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Plan of the talk

• A (very) brief history of Skolem’s conjecture

• The proof of Skolem’s conjecture for equations xn − byk1
1 · · · ykℓ

ℓ = ±1

• The proof of Skolem’s conjecture for equations xn + byn = ±zn

The new results are joint with A. Bérczes, F. Luca, R. Tijdeman.
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Skolem’s conjecture

Skolem’s conjecture: if an exponential Diophantine equation is not
solvable, then it is not solvable modulo m for some m

Schinzel (1975): The conjecture is true for equations

bα1
1 · · · bαℓ

ℓ = c.

Bartolome, Bilu and Luca (2013): The conjecture is true for
equations of the form

a1bα1
1 + · · ·+ aℓb

αℓ
ℓ = 0,

if the rank of the multiplicative group generated by b1, . . . ,bℓ is one.

These results also hold over number fields.
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New results

Theorem 1 (Bérczes, H, Tijdeman)
Let b, x , y1, . . . , yℓ be given integers. Then there exists a modulus m
such that the congruence

xn − byk1
1 · · · ykℓ

ℓ ≡ ±1 (mod m) (1)

has precisely the same solutions in non-negative integers n, k1, . . . , kℓ
as the equation

xn − byk1
1 · · · ykℓ

ℓ = ±1 (2)

has.

This result extends an earlier theorem of H and Tijdeman, concerning
(2) with b = ℓ = 1 and one of x , y being a prime.
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Some remarks

Remark 1
It will be clear from the proof that given b, x , y1, . . . , yℓ, the modulus m
can be explicitly constructed, and can be bounded in terms of
b, x , y1, . . . , yℓ.

Remark 2
Theorem 1 covers the famous equations xn − yk = 1 and xn−1

x−1 = yk

for fixed x , y.

Remark 3
Theorem 1 can be reformulated for a related class of equations, having
no solutions at all. E.g., there is an m such the congruence

xn − yk ≡ 1 (mod m) (x , y fixed, (x , y) ̸= (3,2))

has no solutions in integers n > 1, k > 1.
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Strategy of the proof

Recall the congruence and the equation

xn − byk1
1 · · · ykℓ

ℓ ≡ ±1 (mod m) (1)

xn − byk1
1 · · · ykℓ

ℓ = ±1 (2)

For every m all solutions of (2) are solutions of (1).

So it suffices to prove that for certain m every solution of (1) is a
solution of (2).

For fixed b, x , y1, . . . , yℓ, write S∞ for the set of solutions of (2) and for
any modulus m let Sm be the set of solutions of (1).

Then S∞ ⊆ Sm for any m ≥ 2.
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Strategy of the proof - continued

On the other hand, if m1,m2 | m then Sm ⊆ Sm1 ∩ Sm2 . So if

t⋂
i=1

Smi = S∞

then the following choice is appropriate:

m :=
t∏

i=1

mi .

If the terms of all the solutions of (1) are bounded modulo m′, then we
may choose m′′ sufficiently large so that modulo m = m′m′′, (1) and (2)
have exactly the same solutions.
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Strategy of the proof - continued

Let S be a finite set of primes, and write US for the set of integers
having all their prime divisors in S.

The following theorem will play an important role later on.

Theorem A
The equation v1 − v2 = c where c is a non-zero integer has only finitely
many solutions in v1, v2 ∈ US, whose number can be effectively
bounded in terms of S, c. (See results of Evertse, Győry and others.)
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Proof sketch for xn − byk = 1

We focus on the case ℓ = 1 and +1 on the RHS:

xn − byk = 1. (3)

The case −1 on the RHS is more involved but similar, and ℓ > 1 can
be handled inductively.

If |x | ≤ 1, |y | ≤ 1 or gcd(x ,by) > 1 then the situation is simple.

Consider xn − byk = 1 for fixed b, x , y . It is an S-unit equation.

Write N for the number of solutions.
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Proof sketch for xn − byk = 1

Let s1 be the smallest integer such that

|y |s1 > |x |+ 1.

Observe that s1 can be easily expressed in terms of x , y .

If k < s1, then k is bounded and can be considered to be fixed. So we
may suppose k ≥ s1.

Then we get
xn ≡ 1 (mod |y |s1).
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Proof sketch for xn − byk = 1

Thus the order o1 of x modulo |y |s1 must divide n.

This order is not one, so

2 ≤ o1 ≤ |y |s1 .

Let now s2 be the smallest integer such that

|y |s2 > |x |o1 + 1.

Observe that o1 and s2 are bounded in terms of x , y .

If k < s2 we can proceed as in the case k < s1. So we may assume
that k ≥ s2.
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Proof sketch for xn − byk = 1

Hence we obtain
xn ≡ 1 (mod |y |s2).

Therefore the order o2 of x modulo |y |s2 must also divide n.

We have o1 | o2, too.

Further, by our choice of s2 we see that

1 < o1 < o2 ≤ |y |s2 .

L. Hajdu (University of Debrecen) Skolem’s conjecture for three term equations 28 August - 2 September, 2022 12 / 20



Proof sketch for xn − byk = 1

Continuing this procedure, we have two options.

Either the process terminates in at most N steps, yielding modulo |y |si

for some i ≤ N that k is bounded in terms of b, x , y .

Then we are done.

Or, after N steps we obtain that there exist divisors o1, . . . ,oN of n with

1 < o1 < · · · < oN ≤ |y |sN

where sN is bounded in terms of x , y , such that

o1 | o2, . . . ,oN−1 | oN ,oN | n.
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Proof sketch for xn − byk = 1

Put o0 = 1 and consider (3) modulo xoi − 1 for i = 0,1, . . . ,N.

We get that for k ≥ sN

byk ≡ 0 (mod xoi − 1)

holds, hence xoi − 1 ∈ US (i = 0,1, . . . ,N).

However, then there are N + 1 solutions, contradicting the definition of
N. (Note that it is a funny ’global-local principle’.)

So taking the modulus
m′ = |y |sN

we get that in all solutions of xn − byk = 1 modulo m′, we have k < sN .

From this, as we already mentioned, our claim follows.
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New results

Theorem 2 (H, Luca, Tijdeman)
Let x , y , z,b be integers with gcd(x , y , z) = 1 and |y | ≠ 1, and let
ε ∈ {−1,1}. Then there exists a modulus m such that the congruence

xn + byn ≡ εzn (mod m)

has the same solutions in non-negative integers n as the equation

xn + byn = εzn.

Further, such a modulus m can be effectively calculated in terms of
x , y , z,b.

Remark 4
In fact we obtained a more general, but also more technical result.
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Proof sketch for xn + byn = zn

We restrict to the equation xn + byn = zn (i.e, ε = 1), the case ε = −1
is similar.

The cases where |x | = |z| = 1, bxyz = 0 or when x ,by , z are not
pairwise coprime can be handled easily.

Also, if we can find a modulus M such that the solutions n to
xn + byn ≡ zn (mod M) are bounded, we are easily done.

A proof similar to that of Theorem 1 would work.

However, now a simpler argument is available, related to recurrence
sequences and primitive divisors.
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Proof sketch for xn + byn = zn

Let p | y ; then p ∤ xz.

Let o(p) be the order of appearance of p in {xn − zn}n≥0.

Write xo(p)− zo(p) = pλpq for some integers λp ≥ 1 and q coprime to p.

Let K = ω(by) + 6, where ω(N) denotes the number of distinct prime
factors of N.

Let pλp+K | m, and assume that xn + byn ≡ zn (mod m). If n is a
solution with n ≥ λp + K then pλp+K | xn − zn.

By the properties of o(p) we have o(p)pK−1 | n. Thus xo(p)pk − zo(p)pk

divides xn − zn for k = 0, . . . ,K − 1.
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Proof sketch for xn + byn = zn

By a classical result of Zsigmondy, for each k ≥ 0 with at most 5
exceptions the number xo(p)pk −zo(p)pk

has a primitive prime divisor qk .

Set qk = 1 if k is an exception. Then xn − zn is a multiple of
Q := q0 · · · qK−1.

Look at the congruence xn + byn ≡ zn (mod pλp+K Q).

If n is a solution with n ≥ λp + K , then n is divisible by o(p)pK−1, so
xn − zn is divisible by Q.

Thus byn is divisible by Q. This is false, since ω(Q) ≥ K − 5 > ω(byn).
Therefore n < λp + K .
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Two interesting corollaries

Corollary 1
Let x , y be positive integers. Then there exists a modulus m such that

xk − y ℓ ≡ 1 (mod m)

has no solutions in integers k , ℓ with k , ℓ ≥ 2, (k , ℓ) ̸= (2,3) for
(x , y) = (3,2). Further, such a modulus m can be effectively calculated
in terms of x , y.

Corollary 2
Let x , y , z be coprime positive integers. Then there exists a modulus m
such that

xn + yn ≡ zn (mod m)

has no solution in integer n with n ≥ 3. Further, such a modulus m can
be effectively calculated in terms of x , y , z.
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