3d Navier-Stokes equations & the multifractal model J

J. D. Gibbon : Imperial College London

Banff 2022

J. D. Gibbon : Imperial College London 3d Navier-Stokes equations & the multifrac Banff 2022 1/10



The aim & content of this talk

Aim of this talk :

@ What is the effect of blending the multifractal model (MFM) of Frisch & Parisi
(1985) with the Navier-Stokes equations in a periodic box [0, L]

(Or+u-V)u=vAu— VP + f(x) divu=07?

@ Berengere Dubrulle & JDG : A correspondence between the multifractal model of
turbulence & the NSEs, Phil. Trans. R. Soc. A 380, 20210092.

Plan of this talk :

@ Summary of relevant results on the NS equations in both 3-dimensions and
d-dimensions (d = 2, 3).

© Summary of the MFM in its “Large Deviation Theory” format.

© Lower bounds on the scaling parameter h & the multifractal spectrum C(h)
(co-dimension).

© What are the consequences?
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Turbulent cascades & higher derivatives in the NSEs
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Define a doubly-labelled set of volume integrals for1 < n<oco;1 < m< o
Hn,m,a :/ |V ulPdV, in d-dimensions
7]

In dimensionless form:

~1 1/ md p1/2m 2m

Frma=v n,m,d > Qn,m,d = m >

@ Derivatives are sensitive to ever finer length scales in the flow.

@ Higher values of m pick out the larger spikes, with the m = oo case representing

the maximum norm.
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Invariance and Leray’s weak solutions

(-)7 means time average up to time T : (JDG 2018, 2020 & based on FGT 1981)

/ On periodic BCs with n > 1 & 1 < m < oo, d-dim NS-weak solutions obey (d = 2, 3)

<F(4“”"’"vm»d>r < ComgRE®+ O (T*‘) .

n,m,d

@ Ford =3 when n=1, m=1 gives the standard ¢ < L=*,°Re® from which the
Kolmogorov length \ is estimated

-1_ (€ /4 —1 3/4
N =(5) = L\ <R
@ The above is a weak soln result : for full d = 3 regularity we would need
20
F n,m,3
< >T <0,

n,m,3

which is a result we don’t have (JDG 2018).
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Definition of a sequence of length scales )\, ,, 4(¢)

Define a set of t-dependent length-scales {\n m.a(t)} s.t.

n,m,d

L —d
( ) Hn,m,d _ )\—Zm(n+1)+dlj2m

from which we discover

_ n+1 i 2m
(Do) =Fama Wi anme = e

For NS weak solutions, when n>1and 1 < m < co

3
<L)‘r7,:n,d>7_ < CrmaRe™ T ond 1.0(T7') .

The upper bound has a finite limit:
3 3

Ao @~ d)(n I Vomma 4 d

a result which has important consequences.
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Scale invariance and K41
The Euler equations
Ot+u-V)u+VP=0 divu=0
have the scale invariance :
X =Xx"x, t=X"T"t, u=\"

whereas the NS-equations are restricted to the value h = —1. All of the following can
be found in Frisch (1995) or Benzi & Biferale (2008) :

e K41 suggests that, at a point x in a homogeneous, isotropic NS flow, the p-th order
velocity structure function S, should scale as

So(r) = {|u(x + r) — u(x)|") ~

st.av.

e It also suggests that h = [ to ensure that the energy dissipation rate ¢ is
homogeneous in space and time. Thus

Sp ~ fp/s.

e When p = 3 the right hand side is equal to —¢er (the four-fifths law).
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The Multifractal Model (MFM) of Frisch and Parisi : |

@ Parisi and Frisch (1985) relaxed the enforcement of h = ] to allow a range
values of h, provided the dissipation rate ¢ is constant “on the average”.

@ In the MFM’s original formulation P,(h), the probability of observing a given
scaling exponent h at the scale r was computed by assuming that each value of
h belongs to a given fractal set of dimension D(h).

@ A more modern definition uses Large Deviation Theory where P.(h) is chosen
as (see Eyink (2008) http://www.ams.jhu.edu/~eyink/Turbulence/notes/ )

Py(h) ~ r°™ .
C(h) is the multi-fractal spectrum. It has encoded within it all the properties of
flow intermittency. One can write d = D(h) + C(h).
@ The structure functions Sy(r) are now expressed as

Sp(r) ~ re, Go = inf [Ap + C(h)] .

A classic sign of intermittency is that {, is a concave curve below linear.
@ Paladin and Vulpiani (1987) suggested an h-dependent dissipation scale 7,

1

Ln,' ~ Rev .
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The NSEs and the MFM : |
We use the Paladin-Vulpiani scaling n, to obtain the correspondence

Hom=L" [ V0" aVy s / 2™ p (hydh,
vr h
To pursue the idea proposed by Nelkin (1990) we use 7, ~ v'*"
2m(h+ 1)+ C(h) —2m(n+1)
1+h '

3 .
Hnym ~ L l/X"’m Xn,m = ml_:n (

Use this in the LHS of Theorem 1 : i.e. the estimate for <F,(:,;Z)a”’m*">T, and compare
the result with the RHS in powers of v (v — 0):
3(1+h) 3d(1 + h)
> —
C(h)_2m(n+1)(1 4—d>+ A-d
In the limit (n, m) — oo the RHS — oo unless h > (1 — d)/3.

v(n,m)>1.

The only scaling exponents that have a nonzero probability are

h > hmin hmin:(1 —d)/3.

When d = 3 we have the lower bound h > —2.
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The NSEs and the MFM: I

For h > hmin, the sharpest bound on C(h), uniform in n, m, comes fromm=n=1
C(h) >1-23h, with C(hmin) > d,

which is no better than the 4/5ths law. C(hnin) > d is a feature allowed by Large
Deviation Theory (Eyink) but has a low probability of occurrence.
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Figure: The admissibility range of C(h) when d = 3 including C(h) > 1 — 3h. The blue dotted

line : log-normal model with b = 0.045 ; red dashed line : log-Poisson model with 8 = 2/3.
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Avoidance of the CKN singular set?
In d = 3 dimensions, the range of his now
-2/3<h<1/3

thus implying a wide range of fractal dimensions.

@ Caffarelli, Kohn and Nirenberg (1982) developed the idea of suitable weak
solutions of the 3d NSEs. The singular set in space-time has zero
one-dimensional Hausdorff measure.

@ Their result shows that in the limit as solutions approach the CKN singular set,
the velocity field u must obey

const
lu| > . as r—0.

where r2 = (x — x0)? + v (t — ) is the distance from a suitably chosen point
(X0, 1) on the axis of a space-time parabolic cylinder. The r~" lower bound on
|u| suggests a minimal rate of approach to the the CKN singular set
corresponding to h = —1.

© Our lower bound h > —2/3 keeps solutions away from the singular set.
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