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The aim & content of this talk

Aim of this talk :

What is the effect of blending the multifractal model (MFM) of Frisch & Parisi
(1985) with the Navier-Stokes equations in a periodic box [0, L]3

(∂t + u · ∇) u = ν∆u −∇P + f (x) div u = 0 ?

Berengere Dubrulle & JDG : A correspondence between the multifractal model of
turbulence & the NSEs, Phil. Trans. R. Soc. A 380, 20210092.

Plan of this talk :

1 Summary of relevant results on the NS equations in both 3-dimensions and
d-dimensions (d = 2, 3).

2 Summary of the MFM in its “Large Deviation Theory” format.

3 Lower bounds on the scaling parameter h & the multifractal spectrum C(h)
(co-dimension).

4 What are the consequences?
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Turbulent cascades & higher derivatives in the NSEs

Standard “cartoon” of a turbulent cas-
cade to small scales.

Define a doubly-labelled set of volume integrals for 1 ≤ n <∞ ; 1 ≤ m ≤ ∞

Hn,m,d =

∫
Vd

|∇nu|2mdVd in d-dimensions

In dimensionless form :

Fn,m,d = ν−1L1/αn,m,d H1/2m
n,m,d , αn,m,d =

2m
2m(n + 1)− d

,

1 Derivatives are sensitive to ever finer length scales in the flow.

2 Higher values of m pick out the larger spikes, with the m =∞ case representing
the maximum norm.
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Invariance and Leray’s weak solutions

〈·〉T means time average up to time T : (JDG 2018, 2020 & based on FGT 1981)

Theorem

/ On periodic BCs with n ≥ 1 & 1 ≤ m ≤ ∞, d-dim NS-weak solutions obey (d = 2, 3)〈
F

(4−d)αn,m,d
n,m,d

〉
T
≤ cn,m,d Re3 + O

(
T−1

)
.

For d = 3 when n = 1, m = 1 gives the standard ε ≤ L−4ν3Re3 from which the
Kolmogorov length λk is estimated

λ−1
k =

( ε
ν3

)1/4
⇒ Lλ−1

k ≤ Re3/4 .

The above is a weak soln result : for full d = 3 regularity we would need〈
F 2αn,m,3

n,m,3

〉
T
<∞ ,

which is a result we don’t have (JDG 2018).
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Definition of a sequence of length scales λn,m,d (t)

Define a set of t-dependent length-scales {λn,m,d (t)} s.t.(
L

λn,m,d

)−d

Hn,m,d = λ
−2m(n+1)+d
n,m,d ν2m

from which we discover(
Lλ−1

n,m,d

)n+1
= Fn,m,d with αn,m,d =

2m
2m(n + 1)− d

Result

For NS weak solutions, when n ≥ 1 and 1 ≤ m ≤ ∞〈
Lλ−1

n,m,d

〉
T
≤ cn,m,d Re

3
(4−d)(n+1)αn,m,d + O

(
T−1

)
.

The upper bound has a finite limit :

lim
n,m→∞

3
(4− d)(n + 1)αn,m,d

=
3

4− d

a result which has important consequences.
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Scale invariance and K41

The Euler equations

(∂t + u · ∇) u +∇P = 0 div u = 0

have the scale invariance :

x ′ = λ−1x , t ′ = λh−1t , u = λhu′

whereas the NS-equations are restricted to the value h = −1. All of the following can
be found in Frisch (1995) or Benzi & Biferale (2008) :

• K41 suggests that, at a point x in a homogeneous, isotropic NS flow, the p-th order
velocity structure function Sp should scale as

Sp(r) =
〈
|u(x + r)− u(x)|p

〉
st.av. ∼ r hp .

• It also suggests that h = 1
3 to ensure that the energy dissipation rate ε is

homogeneous in space and time. Thus

Sp ∼ r p/3 .

•When p = 3 the right hand side is equal to − 4
5εr (the four-fifths law).
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The Multifractal Model (MFM) of Frisch and Parisi : I

Parisi and Frisch (1985) relaxed the enforcement of h = 1
3 to allow a range

values of h, provided the dissipation rate ε is constant “on the average”.

In the MFM’s original formulation Pr (h), the probability of observing a given
scaling exponent h at the scale r was computed by assuming that each value of
h belongs to a given fractal set of dimension D(h).

A more modern definition uses Large Deviation Theory where Pr (h) is chosen
as (see Eyink (2008) http://www.ams.jhu.edu/∼eyink/Turbulence/notes/ )

Pr (h) ∼ rC(h) .

C(h) is the multi-fractal spectrum. It has encoded within it all the properties of
flow intermittency. One can write d = D(h) + C(h).

The structure functions Sp(r) are now expressed as

Sp(r) ∼ rζp , ζp = inf
h

[hp + C(h)] .

A classic sign of intermittency is that ζp is a concave curve below linear.

Paladin and Vulpiani (1987) suggested an h-dependent dissipation scale ηh

Lη−1
h ∼ Re

1
1+h .
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The NSEs and the MFM : I

We use the Paladin-Vulpiani scaling ηh to obtain the correspondence

Hn,m = L−3
∫
Vd
|∇nu|2m dVd ←→

∫
h
η

2m(h−n)
h Pηh (h)dh ,

To pursue the idea proposed by Nelkin (1990) we use ηh ∼ ν1+h

Hn,m ∼ L3νχn,m χn,m = min
h

(
2m(h + 1) + C(h)− 2m(n + 1)

1 + h

)
.

Use this in the LHS of Theorem 1 : i.e. the estimate for
〈

F
(4−d)αn,m,d
n,m,d

〉
T
, and compare

the result with the RHS in powers of ν (ν → 0) :

C(h) ≥ 2m(n + 1)

(
1− 3(1 + h)

4− d

)
+

3d(1 + h)

4− d
, ∀(n,m) ≥ 1 .

In the limit (n,m)→∞ the RHS→∞ unless h ≥ (1− d)/3.

Result

The only scaling exponents that have a nonzero probability are

h ≥ hmin hmin = (1− d)/3 .

When d = 3 we have the lower bound h ≥ − 2
3 .
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The NSEs and the MFM : II

For h ≥ hmin, the sharpest bound on C(h), uniform in n, m, comes from m = n = 1

C(h) ≥ 1− 3h , with C(hmin) ≥ d ,

which is no better than the 4/5ths law. C(hmin) ≥ d is a feature allowed by Large
Deviation Theory (Eyink) but has a low probability of occurrence.

Normalization

4/5th law & Theorem 1

Th
eo

re
m

1

Figure: The admissibility range of C(h) when d = 3 including C(h) ≥ 1 − 3h. The blue dotted
line : log-normal model with b = 0.045 ; red dashed line : log-Poisson model with β = 2/3.
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Avoidance of the CKN singular set?

In d = 3 dimensions, the range of h is now

−2/3 ≤ h ≤ 1/3

thus implying a wide range of fractal dimensions.

1 Caffarelli, Kohn and Nirenberg (1982) developed the idea of suitable weak
solutions of the 3d NSEs. The singular set in space-time has zero
one-dimensional Hausdorff measure.

2 Their result shows that in the limit as solutions approach the CKN singular set,
the velocity field u must obey

|u| > const
r

, as r → 0 .

where r 2 = (x − x0)2 + ν (t − t0) is the distance from a suitably chosen point
(x0, t0) on the axis of a space-time parabolic cylinder. The r−1 lower bound on
|u| suggests a minimal rate of approach to the the CKN singular set
corresponding to h = −1.

3 Our lower bound h ≥ −2/3 keeps solutions away from the singular set.
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