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Introduction

In this talk, we study two types of the generalized Korteweg-de Vries
equation: one, gKdV{

∂tu+ ∂3
xu+ uα∂xu = 0, x, t ∈ R,

u(x, 0) = u0,
(gKdV)

where the power α = m
k with m, k ≥ 1 odd integers.

We also consider the GKdV, with the absolute value incorporated into
the nonlinearity{

∂tv + ∂3
xv + |v|α∂xv = 0, x, t ∈ R,

v(x, 0) = v0,
(GKdV)

where α > 0.

Oscar Riaño gKdV and GKdV equations October, 2022 4 / 41



Introduction

In this talk, we study two types of the generalized Korteweg-de Vries
equation: one, gKdV{

∂tu+ ∂3
xu+ uα∂xu = 0, x, t ∈ R,

u(x, 0) = u0,
(gKdV)

where the power α = m
k with m, k ≥ 1 odd integers.

We also consider the GKdV, with the absolute value incorporated into
the nonlinearity{

∂tv + ∂3
xv + |v|α∂xv = 0, x, t ∈ R,

v(x, 0) = v0,
(GKdV)

where α > 0.

Oscar Riaño gKdV and GKdV equations October, 2022 4 / 41



Introduction

About this presentation

The goal is to study and compare solutions of gKdV and GKdV as
follows:

Local behavior. We present local well-posedness (LWP) results
for a subclass of H1(R). (By LWP we mean, existence, uniqueness
and continuous dependence of the map data-to-solution).

Global behavior. We use numerical methods to study the large
time behavior of solutions. In this part, more differences between
the two equations will be pointed out.
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Introduction

The gKdV and GKdV equations can be regarded as extensions of
the k-generalized KdV equation

∂tu+ ∂3
xu+ uk∂xu = 0, x, t ∈ R, k ∈ Z+.

The integer cases k ≥ 2 have been used in several physical
contexts, such as shallow-water waves among many others.

The modular power nonlinearity as in GKdV (|v|α∂xv) has also
been used in physics; for example, when α ∈ (0, 1) it is studied in
models of non-Maxwellian trapped electrons and description of
their dynamics in ion-acoustic solitary waves
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Introduction

A special case of α = 1
2 is called the Schamel equation,

∂tv + ∂3
xv + |v|

1
2∂xv = 0, x, t ∈ R,

which was derived by Schamel in early 70’s to incorporate the
presence of trapped electrons with flat-topped electron distribution
function in weakly nonlinear ion-acoustic waves.

The well-posedness for the generalized KdV with integer powers
has been widely studied.

In the case 0 < α < 1, by using weighted spaces the
well-posednesss was studied by Linares, Miyazaki and Ponce, 2019.

In this talk, we show extensions of the previous well-posedness
results to a wider class of fractional weights and α > 0.
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Introduction

Formally, solutions of the gKdV and GKdV equations satisfy the
mass and L1-type conservation laws:

M [t] =

∫ (
u(x, t)

)2
dx = M [0],∫

u(x, t) dx =

∫
u(x, 0) dx.

The energy is also conserved: in the gKdV case

EgKdV [t] =
1

2

∫
|∂xu(x, t)|2 dx− 1

(α+ 1)(α+ 2)

∫ (
u(x, t)

)α+2
dx,

and in the GKdV case

EGKdV [t] =
1

2

∫
|∂xv(x, t)|2 dx− 1

(α+ 1)(α+ 2)

∫
|v(x, t)|α+2 dx
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Introduction

In a few very specific cases the gKdV equation has infinitely many
conserved quantities: in the KdV (α = 1) and the modified KdV
(α = 2); these models are referred to as completely integrable.

No other cases of gKdV or GKdV are known to be completely
integrable.

Both (gKdV) and (GKdV) equations are invariant under the
scaling: if u solves one of them, then so does

uλ(x, t) = λ
2
αu(λx, λ3t), λ > 0.

Consequently, the (homogeneous) Sobolev space Ḣsc is invariant
under the scaling when

sc =
1

2
− 2

α
.
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Introduction

The traveling (solitary) wave solutions for both equations are of the
form u(x, t) = Qc(x− ct− c0), where c > 0 denotes the speed of
propagation, c0 is an initial shift, and Qc is the rescaled ground state
solution Q,

Qc(x) = c
1
αQ(c

1
2x),

where Q is taken to be a smooth, positive, vanishing at infinity
solution in the GKdV case of the equation:

−Q+Q′′ +
1

(α+ 1)
|Q|αQ = 0,

and in the gKdV case

−Q+Q′′ +
1

(α+ 1)
Qα+1 = 0.
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Introduction
Though technically the equations above are different, the positive
(ground state) solutions are the same in both cases. In such case, we
have

Q(x) =
(
(α+1)(α+2)

2

) 1
α
sech

2
α
(
αx
2

)
,

.

Figure 1: The ground state profiles Q for α = 1
9
, 5
9
, 7
9
, 1, 3.
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LWP results

Remark

One of the major difficulties for well-posedness is that the
nonlinearities are not necessarily smooth

uα∂xu, |v|α∂xv

e.g., if 0 < α < 1, the function z 7→ |z|α is not of class C1. Classical
methods of LWP are not expected to work in general.
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LWP results

Strategies

The approach to obtain the existence is based on the work of
Cazenave and Naumkin 2016, where authors developed a method
to obtain local and global well-posedness for the NLS equation.

The idea is to consider initial conditions satisfying

inf
x∈R

⟨x⟩m|u0(x)| > 0,

where ⟨x⟩m = (1 + |x|2)
m
2 , and construct local solutions of the

gKdV and GKdV equations from such data.
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LWP results

Theorem (O. et al (2022))

Let α > 0, m ∈ R+, m > max{ 1
2α ,

1
2}. Let s ∈ Z with s ≥ 2m+ 4, and assume

that u0 is a real-valued (or complex-valued) function such that

v0 ∈ Hs(R), ⟨x⟩mv0 ∈ L∞(R), ⟨x⟩m∂j
xv0 ∈ L2(R), j = 1, 2, 3, 4, (1)

∥v0∥Hs + ∥⟨x⟩mv0∥L∞ +

4∑
j=1

∥⟨x⟩m∂j
xv0∥L2 < δ (2)

for some δ > 0 and
inf
x∈R

⟨x⟩m|v0(x)| =: λ > 0. (3)
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LWP results

Then there exist T = T (α, δ, s, λ) > 0 and a unique solution v of the GKdV
equation (or a unique solution u of the gKdV equation with α = m

k > 0,
where m, k are odd integers) in the class

v ∈ C([0, T ];Hs(R)), ⟨x⟩m∂j
xv ∈ C([0, T ];L2(R)), j = 1, 2, 3, 4 (4)

with
⟨x⟩mv ∈ C([0, T ];L∞(R)), ∂s+1

x v ∈ L∞(R;L2([0, T ])), (5)

and

sup
0≤t≤T

∥⟨x⟩m(v(t)− u0)∥L∞ ≤ λ

2
. (6)

Moreover, the map u0 7→ v(·, t) is continuous in the following sense: for any

compact I ⊂ [0, T ], there exists a neighborhood V of u0 satisfying (1) and (3)

such that the map is Lipschitz continuous from V into the class defined by (4)

and (5).
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LWP results

Remarks

The case m ≥ 1 integer was deduced by Linares, Miyasaki, and
Ponce, 2019.

We extended the above ideas for the gKdV and GKdV to arbitrary
powers α > 0 and fractional weights m (not only integers).

A key argument is the deduction of the following lemma, which relates
the action of fractional weights on solutions of the linear KdV equation.

Lemma

Let m ∈ R+. Then for any t ∈ R, there exists C > 0 such that

∥⟨x⟩met∂
3
xf∥L2 ≤ C⟨t⟩⌊m⌋+1

(
∥J2mf∥L2 + ∥⟨x⟩mf∥L2

)
.
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LWP results

Here, we denote by {et∂3
x}t∈R the unitary group associated to solutions

of the Airy equation ∂tu+ ∂3
xu = 0 with initial condition u0.

Idea proof decay lemma

We write m = m1 +m2, where m1 ∈ Z+ ∪ {0}, m2 ∈ [0, 1). Then by
Plancherel’s identity and Leibniz’s rule, we deduce

∥⟨x⟩met∂
3
xf∥L2 ≤C∥et∂3

xf∥L2 + C∥|x|m2 |x|m1U(t)f∥L2

≤C∥f∥L2 + C∥Dm2
( dm1

dξm1
(eitξ

3
f̂ )

)
∥L2 .

To deal with the local derivative, we use the identity

dk

dξk
(eitξ

3
) = eitξ

3

⌊ 2k
3
⌋∑

l=0

clt
k−lξ2k−3l,
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LWP results

For the fractional part, we use one Stein’s derivatives

Dβf(x) =

(∫
RN

|f(x)− f(y)|2

|x− y|N+2β
dy

)1/2

, x ∈ RN .

Which satisfies ∥Dβf∥L2 = ∥Dβf∥L2 = ∥|ξ|β f̂∥L2 .
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LWP Results

Another key ingredient to study the nonlinear equation is the following
sharp version of Kato’s smoothing effect.

Lemma (Kenig-Ponce-Vega 1993)

For all f ∈ L2(R) complex or real valued,

∥et∂3
xf∥L∞

t L2
x
+ ∥∂xU(t)f∥L∞

x L2
t
= (1 +

1√
3
)∥f∥L2 .
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LWP results

Our LWP is obtained by using the contraction mapping principle based
on the integral formulation of gKdV or GKdV acting on the following
space

XT =
{
u ∈ C([0, T ];Hs(R)) :

∥u∥XT
:=∥u∥L∞

T Hs
x
+ ∥⟨x⟩mu∥L∞

T L∞
x
+

4∑
l=1

∥⟨x⟩m∂l
xu∥L∞

T L2
x

+ ∥∂s+1
x u∥L∞

x L2
T
≤ 2C1δ,

sup
0≤t≤T

∥⟨x⟩m(u(t)− u(0))∥L∞ ≤ λ

2

}
.
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:=∥u∥L∞

T Hs
x
+ ∥⟨x⟩mu∥L∞

T L∞
x
+

4∑
l=1

∥⟨x⟩m∂l
xu∥L∞

T L2
x

+ ∥∂s+1
x u∥L∞

x L2
T
≤ 2C1δ,

sup
0≤t≤T

∥⟨x⟩m(u(t)− u(0))∥L∞ ≤ λ

2

}
.
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LWP results

Remarks

An example of initial data that satisfies the conditions in the LWP
theorem

u0(x) =
2λeiθ

⟨x⟩m
+ φ(x), λ ∈ R, θ ∈ R,

with φ ∈ S(R) (the Schwartz class of functions).

Numerically we study solutions to the Cauchy problems gKdV and
GKdV with initial data decaying at infinity as slow as 1/|x|. We
have LWP for a wider class of conditions with β > max{ 1

2α ,
1
2} (for

α > 1
2).

The class of initial data does not include any exponentially
decaying data. for example, the ground state.
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LWP results

Remarks

Using the numerical approach, we are able to investigate the
behavior of solutions which decay exponentially.

An interesting problem it to investigate analytically LWP for
solutions of gKdV and GKdV in spaces that include the ground
state Q (i.e., exponential spaces).
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Large time behavior

Soliton resolution conjecture

It formally states that a solution will eventually evolve into a finite
number of solitons plus radiation, i.e.,

u(x, t) ≈
N∑
j=0

Qcj (x− cjt− aj) + r(x, t)

as t → ∞, where r(x, t) is the radiation and Qc is some rescaled version
of a soliton with a shift aj and speed cj = cj(t) → c∗j .

Numerical confirmation for gKdV and GKdV

We confirm the soliton resolution in various settings for single peak
initial data (e.g., perturbations of solitons, Gaussian, super-Gaussian
and polynomially decaying data).
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Large time behavior

We consider Schamel’s equation (GKdV with |u|
1
2∂xu) with initial

condition u0(x) = Ae−x2
.

Remark

As typical for the KdV-type equations, a part of the solution
propagates to the right as a soliton (or several solitons) and another
part of the solution produces dispersive oscillations to the left, referred
to as the radiation, decaying toward negative infinity
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Large time behavior

Figure 2: Time evolution in Schamel’s equation of Gaussian data u0 = Ae−x2

(left),
at t = 50 (middle) and t = 200 (right) with the fitting to the rescaled soliton Qc.
Top row: A = 6. Bottom row: A = −6.
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Large time behavior

We consider initial condition

u0(x) = v0(x) = AQ(x+ a)

We check the evolution of solutions of gKdV (uα∂xu), and GKdV
(|u|α∂xu) when A > 0, A < 0.
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Large time behavior: Case A > 0

Figure 3: Time evolution for u0 = v0 = Q(x+ 25) for α = 1
9
(top row) and α = 7

9

(bottom row); solution u of (gKdV) (solid blue) and v of (GKdV) (dotted red).
Right column: both solutions are fitted with shifted Qc = Q from (c = 1).
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Large time behavior: Case A < 0

Figure 4: Time evolution for u0 = v0 = −Q(x+ 25) for α = 1
9
(top row) and α = 7

9

(bottom row). Right column: the GKdV solution v(x, t) (dashed red) fitted to
shifted Qc (dotted magenta).
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Large time behaviour

We consider initial condition

u0(x) = v0(x) = Ae−(x−a)2 .

We check the evolution of solutions of gKdV (uα∂xu), and GKdV
(|u|α∂xu).
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Large time behavior

Figure 5: Time evolution for u0 = v0 = Ae−(x+50)2 , A = 6 and α = 1
9
.
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Large time behavior: A > 0

Remark

We observe what Miura called the “parade of solitons”, i.e., the
formation of a train of solitons with decreasing heights (or speed),
and thus, eventually separating further and further from each
other.

When 0 < α ≪ 1, we don’t need a large domain to observe the
train of solitons, which is an advantage compared with integer
powers.

The solitons of gKdV (uα∂xu) model are slightly higher (and thus,
faster) than the ones generated by the same data in the GKdV
(|v|α∂xv) model.
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Large time behavior: A < 0

Figure 6: Time evolution for u0 = v0 = Ae−(x+a)2 . Top row: α = 1
9
,

A = −6, a = 50. Second row: α = 7
9
, A = −6, a = 50.
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Large time behavior

Remarks

The solutions of gKdV start radiating to the left (solid blue).

Whereas the solutions to the GKdV evolve the negative bump into
a (negative) soliton propagating to the right, and smaller in
amplitude radiation outgoing to the left.

The larger the power α is, the faster the separation of the
soliton(s) from radiation occurs.

We observe that in GKdV the formation of solitons is not
influenced by the sign of the initial condition.
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Large time behaviour

Figure 7: The gKdV time evolution for u0 = −6 e−x2

, α = 1
9
, till t = 100.
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Large time behavior

Remarks

One can observe that the first negative bump in the radiation
decreases in its magnitude (becomes smaller, see the top row), and
then eventually disappears.

Then the next positive bump starts to separate from the pulse-like
radiation, and because it is positive (in gKdV model), it starts
forming a soliton, or asymptotically approaches a rescaled version
of it.
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Large time behavior

Remarks

We also study the cases α → 0. We find that the smaller the
power α is, the longer the time the solution evolves into a rescaled
soliton (the biggest bump) and the shorter the height of that
bump is (for the same data).

We conjecture that when α → 0, the time the main lump evolves
into a soliton will go to ∞ as well.

We also study the iteration of two bump profiles.
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