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WATER MAGNIFIED ONE BILLION TIMES

The Feynman Lectures on Physics, Vol. | Figure 1-1

12 Matter is made of atoms

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only
one sentence passed on to the next generations of creatures, what statement would
contain the most information in the fewest words? I believe it is the atomic
hypothesis (or the atomic fact, or whatever you wish to call it) that all things are
made of atoms—little particles that move around in perpetual motion, attracting
each other when they are a little distance apart, but repelling upon being squeezed
into one another. In that one sentence, you will see, there is an enormous amount
of information about the world, if just a little imagination and thinking are applied.



FIGURE: scanning tunneling microscope
image of individual water molecules
(Shin et al., Nature Materials, 2010)

(b) Classical Continuous Systems, Canonical Ensemble. In passing from
the microcanonical to the canonical ensemble, the energy E is replaced as
thermodynamic parameter by the inverse temperature f > 0. The measure
defining the canonical ensemble is

% exp(— fH(w)) dw
From D. Ruelle, . . | |
“Statistical Mechanics: = il:II [exp(—ﬂg;;) {ipa] X [n—!exp(-ﬁU(xl,...,x,.))dxl---dx,.] (2.6)
Rigorous Results”

This expression factorizes into a kinetic part

, pi’
ool .

p=1/kpT

for each particle and a configurational part

ni!exp( —BUK,, ... x)) dx, - - dx, (2.8)



Fluid Velocity and its Thermal Spectrum

The velocity in a parcel of fluid of linear size ¢ at space point x is a coarse-grained
average of velocities of individual molecules, with respect to some filter kernel G:

ae(x) = > v Gelx — xn)/ Y Ge(x - %)

The statistics are Gaussian, with PDF
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and energy spectrum at low Mach numbers (i.e. ignoring energy in sound waves)
kT Ark?
B(k) ~ ~2—

p (2m)?
corresponding to energy equipartition.



Turbulent Energy Spectrum
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Turbulent Energy Spectrum

The correct picture of the turbulent energy spectrum is
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However, thermal noise should create at high-k an equilibrium spectrum E(k) ~ *2T (427;’31

The crossover can be estimated from
kT

u%nexp(—kn)NTkz or  Ox(kn)®exp(kn) ~ 1 or  ken~2W(1/20x"2)

For von Karman flow with water (Debue et al., 2018) n=16 um and 6x=2.5x10-7

Robert Betchov (1957,1961,1964), Bandak et al. (2021), Eyink et al. (2021)



Landau-Lifschitz Fluctuating Hydrodynamics

The equations which can describe thermal noise effects at scales <z in a turbulent
flow are (in the low Mach limit) incompressible fluctuating hydrodynamics:

om+Pa(u-V)u=-Vp+vAu+V-, V-u=0

with stochastic stress given by the fluctuation-dissipation relation

o 2V:l€BT
P

(Tij (5, £)Tra (X', 1)) 3
x 05 (x —x)o(t —t)

where the cut-off delta-function is given by

2
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These are not SPDE’s but are better understood as an “effective field theory” valid
below a UV wavenumber cut-off A. They are valid if the cut-off length can be chosen
(arbitrarily) between the gradient length ¢v and the mean-free-path length A, ,:

Iy < Al <« )\mfp‘
See Zarate & Sengers (2006) and, for the low Mach limit,

A. Donev et al. “Low Mach number fluctuating hydrodynamics of diffusively mixing
liquids,” Comm. Appl. Math. and Comp. Sci. 9, 47-104 (2014)



Numerical Results: Fluctuating Hydrodynamics and DSMC

There are no experiments validating Navier-Stokes at and below Kolmogorov scale #!
However, computer power is now sufficient that turbulent flows can be numerically
simulated by fluctuating hydrodynamics and by DSMC (an MD method)
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The dissipation range of turbulence in molecular fluids is NOT accurately
described by the deterministic Navier-Stokes equations.



Breakdown of Hydrodynamic Self-Similarity

How is this conclusion consistent with the scaling symmetry of incompressible Navier-
Stokes?

u—u=iu, x - x=41x, t—o =42 Re fixed

This symmetry is exploited to derive the (deterministic) Navier-Stokes equation from the
Boltzmann equation (Bardos, Golse & Levermore, 1991, 1993) and from stochastic lattice
gases (Quastel & Yau, 1998) in the limit A—0 at any Re. In a turbulent flow:

e — &' =%, uy— uy’=Auy, n—n'=i1y,

so that 8k — Ox'=A0k and thermal noise at the Kolmogorov scale indeed vanishes!

However, the relation x2ex=1/0k that determines the crossover wavenumber k. by
x. =ken implies that 1/4 is unattainably large. E.g. x'=2x requires 1/A=0x/0k'=4e-.

In the water experiment of Debue et al. (2018) a doubled crossover k.= 2k. would
require a 4e10.5=145,262 times larger system!
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e — &' =%, uy— uy’=Auy, n—n'=i1y,

so that 8k — Ox'=A0k and thermal noise at the Kolmogorov scale indeed vanishes!

However, the relation x2ex=1/0k that determines the crossover wavenumber k. by
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A “far-dissipation range” with exponentially decaying energy spectrum is a virtual-reality
construct that does not exist in Nature. What occurs is a thermal equipartition spectrum!



Batchelor-Kraichnan Theory of High-Schmidt Turbulent Mixing

log Eq(k)

Scalar concentration, solving J,c +u- Ve = DAc

Inertial-convective range

for Sc =v/D > 1, below the Kolmogorov length k' From Srecnivasan (2019)
¢ = v¥e~14 is subject to strain rate y = (e/v)!? reosscomctrene
which drives a scalar cascade with flux y down to B e

— 172 _
the Batchelor length £ = (D/y)"? = £, /1/Sc B — el

(Se<<1)  (S~1) (5>1)

Fig. 2. Schematic of scalar soectrum for Sc =1 (red). Sc < <1 (areen),
and Sc> > 1 (purple).

“a rare thing in turbulence theory”

Batchelor (1959) assumed velocity-gradients constant both in space and time:

E.(k) ~ CyZ k' exp(=Cy(ks)212)
y

Kraichnan (1968, 1974) took velocity-gradients constant in space but
rapidly varying in time:

E.(k) ~ Cy(r/yk)(1 +/6Cke g)exp (—« /6(1ka3)




viscous-convective range: observed in several experiments (e.g., Gibson & Schwartz 1963; Grant et al. 1968; Nye & Brodkey
1967; Jullien et al. 2000; Iwano et al. 2021).
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viscous-diffusive range: observed only in simulations (e.g., Yeung et al. 2004; Donzis et al. 2010; Gotoh et al. 2014, Clay 2017)
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Effects of Thermal Noise

E.(k) (cm)

Eyink & Jafari (2021)
arXiv:2112.13115 [physics.flu-dyn]

F(k) = Fa(k) + Fi(k) + Fe(k).

Fa(k) = 2 A1Re (ﬁ(k(a + ib))),
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FIG. 1: Our predicted scalar concentration spectrum (red solid 1

line, —) and the prediction of Kraichnan [25] (Kr74; green dashed o X

line, ), for a water-glycerol solution at temperature T' = 25°C, Fe (k) - 37TFCE ﬁ(krl) dd COS(le) )

pressure p = 1 bar and mean concentration of glycerol ¢ = 0.5,

with v = 102 s—! and x = 10? s~ !. Distinct ranges of the

concentration spectrum are labelled: Batchelor’s k—1 spectrum

(Ba59); k—2 power-law associated to giant concentration
fluctuations (GCF); k? equipartition spectrum (EQ).

letters to nature

Giant fluctuations in a free
diffusion process
Alberto Vailati & Marzio Giglio

Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia,
Universita di Milano, via Celoria 16, 20133 Milano, Italy

where fi(z) denotes the auxiliary sine integral function

o0 . t o0 —zt
fi(2) = / P dt = / © __dt, Re(z)>0.
g t+=z o 1+1t?

i i the low-q fluctuation
amplitude does not depend on any relevant fluid parameter. So the
orders-of-magnitude increase of the fluctuations above the equili-
brium value (the most prominent feature that can be captured
experimentally) is to be expected for any non-equilibrium fluid that
has macroscopic concentration variations comparable to those in
this experiment.



Fluctuating hydrodynamics of a binary fluid mixture:

See Morozov (1984), Nonaka et al. (2015):

ou=P| —u-Vu+vhu+V- (1 20k Tp (x|

dc+v-Ve=V. (DOVC +/2mDop™ (1 = o) m(x z))

with v = G_* u removing scales < g=radius of solute molecules (Donev et al. 2014)
and with

2
(X, D (X', 1)) = (66 + 60 — 55,,-5;{1) X S(x = x)6(t—1)  (n.(X, (X', 1)) = 5;00(x — X)(1 — 1)

Linearization around the turbulent Navier-Stokes solution:

Decompose u = uy + u, so that

oy = 9’[ —u;-Vuy—u, - Vuyr—uyVuy+rvAu,+ V- <\/2kaTp‘111(X, t))]

The crossed term is negligible because

3 1/2
|u9 : Vuel Z’puﬁf 4 Cyy ( ﬁintp )

|vAuy| v U A/nf3 Aot

assuming v ~ Cy4,,e,- The ratio is small for £ > ﬂ;tp/ﬂéfp (Eyink et al. 2021)



Kraichnan model of the turbulent solution

We take u;(x,?) to be a Gaussian, random (incompressible) velocity field, white-noise in time, with
<MT,Z(X’ t)uT,](X/’ t/)> = %T,ZJ(X - X/)(S(t - t,)

and zero mean, where % (r) = %;;0) — 2T (2r25U — rl-rj> and cZJTU.(O) — 2%T05ij. Then

00y = P| — ;0 Vug—uy© Vur+ vAu,+ V - (1/ 20k Tp 05, )| |
(Stratonovich)

0c= -V, OVe—vy Vet V- <DOVC +1/2mDgp™e(1 = ) m(x, z))

Scalings for high-Schmidt asymptotic limit:
Following Doney, Fai & vanden-Eijnden (2014) we take

v— e v, Dy— eD,

so that Dyv ~ e’ and Scy = DL ~ ¢~2. Furthermore, we consider long times of mass diffusion
0
t— et
Finally, since E%{ |u|2> = — (| Vu|2> ~ %, we take
I'—> el

so that a finite amount of kinetic energy is dissipated in a diffusive time.



Rescaled equations

duy=P| —u; 0 Vuy—u,y- Vuy+ ve2Auy + V - (\/ 2vekyTp (X, z))]

dc=— V%1 O Ve—eyx,et) - Ve + DyAc + V - <\/ 2mDyp~c(1 = ¢) (%, z))

High-Sc limit equations as ¢ — 0

To leading order u, satisfies the linear equation Ju, = g"lve‘zAu@ + V. <\/ 2ve 2k, Tl p 5(X, t))],
the same as for a fluid in thermal equilibrium, at rest!

Furthermore, e‘lvg(x, e ) - Wy(X, 1) , @ white-in-time velocity field:

(Wy(x,1) @ Wy(x', 1)) = R(x — X)(t — t')

)1/2

whose spatial realizations satisfy PlvAw,+ V - [QukgT/p)"“n ] =0, n,= G, *n and thus

kT
R(r) = —2

(G, * G * G,)(), n=uvp (shear viscosity)

. 1 Lo
with the Oseen tensor GY(r) = S <5U + 7) . Thus, the concentration field in the limit satisfies

dc=—(Vp+Wy) @ Ve+DyAc+ V- <\/2mD0p_lc(1 o) n(x, t))



Rescaled equations
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)1/2
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kT
R(r) = —2

(G, * G * G,)(), n=uvp (shear viscosity)

3 1 Lo
with the Oseen tensor GY(r) = S <5U + 7) . Thus, the concentration field in the limit satisfies

¢ =—(Vy+W,) O Ve+DyAc+ V- <\/2mD0p_lc(l _ o) n(x, t))

Neglecting molecular noise, this is a Kraichnan white-noise advection model!



Solution of the Model
Converting from Stratonovich to [t0 and adding a source term to drive a statistical steady-state:

bare diffusivity scalar source

}

0, =—(V+wy) - Ve + (Dy+D+D)Ac + s(X,1) + V - [(2m ple(1=0¢)

|

turbulent eddy-diffusivity = % 1

) 1/2 n(x, t)]

thermally renormalized
diffusivity = kzT/6xno

ky T

6rno

Stokes-Einstein relation: D = uk;T =

“the ratio [ = kT/Dn 1s a length of the order of magnitude of molecular dimensions, normally smaller than the value 67a...
From the point of view of molecular theory, viscous flow and diffusion present parallel problems. It would seem that for an
exact theory of either, we should have to analyze the cooperative character of the molecular motion involved; but this difficult
analysis has not yet been developed further than the hydrodynamic approximation.” — L. Onsager, Theories and Problems of

Ligquid Diffusion (1945)
Closed Equations for Correlation Functions:

0.C(x, 1) = [%ij(o) -y l.j(r)] a,.ajc +2D,AC+ S <%>

s Iy s(%)7"dp
C(r) = [ . dp
. PTIRD,— (d — DO — )

1 [ . . L :
where J(r) = — —dJ K(p) p*~'dp with 7 (r)= 2,K(r). The rest is an exercise in analysis!
™~ Jo



Conclusions

The dissipation range of turbulent flows is argued to be described by
Landau-Lifschitz fluctuating hydrodynamics and not by the deterministic
Navier-Stokes equations. This conclusion is supported by simulations.

In prior work (Eyink et al. 2021, Bell et al. 2021), it has been shown that
thermal noise at sub-Kolmogorov scales erases far dissipation-range
iIntermittency and modifies extreme events due to inertial-range intermittency.

We have presented here a theory of effects of thermal noise on the
Batchelor-Kraichnan regime of high Schmidt-number turbulent mixing of
passive concentration fields, predicting that exponential decay of the scalar
spectrum in the viscous-diffusive range is replaced by “giant concentration
fluctuations” which are well-observed for diffusion in laminar flows.

Similar thermal noise effects can be expected for other physical processes at
sub-Kolmogorov scales of turbulent flows, such as combustion, formation of
droplets and bubbles, locomotion of micro-organisms, etc.



THANKS!



