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FIGURE: scanning tunneling microscope 
image of individual water molecules 
(Shin et al., Nature Materials, 2010)                                    

From D. Ruelle,  
“Statistical Mechanics: 
Rigorous Results”                                   

β=1/kBT                                       



 
Fluid Velocity and its Thermal Spectrum 

The velocity in a parcel of fluid of linear size ℓ at space point x is a coarse-grained 
average of velocities of individual molecules, with respect to some filter kernel G:                                    

The statistics are Gaussian, with PDF                                 

variance                              

and energy spectrum at low Mach numbers (i.e. ignoring energy in sound waves)                              

 corresponding to energy equipartition.   



The current picture of the turbulent energy spectrum is  

ISR=inertial subrange

NDR=near-dissipation range

FDR=far-dissipation range 
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The correct picture of the turbulent energy spectrum is  

However, thermal noise should create at high-k an equilibrium spectrum

ISR=inertial subrange

NDR=near-dissipation range

FDR=far-dissipation range 

EQ=thermal equilibrium! 

The crossover can be estimated from  

or

Robert Betchov (1957,1961,1964), Bandak et al. (2021), Eyink et al. (2021)                                        

For von Kármán flow with water (Debue et al., 2018) η=16 µm and θK=2.5×10-7 

 
Turbulent Energy Spectrum 

kcη~2W(1/2θK1/2)  or

kcη~10.5 ⟹ ℓc=2π/kc~9.6 µm ≫ λmfp=0.25 nm 

H2O molecules

have velocity

~1.48 km/s!

A=kBT/2π2ρ                                       



The equations which can describe thermal noise effects at scales <η in a turbulent 
flow are (in the low Mach limit) incompressible fluctuating hydrodynamics: 

where the cut-off delta-function is given by  

See Zarate & Sengers (2006) and, for the low Mach limit, 


A. Donev et al. “Low Mach number fluctuating hydrodynamics of diffusively mixing 

liquids,”  Comm. Appl. Math. and Comp. Sci. 9, 47-104 (2014) 

Landau-Lifschitz Fluctuating Hydrodynamics

These are not SPDE’s but are better understood as an “effective field theory” valid 
below a UV wavenumber cut-off Λ. They are valid if the cut-off length can be chosen 
(arbitrarily) between the gradient length ℓ∇ and the mean-free-path length λm f p: 

∂tu+PΛ(u·∇)u=-∇p+ν∆u+∇·τ,     ∇·u=0     ~

Λ

with stochastic stress given by the fluctuation-dissipation relation  

,



Numerical Results: Fluctuating Hydrodynamics and DSMC
There are no experiments validating Navier-Stokes at and below Kolmogorov scale η!

However, computer power is now sufficient that turbulent flows can be numerically 

simulated by fluctuating hydrodynamics and by DSMC (an MD method) 

Fluctuating Hydrodynamics (J. Bell et al. 2021)                                        DSMC (R. M. McMullen et al. 2021)                                       
liquid water-glycerol mixture, homogeneous forced 
turbulence, periodic domain (5.12 cm)3, T=300ºK, 
ε=17.7 cm2/s3, η=0.025 cm, Re=554 (Reλ=61)                                         

gas dynamics, decaying Taylor-Green 
vortex Ma=0.3, Re=500                                        



Numerical Results: Fluctuating Hydrodynamics and DSMC
There are no experiments validating Navier-Stokes at and below Kolmogorov scale η!

However, computer power is now sufficient that turbulent flows can be numerically 

simulated by fluctuating hydrodynamics and by DSMC (an MD method) 

Fluctuating Hydrodynamics (J. Bell et al. 2021)                                        DSMC (R. M. McMullen et al. 2021)                                       
liquid water-glycerol mixture, homogeneous forced 
turbulence, periodic domain (5.12 cm)3, T=300ºK, 
ε=17.7 cm2/s3, η=0.025 cm, Re=554 (Reλ=61)                                         

gas dynamics, decaying Taylor-Green 
vortex Ma=0.3, Re=500                                        

The dissipation range of turbulence in molecular fluids is NOT accurately 
described by the deterministic Navier-Stokes equations.                                        



How is this conclusion consistent with the scaling symmetry of incompressible Navier-
Stokes?  

,      Re fixed

This symmetry is exploited to derive the (deterministic) Navier-Stokes equation from the 

Boltzmann equation (Bardos, Golse & Levermore, 1991, 1993) and from stochastic lattice

gases (Quastel & Yau, 1998) in the limit λ➝0 at any Re. In a turbulent flow: 

so that θK → θK′=λθK and thermal noise at the Kolmogorov scale indeed vanishes! 

However, the relation x2ex=1/θK that determines the crossover wavenumber kc by   

xc =kcη  implies that 1/λ is unattainably large.  E.g. x′=2x requires 1/λ=θK/θK′=4ex.
In the water experiment of Debue et al. (2018) a doubled crossover kc′= 2kc would       
require a 4e10.5=145,262 times larger system!  

c

 
Breakdown of Hydrodynamic Self-Similarity 

ε → ε′ =λ4ε,   uη → uη′=λuη,   η → η′=λ-1η,   

u → u′=λu,   x → x′=λ-1x,   t → t′=λ-2t   



How is this conclusion consistent with the scaling symmetry of incompressible Navier-
Stokes?  

A “far-dissipation range’’ with exponentially decaying energy spectrum is a virtual-reality  
construct that does not exist in Nature. What occurs is a thermal equipartition spectrum!   

,      Re fixed

This symmetry is exploited to derive the (deterministic) Navier-Stokes equation from the 

Boltzmann equation (Bardos, Golse & Levermore, 1991, 1993) and from stochastic lattice

gases (Quastel & Yau, 1998) in the limit λ➝0 at any Re. In a turbulent flow: 

so that θK → θK′=λθK and thermal noise at the Kolmogorov scale indeed vanishes! 

However, the relation x2ex=1/θK that determines the crossover wavenumber kc by   

xc =kcη  implies that 1/λ is unattainably large.  E.g. x′=2x requires 1/λ=θK/θK′=4ex.
In the water experiment of Debue et al. (2018) a doubled crossover kc′= 2kc would       
require a 4e10.5=145,262 times larger system!  

c

 
Breakdown of Hydrodynamic Self-Similarity 

ε → ε′ =λ4ε,   uη → uη′=λuη,   η → η′=λ-1η,   

u → u′=λu,   x → x′=λ-1x,   t → t′=λ-2t   



∂tc + u ⋅ ∇c = DΔc

Batchelor-Kraichnan Theory of High-Schmidt Turbulent Mixing

Sc = ν/D ≫ 1
ℓK = ν3/4ε−1/4 γ = (ε/ν)1/2

ℓB = (D/γ)1/2 = ℓK / Sc

Kraichnan (1968, 1974) took velocity-gradients constant in space but 
rapidly varying in time: 

                                         

Ec(k) ∼ CB
χ
γ

k−1 exp(−CB(kℓB)2/2)

Ec(k) ∼ CB(χ/γk)(1 + 6CBkℓB)exp (− 6CBkℓB)

Batchelor (1959) assumed velocity-gradients constant both in space and time: 

                                         

From Sreenivasan (2019)

Scalar concentration, solving                                       
for                       , below the Kolmogorov length                                       

is subject to strain rate                                   
which drives a scalar cascade with flux χ down to                                     
the Batchelor length                                     

“a rare thing in turbulence theory”                                      



observed in several experiments (e.g., Gibson & Schwartz 1963; Grant et al. 1968; Nye & Brodkey 
1967; Jullien et al. 2000; Iwano et al. 2021).

Iwano et al. (2021)

viscous-convective range:

observed only in simulations (e.g., Yeung et al. 2004; Donzis et al. 2010; Gotoh et al. 2014, Clay 2017)

Gotoh et al. (2014)

viscous-diffusive range:



Effects of Thermal Noise 
Eyink & Jafari (2021) 
arXiv:2112.13115 [physics.flu-dyn]
                                       



Fluctuating hydrodynamics of a binary fluid mixture:  
                                                                                                     

⟨ηij(x, t)ηkl(x′�, t′�)⟩ = (δikδjl + δilδjk −
2
3

δijδkl) × δ3
Λ(x − x′�)δ(t − t′ �)

∂tu = 𝒫[ − u ⋅ ∇u + νΔu + ∇ ⋅ ( 2νkBTρ−1η(x, t))]
∂tc + v ⋅ ∇c = ∇ ⋅ (D0 ∇c + 2mD0ρ−1c(1 − c) ηc(x, t))

∂tuθ = 𝒫[ − uT ⋅ ∇uθ − uθ ⋅ ∇uT − uθ ⋅ ∇uθ + νΔuθ + ∇ ⋅ ( 2νkBTρ−1η(x, t))]

∂tuT = 𝒫[ − uT ⋅ ∇uT + νΔuT]

⟨ηci(x, t)ηcj(x′�, t′�)⟩ = δijδ3
Λ(x − x′�)δ(t − t′�)

Linearization around the turbulent Navier-Stokes solution:  
                                                                                                     

v = Gσ ⋆ u

See Morozov (1984), Nonaka et al. (2015):  

with                    removing scales < σ=radius of solute molecules (Donev et al. 2014) 
and with  

u = uT + uθDecompose                       so that   

|uθ ⋅ ∇uθ |
|νΔuθ |

∼
ℓuθ,ℓ

ν
∼

ℓ
ν

cth

nℓ3
∼ (

λ3
intp

λ2
mfpℓ )

1/2

The crossed term is negligible because   

assuming                   . The ratio is small for                        (Eyink et al. 2021)  ν ∼ cthλmfp ℓ > λ3
intp/λ2

mfp



Scalings for high-Schmidt asymptotic limit:  
                                                                                                     

Kraichnan model of the turbulent solution 
                                                                                                     

Following Donev, Fai & vanden-Eijnden (2014) we take  

                                                                                               

∂tc = − vT ⊙ ∇c − vθ ⋅ ∇c + ∇ ⋅ (D0 ∇c + 2mD0ρ−1c(1 − c) ηc(x, t))

∂tuθ = 𝒫[ − uT ⊙ ∇uθ − uθ ⊙ ∇uT + νΔuθ + ∇ ⋅ ( 2νkBTρ−1η(x, t))]

d
dt

1
2

⟨ |u |2 ⟩ = − ν⟨ |∇u |2 ⟩ ∼ νΓ2

Γ → ϵΓ

ν → ϵ−1ν , D0 → ϵD0

D0ν ∼ ϵ0 Sc0 =
ν

D0
∼ ϵ−2so that               and                           . Furthermore, we consider long times of mass diffusion

t → ϵ−1t

Finally, since                                                , we take  

 so that a finite amount of kinetic energy is dissipated in a diffusive time. 

⟨uT,i(x, t)uT,j(x′ �, t′�)⟩ = 𝒰T,ij(x − x′�)δ(t − t′ �)

𝒰T,ij(r) = 𝒰T,ij(0) − 2Γ (2r2δij − rirj) 𝒰T,ij(0) = 2𝒰T0δij

uT(x, t)We take               to be a Gaussian, random (incompressible) velocity field, white-noise in time, with

                                        

                                              


and zero mean, where                                                               and                                  . Then  

  

 (Stratonovich) 



High-Sc limit equations as                                                                                                      ϵ → 0

⟨wθ(x, t) ⊗ wθ(x′�, t′�)⟩ = R(x − x′�)δ(t − t′�)

∂tc = − vT(x, t) ⊙ ∇c − ϵ−1vθ(x, ϵ−1t) ⋅ ∇c + D0Δc + ∇ ⋅ ( 2mD0ρ−1c(1 − c) ηc(x, t))

Rescaled equations 
                                                                                                     

∂tuθ = 𝒫[ − uT ⊙ ∇uθ − uθ ⋅ ∇uT + νϵ−2Δuθ + ∇ ⋅ ( 2νϵ−2kBT/ρ η(x, t))]

∂tuθ = 𝒫[νϵ−2Δuθ + ∇ ⋅ ( 2νϵ−2kBT/ρ η(x, t))],To leading order  satisfies the linear equationuθ
the same as for a fluid in thermal equilibrium, at rest! 

Furthermore,                                      , a white-in-time velocity field:ϵ−1vθ(x, ϵ−1t) → wθ(x, t)

𝒫[νΔwθ + ∇ ⋅ [(2νkBT/ρ)1/2ησ] = 0, ησ = Gσ ⋆ ηwhose spatial realizations satisfy                                                                             and thus                                                     

Gij(r) =
1

8πr (δij +
rirj

r2 ) .with the Oseen tensor Thus, the concentration field in the limit satisfies 

∂tc = − (vT + wθ) ⊙ ∇c + D0Δc + ∇ ⋅ ( 2mD0ρ−1c(1 − c) ηc(x, t))

R(r) =
2kBT

η
(Gσ ⋆ G ⋆ Gσ)(r), η = νρ (shear viscosity) 
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Neglecting molecular noise, this is a Kraichnan white-noise advection model! 



∂tc = − (vT+wθ) ⋅ ∇c + (D0+DT+D)Δc + s(x, t) + ∇ ⋅ [(2mD0ρ−1c(1 − c))1/2 ηc(x, t)]

bare diffusivity

thermally renormalized 
diffusivity  = kBT/6πησ

turbulent eddy-diffusivity = 𝒰T0

Solution of the Model 
                                                                                                     

Converting from Stratonovich to Itō and adding a source term to drive a statistical steady-state:    

Stokes-Einstein relation:                    D = μkBT =
kBT

6πησ

“the ratio  is a length of the order of magnitude of molecular dimensions, normally smaller than the value …
From the point of view of molecular theory, viscous flow and diffusion present parallel problems. It would seem that for an 
exact theory of either, we should have to analyze the cooperative character of the molecular motion involved; but this difficult 
analysis has not yet been developed further than the hydrodynamic approximation.” — L. Onsager, Theories and Problems of 
Liquid Diffusion (1945)

l = kT/Dη 6πa

∂tC(r, t) = [𝒱ij(0) − 𝒱ij(r)] ∂i∂jC + 2D0ΔC + S ( r
L )

Closed Equations for Correlation Functions:                    

C(r) = ∫
∞

r

∫ ρ
0

S( ρ̄
L )ρ̄d−1dρ̄

ρd−1[2D0 − (d − 1)(J(0) − J(ρ))]
dρ

where                                        with                       .  The rest is an exercise in analysis!   

scalar source

J(r) = −
1
rd ∫

r

0
K(ρ) ρd−1dρ 𝒱ij(r) = 𝒫ijK(r)



Conclusions 

1. The dissipation range of turbulent flows is argued to be described by 
Landau-Lifschitz fluctuating hydrodynamics and not by the deterministic 
Navier-Stokes equations. This conclusion is supported by simulations.                                                                             

2. In prior work (Eyink et al. 2021, Bell et al. 2021), it has been shown that 
thermal noise at sub-Kolmogorov scales erases far dissipation-range 
intermittency and modifies extreme events due to inertial-range intermittency.  

3. We have presented here a theory of effects of thermal noise on the 
Batchelor-Kraichnan regime of high Schmidt-number turbulent mixing of 
passive concentration fields, predicting that exponential decay of the scalar 
spectrum in the viscous-diffusive range is replaced by “giant concentration 
fluctuations” which are well-observed for diffusion in laminar flows.

4. Similar thermal noise effects can be expected for other physical processes at 
sub-Kolmogorov scales of turbulent flows, such as combustion, formation of 
droplets and bubbles, locomotion of micro-organisms, etc.                                                                                



THANKS!


