

Let A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of char. 0 and let
a, b, c be non-zero elements of A. Consider the equation

(U) ax + by = c in x , y ∈ A∗ (group of units of A)

Let d ≥ 1 be an upper bound for the total degrees and h ≥ 1 an upper
bound for the logarithmic heights of f1, . . . , fM and for representatives for
a, b, c .

1. Compute an upper bound T for the function field heights HLi (x),
HLi (y) for i = 1, . . . , q, using Mason’s abc-theorem for function
fields.

2. Take e = abc and compute the finite set S of specializations A→ Q
from the effective specialization lemma, with ϕ(abc) 6= 0 for ϕ ∈ S;
each of these specializations maps (U) to an S-unit equation in
some number field.

3. Compute an upper bound for max{hQ(ϕ(x)), hQ(ϕ(y)) : ϕ ∈ S}
using Baker theory (e.g., Győry, Yu (2006)).

4. Using the effective specialization lemma, compute upper bounds

s(x), s(y) ≤ exp
(
(2d)κ

r
h
)
.



30/34

The proof of the result on unit equations

Let A ∼= Z[Z1, . . . ,Zr ]/(f1, . . . , fM) be a f.g. domain of char. 0 and let
a, b, c be non-zero elements of A. Consider the equation

(U) ax + by = c in x , y ∈ A∗ (group of units of A)

Let d ≥ 1 be an upper bound for the total degrees and h ≥ 1 an upper
bound for the logarithmic heights of f1, . . . , fM and for representatives for
a, b, c .

1. Compute an upper bound T for the function field heights HLi (x),
HLi (y) for i = 1, . . . , q, using Mason’s abc-theorem for function
fields.

2. Take e = abc and compute the finite set S of specializations A→ Q
from the effective specialization lemma, with ϕ(abc) 6= 0 for ϕ ∈ S;
each of these specializations maps (U) to an S-unit equation in
some number field.

3. Compute an upper bound for max{hQ(ϕ(x)), hQ(ϕ(y)) : ϕ ∈ S}
using Baker theory (e.g., Győry, Yu (2006)).
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Future plans

Theorem (Siegel, Lang)

Let A = Z[z1, . . . , zr ] be a f.g. domain of char. 0, P ∈ A[X ,Y ] an
absolutely irreducible polynomial and CP the algebraic curve given by
P(x , y) = 0.
Suppose either CP is of genus ≥ 1, or CP is of genus 0 and has at least
three points at infinity. Then P(x , y) = 0 has only finitely many solutions
in x , y ∈ A.

Siegel proved this in 1929 for A the ring of integers of a number field,
and Lang proved in 1960 the general case. The proofs of Siegel and Lang
are ineffective.

In certain cases, with A the ring of S-integers of a number field, there are
effective results, with bounds for the heights of x , y , e.g., if CP is of
genus 0 or 1.

We would like to extend these to arbitrary f.g. domains A of char. 0,
with bounds for the sizes s(x), s(y). Our effective specialization lemma is
not sufficient in this case.
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Thank you for your
attention.


