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Boussinesq Models



Boussinesq Models

In the 1870’s, J. Boussinesq deduced a system of equations to describe

two-dimensional irrotational and inviscid fluids in a uniform rectangular

channel with flat bottom. He was the first to give a favorable explanation to

the traveling-waves, solitons, or solitary waves solutions discovered by Scott

Russell (1844) thirty years earlier, which remained in their form and travelled

with constant velocity.
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He made an approximation of the Eulerian problem to describe the two-way

propagation of small amplitude gravity waves on the surface of the water in a

canal, and obtained the following equation:

d2

dt2
h = gH

d2

dx2
h+ gH

d2

dx2

(
3h2

2H
+
H2

3

d2

dx2
h

)
,

for describing a two-dimensional flow of shallow-water waves having small

amplitudes.

Here

• h is the height of the fluid

• u0 is its speed.

• g is the gravity constant.

• H the depth of the liquid

without perturbations

(constant).
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Bad and Good-Boussinesq

The above equation is called Bad Boussinesq, which simplifies to the

adimensional model

∂2
t u− ∂4

xu− ∂2
xu− ∂2

x(u2) = 0, (t, x) ∈ R× R. (BadB)

But this equation is strongly (linearly) ill-posed.

This bad behavior is not present when the plus sign is considered in the

approximation, obtaining

∂2
t φ + ∂4

xφ− ∂2
xφ− ∂2

x(φ2) = 0, (t, x) ∈ R× R, (GoodB)

which is called Good–Boussinesq.
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Results for Good Boussinesq equation



Basic properties of the Good-Boussinesq equation

Recall that the Good Boussinesq model, in its simplified form, is given by:

∂2
t φ+ ∂4

xφ− ∂2
xφ+ ∂2

x(f(φ)) = 0,

and if formally u = φ and v = ∂−1
x ∂tφ, has the following representation as

2× 2 system: ∂tu = ∂xv

∂tv = ∂x(−∂2
xu+ u− f(u)),

(gGB)

which is Hamiltonian, and has the following associated conserved quantities:

E[u, v] =
1

2

∫ [
v2 + u2 + (∂xu)2 − 2F (u)

]
dx (Energy),

P [u, v] =

∫
uvdx (Momentum).

These laws define a standard energy space (u, v) ∈ H1 × L2.
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Solitary Waves

A solitary wave is a solution to (gGB) of the form

(u, v) = (Qc,−cQc)(x− ct− x0), |c| < 1, x0 ∈ R,

with Qc solving (c2 − 1)Qc +Q′′c + f(Qc) = 0 in H1(R).

When the nonlinearity has the form f(s) = |s|p−1s for p > 1, standing solitary

waves have the form

u(t, x) = Q(x) =

(
p+ 1

2 cosh2
(
p−1
2
x
))1/(p−1)

, v(t, x) = 0. (1)
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Previous Results

The fundamental works

• LWP and GWP for small data (Bona and Sachs 1988)

• Existence of solitary waves for velocities c2 < 1 (Bona and Sachs 1988)

• GWP in the energy space in the case of small data (Linares 1993,2005).

• For p = 2, GWP in Hs(R), for s ≥ −1/2, and IP for s < −1/2. (Kishimoto 2013)

We are motivated by the long time behavior problem for solitary waves of the gGB in

the case where f(s) = |s|p−1s for p > 1.

• Solitary waves are stable if the speed c obeys the condition (p− 1)/4 < c2 < 1

and p > 4 (Bona and Sachs 1988).

• Solutions with initial data arbitrarily near the ground state (c = 0) that

blow-up in finite time (Liu 1995).
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First Main Theorem

Theorem (C. M (2021))

Let p ≥ 2. There exists δ > 0 such that if a global even-odd solution

(φ, ∂t∂
−1
x φ) of (gGB) satisfies for all t ≥ 0,

‖(φ, ∂t∂−1
x φ)(t)− (Q, 0)‖H1(R)×L2(R) < δ,

then, for any γ > 0 small enough and any compact interval I of R,

lim
t→+∞

(
‖φ(t)−Q‖L2(I)∩L∞(I) + ‖(1− γ∂2

x)−1∂tφ(t)‖L2(I)

)
= 0.

9/24



Linearized system around the standing wave

Let us consider a perturbation in (gGB) of Q of the form

u(t, x) = Q(x) + w(t, x), v(t, x) = z(t, x).

Then one can see that this perturbation satisfies the following linear system at

first order: ∂tw = ∂xz

∂tz = ∂xLw,
⇐⇒ ∂2

tw = ∂2
xLw. (2)

where

L(w) = −∂2
xw + V0(x)w, with V0(x) = 1− f ′(Q). (3)

L is the classical Schrodinger operator associated to the soliton Q. This

operator has been extensively studied by Chang-Gustafson-Nakanishi-Tsai

(2007) for instance.
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Linearized opertaor −∂2
xL

We will assume the following: for any p > 1, the linear operator

−∂2
xL(u) = ∂4

xu− ∂2
xu+ ∂2

x(pQp−1u), (4)

has a unique eigenfunction φ0(x) associated to a negative first eigenvalue

−ν20 < 0, satisfying

− ∂2
xL(φ0) = −ν20φ0, 〈∂−1

x φ0, ∂
−1
x φ0〉 = 1, |φ0(x)| . e−1−|x|. (5)

Note that we also have ∂−1
x φ0 well-defined, exponentially decreasing and part

of L2. Here 〈·, ·〉 is the inner product in L2(R), and 1− is a number slightly

below 1.

The second eigenvalue of −∂2
xL is 0 but it is also a resonance in the classical

sense (in L∞\L2), but the unique L2 eigenvalue is φ1(x) = c1Q
′(x).

Therefore, by the Spectral Theorem, orthogonal to φ0 the operator −∂2
xL is

nonnegative.
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Let

Y ± =

(
φ0

±ν0∂−1
x φ0

)
, Z± =

(
∂−2
x φ0

±ν−1
0 ∂−1

x φ0

)
. (6)

These are even-odd functions, i.e. the first coordinate is even and the second

odd.

The functions

u±(t, x) = e±ν0tY±(x)

are solutions of the linearized problem (2), showing the presence of

exponentially stable and unstable linear manifolds relevant for the dynamics of

nonlinear solutions in a neighborhood of the soliton.
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Second Main Theorem

Theorem (C. M (2021))

Let p ≥ 2, and

A0 =
{
ε ∈ H1(R)× L2(R)| ε is even-odd , ‖ε‖H1×L2 < δ0 and 〈ε,Z+〉 = 0

}
.

There exist C, δ0 > 0, and a Lipschitz function h : A0 → R with h(0) = 0 and

|h(ε)| ≤ C‖ε‖3/2
H1×L2 such that, denoting

M = {(Q, 0) + ε+ h(ε)Y+ with ε ∈ A0} ,

the following holds:

1. If φ0 ∈M then the solution of (gGB) with initial data φ0 is global and satisfies,

for all t ≥ 0,

‖φ(t)− (Q, 0)‖H1(R)×L2(R) ≤ C‖φ0 − (Q, 0)‖H1(R)×L2(R).

2. If a global even-odd solution φ of (gGB) satisfies, for all t ≥ 0,

‖φ(t)− (Q, 0)‖H1(R)×L2(R) ≤
δ0
2
,

then for all t ≥ 0, φ(t) ∈M.
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Idea of proof

We will consider (u1, u2) ∈ H1 × L2 be an even-odd perturbation of the

solitary waves, which are in some sense orthogonal to Y + and Y −, and the

flow on these directions: for a1, a2 unique,u(t, x) = Q(x) + a1(t)φ0(x) + u1(t, x),

v(t, x) = a2(t)ν0∂
−1
x φ0(x) + u2(t, x).

where (see (5))

a1(t) = 〈u(t)−Q, ∂−2
x φ0〉, a2(t) =

1

ν0
〈∂xv, ∂−1

x φ0〉,

such that

〈u1(t), ∂−2
x φ0〉 = 0 = 〈u2(t), ∂−1

x φ0〉. (7)

We have for all t ∈ R+

‖u1(t)‖H1 + ‖u2(t)‖L2 + |a1(t)|+ |a2(t)| ≤ C0δ. (8)
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Moreover, using (5) and (7), (a1, a2) satisfies the following differential systemȧ1 = ν0a2

ȧ2 = ν0a1 +
N0

ν0
,

(9)

where

N = ∂x
(
f(Q) + f ′(Q)(a1φ0 + u1)− f(Q+ a1φ0 + u1)

)
,

N⊥ = N −N0∂
−1
x φ0, and N0 = 〈N, ∂−1

x φ0〉.
(10)

Then, (u1, u2) satisfies the systemu̇1 = ∂xu2

u̇2 = ∂xL(u1) +N⊥,
(11)

with u1 even and u2 odd.
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First Step

Here

• (w1, w2) is localized version of (u1, u2) at A

scale.

• (u1, u2) ∈ H1 × L2 and an adequate weight

function ϕA placed at scale A large.u̇1 = ∂xu2

u̇2 = ∂xL(u1) +N⊥,

d

dt

∫
ϕA(x)u1u2 ≤−

1

2

∫ [
w2

2 + 2(∂xw1)2 +
(
1− C1A

−1)w2
1

]
+ C1a

4
1 + C1

∫
sech (x)u2

1,

(12)
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Second Step

Here

• (w1, w2) is localized version of (u1, u2) at A

scale.

• (z1, z2) is localized version of (v1, v2) at B

scale

• Λ−1
γ = (1− γ∂2

x)−1

• (v1, v2) ∈ H1 ×H2, for an adequate weight

function ψA,B , B � A.v̇1 = L(∂xv2) +G(x),

v̇2 = ∂xv1 +H(x),
.

d

dt

∫
ψA,Bv1v2 ≤−

1

2

∫ [
z21 + (V0(x)− C2B

−1)z22 + 2(∂xz2)2
]

+B−1C2

(
‖w1‖2L2 + ‖w2‖2L2

)
+ C2|a1|3,

(13)
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Third Step

Here

• (w1, w2) is localized version of (u1, u2) at A

scale.

• (z1, z2) is localized version of (v1, v2) at B

scale

• Λ−1
γ = (1− γ∂2

x)−1

Following Kowalczyk-Martel-Muñoz, we have the

following coercivity estimate in terms of the

variables (w1, w2) and (z1, z2):∫
sech(x)u2

1 . B−1/2 (‖w1‖2L2 + ‖∂xw1‖2L2

)
+B1/2‖z1‖2L2 +B−4‖∂xz1‖2L2

(14)
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Fourth Step

Here

• (w1, w2) is localized version of (u1, u2) at A

scale.

• (z1, z2) is localized version of (v1, v2) at B

scale

• Λ−1
γ = (1− γ∂2

x)−1

• (ṽ1, ṽ2) ∈ L2 ×H1, for an adequate weight

function ψA,B , B � A. ˙̃v1 = L(∂xṽ2) + G̃(x),

˙̃v2 = ∂xṽ1 + H̃(x),
.

d

dt

∫
ψA,B ṽ1ṽ2 ≤ −

1

2

∫ (
(∂xz1)2 +

(
V0(x)− C3B

−1) (∂xz2)2 + 2(∂2
xz2)2

)
+ C3|a1|3

+ C3B
−1 (‖∂xw1‖2L2 + ‖w1‖2L2 + ‖w2‖2L2 + ‖z1‖2L2 +B‖z2‖2L2

)
(15)
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Fifth Step

Here

• (w1, w2) is localized version of

(u1, u2) at A scale.

• (z1, z2) is localized version of (v1, v2)

at B scale

• Λ−1
γ = (1− γ∂2

x)−1

Finally, our last contribution is a transfer

virial estimate that exchanges information

between ∂xz1, ∂xz2 and ∂2
xz2, in the form

of

1

2

∫
(∂xz1)2 ≤ d

dt

∫
ρA,B ṽ1v2 + C4

∫ [
(∂2
xz2)2 + (∂xz2)2 + z22 + z21

]
+ C4B

−3

(
‖w1‖2L2 + ‖w2‖2L2

)
+ C4|a1|3.

(16)
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Final Step

Finally, we consider a functional H being a well-chosen linear combination of

(12), (13), (15), (14) and (16). We get

d

dt
H(t) ≤− C2B

−1 (‖w1‖2L2 + ‖∂xw1‖2L2 + ‖w2‖2L2

)
+ C5|a1|3, for all t ≥ 0.

This final estimate allows us to close estimates, and prove local decay for u1

after some standard change of variables from wj to uj .
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Setting

b+ =
1

2
(a1 + a2), b− =

1

2
(a1 − a2). (17)

Recalling that (a1, a2) satisfies the following differential systemȧ1 = ν0a2

ȧ2 = ν0a1 +
N0

ν0
,

or equivalently


ḃ+ = ν0b+ +

N0

2ν0

ḃ− = −ν0b− −
N0

2ν0
.

(18)

We define now

B = b2+ − b2−.
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Combining the estimate of d
dt
H and computing d

dt
B, it holds

d

dt

(
B − 2B

C6

C2
H
)
≥ ν0

4
(a21 + a22) + C6

(
‖w2‖2L2 + ‖∂xw1‖2L2 + ‖w1‖2L2

)
.

(19)

Estimate |B| ≤ δ2 is also clear from (8). Therefore, integrating estimates (19)

on [0, t] and passing the limit as t→∞, we have∫ ∞
0

[
a21 + a22 + ‖w2‖2L2 + ‖∂xw1‖2L2 + ‖w1‖2L2

]
dt . δ.

23/24



Combining the estimate of d
dt
H and computing d

dt
B, it holds

d

dt

(
B − 2B

C6

C2
H
)
≥ ν0

4
(a21 + a22) + C6

(
‖w2‖2L2 + ‖∂xw1‖2L2 + ‖w1‖2L2

)
.

(19)

Estimate |B| ≤ δ2 is also clear from (8). Therefore, integrating estimates (19)

on [0, t] and passing the limit as t→∞, we have∫ ∞
0

[
a21 + a22 + ‖w2‖2L2 + ‖∂xw1‖2L2 + ‖w1‖2L2

]
dt . δ.

23/24



We used a combination of virials to obtain the integrability in time of the

L2 × L2-norm of (φ(t)−Q, (1− γ∂2
x)−1∂tφ(t)), for any γ > 0 small enough,

and in any compact interval I, i.e.,∫ ∞
0

(
‖φ(t)−Q‖2L2(I) + ‖(1− γ∂2

x)−1∂tφ(t)‖2L2(I)

)
dt <∞.
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Thank you!!
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