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I. Random polynomials, mixing times, Lehmer.
Il. Height gap, uniform expanders.

I1l. Random groups, character varieties.
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Irreducibility of random polynomials

Odlyzko and Poonen '93 conjectured that most polynomials of the
form

P=1+> aX
i=1

where a; € {0, 1} are irreducible.
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Irreducibility of random polynomials

Odlyzko and Poonen '93 conjectured that most polynomials of the
form

P=1+> aX
i=1

where a; € {0, 1} are irreducible.

Recently two approaches have emerged about this question.
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Irreducibility of random polynomials

e Konyagin (1999) showed that for 0,1 polynomials

P(P is irreducible ) > 1/ log n.
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Irreducibility of random polynomials

e Konyagin (1999) showed that for 0,1 polynomials
P(P is irreducible ) > 1/ log n.
e Bary-Soroker and Kozma (2017) showed that if the distribution

of coefficients is uniform over [1, H] and H is divisible by at least 4
distinct primes, then

P(P is irreducible ) =100 1.
e B.+ Varju (2018): GRH implies the Odlyzko-Poonen conjecture.

e Koukoulopoulos, Bary-Soroker and Kozma (2020) showed that
for 0,1 polynomials

P(P is irreducible ) > ¢ > 0.
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Irreducibility of random polynomials

e Koukoulopoulos, Bary-Soroker and Kozma showed much more.
In particular they showed that for n large (say > np)

P(P is irreducible ) > 1 —1/n°%)

under very mild assumptions on the probability measure, e.g. for
independent coefficients with uniform distribution on [—H, H],
H > 17 conditionally on P(0) # 0.

— the proof is a remarkable tour-de-force (exploiting recent
advances on random permutations, level distribution for integers
with missing digits, and more). They also show that the Galois
group is large (i.e. at least Alt(n))
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Irreducibility of random polynomials

Assume the a;’s are independent and distributed according to a
common law on [—H, H] C Z and set:

n
P=> aX
i=0
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Irreducibility of random polynomials

Assume the a;’s are independent and distributed according to a
common law on [—H, H] C Z and set:

n
P=> aX
i=0

Theorem (B.-Varji '18)

Assume GRH. Then with probability at least 1 — exp(—O( v/ )

log n
P = ®P where
(i) P is irreducible,

(ii) deg(®) = O(+/n) and ® is a product of cyclotomic factors,
(i) moreover the Galois group of P contains Alt(n).
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Irreducibility of random polynomials: proof method

Step 1
If P is an irreducible polynomial, then as X — +o0,

Eperx,2x](# roots of P mod p) = 1 4 error

Note: this is an instance of the Prime Ideal Theorem as roots of P
mod p correspond to prime ideals of Kp := Q[X]/(P) of norm p:
there are roughly as many prime ideals of prime norm < X as there
are rational primes < X.

Note: the quality of the error term depends on the zeroes of the
Dedekind zeta function (k.

In particular, for an arbitrary polynomial P,

Epeix,2x](# roots of P mod p) = #irred. factors of P + error
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Irreducibility of random polynomials: proof method

Step 2
On the other hand, for a given prime p, averaging over P yields:

Ep(# roots of P mod p)) = Z Pp(P(a) =0) ~ p.ll) ~1

acF,
provided Pp(P(a) = 0) ~ % for all (most) a's.

Note that the random variable P(a) on F, is the n-th step of a
random walk/Markov chain xx;1 = axx + ak, where the a;'s are
the random coefficients of P.

Showing Pp(P(a) = 0) ~ % amounts to prove that the random
walk reaches equilibrium before time n, i.e.

mixing time on F, < n
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Irreducibility of random polynomials: mixing times

But Konyagin proved (using Dobrowolski's bound towards
Lehmer's conjecture) that the mixing time of the random walk
P P(a) is at most (log p)>*°(!) | provided a € F,, has
multiplicative order > (log p)'+°o(),

— dividing out the cyclotomic factors and those with small Mahler
measure, we can discard the a's in F, with small multiplicative
order.

— putting Steps 1 and 2 together we can take n ~ (log p)2+°(1),
or equivalently p ~ exp(X1/27°(1)). The double averaging (over P

and p) of the number Np(p) of roots mod p yields:

Ep(#irred. factors of P) = EpE,c[x 2x1Np(p)
= Epeix2x)EpNp(p) ~ 1 QED

— GRH is used in controlling the error term in the Prime Ideal
Theorem: O(X%Jr"(l) log Disc(P)) (Stark, Odlyzko)
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Irreducibility of random polynomials

Theorem (B.-Varji '18)

Assume GRH. Then with probability at least 1 — exp(—O( v/ )

log n

P = ®P where

(i) P is irreducible,
(ii) deg(®) = O(+/n) and ® is a product of cyclotomic factors,
(iii) moreover the Galois group of P contains Alt(n).

Remark: It is plausible that the error term here can actually be
taken to be exponential in n.
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Irreducibility of random polynomials

Theorem (B.-Varji '18)

Assume GRH. Then with probability at least 1 — exp(—O( v/ )

log n

P = ®P where

(i) P is irreducible,
(ii) deg(®) = O(+/n) and ® is a product of cyclotomic factors,
(iii) moreover the Galois group of P contains Alt(n).

A

Remark: It is plausible that the error term here can actually be
taken to be exponential in n. But this would imply the Lehmer
conjecture.
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Lehmer conjecture

The Mahler measure of a monic polynomial P € Z[X] is defined as
the modulus of the product of its roots located outside the unit

disc, i.e.
M(P):= TT 6,
|0i]>1
when
P(X) :=](X - 6)).

i=1
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Lehmer conjecture

The Mahler measure of a monic polynomial P € Z[X] is defined as
the modulus of the product of its roots located outside the unit

disc, i.e.
M(P):= TT 6,
|0i]>1
when
P(X) :=](X - 6)).

i=1

Kronecker: M(P) = 1 if and only if all §;'s are roots of unity.

Conjecture (Lehmer 1930's)

There is an absolute constant g > 0 such that for every monic
polynomial P € Z[X], either M(P) =1 or M(P) > 1 + &o.
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Relation with Lehmer’s conjecture

Motto: putative counter-examples to Lehmer give rise (in reduction
to residue fields) to values of a € IF, with slow mixing rate.
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Relation with Lehmer’s conjecture

Motto: putative counter-examples to Lehmer give rise (in reduction
to residue fields) to values of a € IF, with slow mixing rate.

Say that a prime p is d-bad if there exists a € F with
multiplicative order > (log p)? such that for some n > % log p

[{P(a) mod p|P a 0,1 polynomial of deg n}| < p5,

Theorem (B.-Varji '18)

The following are equivalent:

@ Thereisd € (0,1) s.t. almost no prime is 0-bad, i.e.

[{p < xlp is 6-bad}| = oxs4ool[{p < X}).

@ The Lehmer conjecture holds.
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Relation with Lehmer’s conjecture

Motto: putative counter-examples to Lehmer give rise (in reduction
to residue fields) to values of a € IF, with slow mixing rate.

Say that a prime p is d-bad if there exists a € F with
multiplicative order > (log p)? such that for some n > % log p

[{P(a) mod p|P a 0,1 polynomial of deg n}| < p5,

Theorem (B.-Varji '18)

The following are equivalent:

@ Thereisd € (0,1) s.t. almost no prime is 0-bad, i.e.

[{p < xlp is 6-bad}| = oxs4ool[{p < X}).

@ The Lehmer conjecture holds.

— hence mixing in O(log p) for all a with large order implies Lehmer.
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[l. Height gap, uniform expanders.
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Random walks on finite groups of Lie type

The random walk on F,, considered earlier: x,1 = ax, £ 1, whose
n-th step is distributed exactly as P(a) for a random P, can be seen
as a random walk on the (upper triangular) affine group Aff(FF,):

{(g ?),aeF;,ber}
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Random walks on finite groups of Lie type

The random walk on F,, considered earlier: x,1 = ax, £ 1, whose
n-th step is distributed exactly as P(a) for a random P, can be seen
as a random walk on the (upper triangular) affine group Aff(FF,):

{(g ?),aeﬂ?;,belﬁ‘p}

Similarly, we can consider a random walk on SLx(p), or G(p) for a
simple group G over [Fp,.

Mixing time for such walks has been studied a lot in the last
twenty years (Bourgain, Gamburd, Sarnak, Helfgott, etc.).
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Random walks on finite groups of Lie type

The random walk on F,, considered earlier: x,1 = ax, £ 1, whose
n-th step is distributed exactly as P(a) for a random P, can be seen
as a random walk on the (upper triangular) affine group Aff(FF,):

{(g ?),aeF;,ber}

Similarly, we can consider a random walk on SLx(p), or G(p) for a
simple group G over [Fp,.

Mixing time for such walks has been studied a lot in the last
twenty years (Bourgain, Gamburd, Sarnak, Helfgott, etc.).

A finite k-regular graph [ is an e-expander graph if the random
walk on it has mixing time <. 4 log |I'|.
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Random walks on finite groups of Lie type

Conjecture (folklore)

For each k,r > 1 there is € > 0 s.t. every k-regular Cayley graph
of a finite simple group of rank at most r is an e-expander.

This is open even for the subfamily of groups {PSLz(p), p prime }.

Remark: the restriction on the rank is necessary. Indeed if
Alt(n) = (r,0), with 7 = (123),0 = (12...n), n odd, then the
Cayley graph has diameter > n?, but log |Alt(n)| ~ nlog n.
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Expanders - uniformity

Let G(p) denote a finite simple group of Lie type over Fp,.

Theorem (B+Becker, '22)

for all € > 0 there is £(¢) C P an exceptional set of primes s.t.
() |EE)N[L, T]| < T forall T >1

(ii) if p ¢ E(¢) then every k-regular Cayley graph of G(p) is an
e-expander. In particular mixing time is <. log p.

The result generalizes previous joint work of mine with Gamburd
(~ 2010), where we had proved this for G = SL(2).

The uniformity here (i.e. every generating set) parallels the

uniformity (i.e. every a of large multiplicative order) in Konyagin's
mixing estimate on Aff(FF,).
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Expanders - uniformity - height gap

Just as Konyagin's estimate relied on Dobrowolski’'s bounds, at the
heart of the above uniformity for G(p) is a result in diophantine
analysis about the height of eigenvalues in Zariski-dense subgroups
of semisimple algebraic groups G (e.g. G = SL»):

Theorem (Height gap theorem, B. '08)

There are eg = 9(G) > 0 and Ny = No(G) s.t. for every
S C G(Q) with (S) Zariski-dense in G(Q) there is g € S™o and an
eigenvalue A of g such that

h()\) > £Q.

Here h(\) denotes the (normalized) Weil height of the algebraic
number A.
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[1l: Random groups, character varieties.
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Characters of finitely presented groups

Let
Fﬁ: <X1,...,Xk|W1:...: Wr:l>
be a finitely presented group with k generators and r relators.

Let G = G(C) be a semisimple algebraic group (defined over Q
say). For example G = SL,(C).

Let X,, = Hom(T,,, G) be the representation variety. It is a closed
algebraic set in GX.

Let X = Xy // G be the character variety. It is the affine variety
with coordinate ring C[X,,]®.
Let X;Z = X/ G be the Zariski dense part of the character
variety i.e. X, NG, where

Q:= (x € G (x) is Zariski dense in G}

Fact: Q is Zariski open in G*.
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Characters of finitely presented groups - questions

Recall XZ = Hom('y, G) N Q/ G denotes the ‘Zariski-dense
character variety’. Some natural questions:

Q dimxZ?

@ +# irreducible components?

© Action of Galois on the components?
@ singularities on sz?

© locus of faithful reps? discrete reps?

Examples:

(a) When T, is a higher-rank lattice (e.g. SL,(Z) n > 3), then XZ
is finite (Margulis' super-rigidity theorem), and even Q-irreducible
(the Galois group acts transitively): we say that 'y, is Galois rigid.
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Characters of finitely presented groups

Further examples
(b) Tw = m1(X,) a surface group of genus g > 2
,bellar, b1] ... [ag, bg] = 1).

FW: (al,...,ag,bl,...
Then we know (Rapinchuk et al., Liebeck-Shalev) that X2

absolutely irreducible and that
dim X7 = (2g —2)dim G.

) ﬂz can be empty for example it is so for
= 1) with gcd(n, m) = 1, the

a, b|ba"b™1
lag-Solitar group with [n| > |m| > 1

(c

My =

Baums
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Characters of finitely presented groups - examples

(d) When G = SL»(C) with k = 2 generators and r = 1 relator we
can be very explicit:

Fricke-Klein coordinates: x = tr(a),y = tr(b),z = tr(ab).
Fact: Yw3P,, € Z[x,y, 2]

tr(w(a, b)) = Puw(x,y, z)
Moreover Q = G2 \ Vieg Where Vgeg is the union of:

e the cubic hypersurface x? + y? + z2 — xyz — 4 = 0 (locus of
reducible reps)

e3linesx=y=0 x=z=0, y=2z=0 (dihedral reps),

e a finite set with x,y,z € {0,£1,£v2,6,1 — ¢}, ¢ = golden
mean (finite reps).
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Characters of finitely presented groups - examples - SL,

(d) (continued) We can then find equations for XZ as follows:
XKZ:{Pw:ZPaW:XanW:}/}\Vdeg-

Computer algebra system (e.g. ‘singular') does then compute

dim sz and the number of components.

Sage routine for P, (cf. Ashley-Burelle-Lawton).

Exple: (a, b|[a, u] = 1), u = [b, a]b~1ab is the 71 of the Whitehead
link complement. Then Xﬂz is open in the hypersurface
xX°z4+y?z+ 23 —xy —2z —xyz’> =0.
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Representations of random groups - main theorem

We attempt to answer the above questions for random
presentations. Let By the set of r-tuples of words of length £ in k

letters xlil, e ,xfl. Here k, r are fixed, but £ is large.

Theorem (B.+Becker+Varjti)

(under GRH) There is an exceptional set £, C By with
|E| < €| By| for some ¢ = ¢(G) > 0 s.t. forall w € By \ &:
Q ifr >k, XZ is empty,

Q ifr=k-—1, Xé is finite and non-empty and Q-irreducible
(Galois-rigid),

Q@ r<k—2, XHZ is absolutely irreducible and of dimension

dim X7 = (k—r —1)dim G.
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Representations of random groups - main theorem

Let By the set of r-tuples of words of length £ in k letters
X ,...,xfl. Here k, r are fixed, but ¢ is large.

Theorem (B.+Becker+Varjt)

(under GRH) There is an exceptional set & C By with
|Ee| < e Y| By| for some ¢ = c(G) > 0 s.t. for all w € By \ &:

Q ifr>k, Xﬂz is empty,

Q ifr=k-1, XHZ is finite and non-empty and Q-irreducible
(Galois-rigid),

Q r<k-2, Xﬂz is absolutely irreducible and of dimension

dim X = (k—r —1)dim G.

Note that we obtain an exponentially small probability of
exceptions. In particular this result is meaningful even if the w are
constrained to lie in the commutator subgroup [Fy, Fi], or in

D™(Fx) the m-th term of the derived series of the free group.
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Representations of random groups - main theorem

Fix d and r > k. For all w € By \ &, every homomorphism from
My to GL4(C) has virtually solvable image.

Our work was motivated by a recent paper of Kozma and Lubotkzy
(2019), who proved that if one takes r > log ¢ random relators,
then, with high probability, every homomorphism from I',, to
GL4(C) has trivial (or Z/27Z) image.
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Representations of random groups - the method

Lang-Weil: X variety over Fq

1X(q)] = c(X, q)g®™X + O(qimX~1/2)

where
c(X, q) = #geometric components defined over [Fy.

strategy: estimate | XZ(p)| for various primes.

main idea: similar as in Part I: double counting: average |XZ(p)|

- over the primes in a moving window [1 T, T] with T — +o0.
- over words of length £.

To get exponential control on the size of the exceptional set of
words, we will need to take T to be of size exp(C¥) for some

C > 0, hence the uniform expander results of Part Il are essential
here.
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Representations of random groups - the method

Chebotarev: X variety over QQ, then

dim X = limsup M
p—>+00 P
X
E X(p)] =T 100 #Q — irred components of X

PEIT/2.T] dim X
(see Serre's Lectures on Nx(p)).

This is for fixed X. But we need this for X,, for all w and the
degree of X,, grows with ¢ = length of w.

— we need an effective version of all these facts (i.e. Lang-Weil
and Chebotarev).

— need polynomial control (in the degree aspect) for Lang-Weil,
and the prime ideal theorem (on whose proof Chebotarev is based).

28/33



Effective Chebotarev

Let L be a Galois number field with Galois group G, K < L a
subfield, Ak its discriminant. For k > 1, let Nf(T) the number of
prime ideals of norm pX in K for p prime in [T /2, T].

Theorem (effective Prime ideal Theorem, under GRH)

|kNE(T) — PkN(l@(T)| < CTY?[K : Q]%(log Ak + log T)

Py is the k-th Parker number, a non-negative integer depending on
k and G (and Y7 Px = [K : Q]) defined by:

1
Pk = f Z ka(g)
where ci(g) is the number of k-cycles of g.
— proof requires expressing kck(g) as an integer combination of
permutation characters of controlled dimension, and applying the
proof of the Prime Ideal Theorem to each.

29/33



Representations of random groups - proof idea

Double counting (E denotes expectation):

Epeir/2,11Ew [ Xw(P)| = EwEpei7 /2,111 Xw (P)]

EwXu(p)l = D Pu(w(x)=1)

x€G(p)k

If Cay(G(p),x) is an expander, then

1
[Pw(w(x) = 1) —
B 1G(p)|
for all £ > log p.
— use of uniform expansion (as in Part Il of the talk) is essential
here.

| < small error
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Representations of random groups - proof idea

When k = r + 1, this leads to E (7 /2. 7| XZ(p)| ~ 1 w.o.p in w,
and thus that Xé is finite and Q-irreducible.

When k > r + 1, we obtain the right dimension for le. Absolute

irreducibility is obtained by considering the character variety of My
with values in the cartesian product G x G
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Galois lower bound, work in progress

(under GRH) Suppose G = SLp. When k = r + 1, then away from
an exceptional set of words w of exponentially small proportion,

|XZ| > ¢/ log ¢

and the Galois group acts transitively as Alt or Sym.

Note: By Bézout, |X;Z| = O(¢°M)).
idea: similar counting, but in G(p*) for k as large as £/ log¢. This
complicates matters as there can be many subfields subgroups in

G(p").

We show that w.h.p. EPG[T/27T]|Xé(pk)] ~ 7(k) the number of
divisors of k. This will give that P, =1 for all k < ¢/log/¢. This
is enough info on the permutation group to conclude.
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Thank you!



