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Motivation from computational geometry

Hyperplane cover problem:

given a set P of n points in R and a number h, can we find h hyperplanes that cover
all points from P?

@ geometric variant of a set-cover problem
@ NP-hard and APX-hard for d =2 [Meggido-Tamir '82; Kumar-Arya-Ramesh '00]

@ several FPT-algorithms known (fixed h) [e.g. Wang-Li-Chen '10]
d = 2,3 use of incidence bounds [Afshani-Berglin-van Duijn-Nielsen '16]
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Motivation |l: point-hyperplane incidences

e P ...n points in RY H ... m hyperplanes in RY
@ incidence ...a pair (p,H) st. pe PHeHand pe H ——

Basic question: What is the max number of incidences between P and 7 in R9?

o O(m?Pn?B 4+ m+n) ford=2 tight! [Szemerédi-Trotter '83]
e
@ mnford>3 7\

Improvements under further assumptions, e.g.:

@ no lower-dim flat contains too many points
or is contained in too many hyperplanes [Edelsbrunner-Guibas-Sharir '90]

@ incidence graph between P and H doesn’t contain K, , [BraB-Knauer '03]

@ P = vertices of the arrangement of H [Agarwal-Aronov '92]



Side remark: related problem from computational geometry

Hopcroft’s problem (80’s):
given a set P of n points and H a set of m hyperplanes, both in RY, is there a
point-hyperplane incidence?

@ special case of many other geometric problems
(collision detection, ray shooting, range searching, ...)
@ other variants: compute the number of incidences, report all of them

@ prompted a strain of research in CG community, mainly in 2D
[Chazelle '86, '93], [Edelsbrunner '87], [Edelsbrunner, Guibas, Sharir '90],
[Agarwal '90], [Chazelle, Sharir, Welzl '92], [Matousek '93], [Erickson '96]

@ recent progress after cca 30 years [Chan, Zheng '21]
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Main result

Setting:
e P ...n points in RY

@ k-rich hyperplane wrt P ...contains > k points from P

Problem (by Peyman Afshani):
e (kﬁ,}—d+1 + %) k-rich hyperplanes = is there a low-dim flat with “many” points of P?

Answer: YES! [P., Sharir '22]
e 3<d<k d<a<2d-1
° (,’(’—i + %) k-rich hyperplanes
= there is a (d — 2)-flat containing > k(2d-1-2)/(d=1) points of P

Note: Tight in some cases



High-level overview of the proof

Main result:
oP...npointsian 3<d<k d<a<?2d-1
° = (/’(’—Z + %) k-rich hyperplanes
= there is a (d — 2)-flat containing > k(2d=1-2)/(d=1) points of P

@ H ...all k-rich hyperplanes determined by P
@ 7 is finite
e k|H| < I(P,H) ...number of incidences between P and H

@ compute an upper bound on /(P,H); compare

@ we need point-hyperplane duality, simplicial partitions, Cauchy-Schwartz



Proof sketch — upper bound

@ apply point-hyperplane duality
@ preserves incidences
@ each (d — 2)-flat contains < / points of P
<—> each line is contained in < ¢ hyperplanes of P*



Proof sketch — upper bound

@ apply point-hyperplane duality
@ preserves incidences
@ each (d — 2)-flat contains < / points of P
<—> each line is contained in < ¢ hyperplanes of P*

@ apply simplicial partitions



Proof sketch — upper bound

@ apply point-hyperplane duality
@ preserves incidences
@ each (d — 2)-flat contains < / points of P
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Simplicial partitions (Matousek '92)

Q...mpointsin R, 1 < r < m, Q can be partitioned into g < 2r sets Q... Qg s.t.
e m/(2r) < |Qil < m/r
@ Q; contained in the relative interior of a simplex A;

1—1/d)

@ every hyperplane crosses O(r of these simplices

H crosses Sif HNS #0 but S ¢ H N H
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Simplicial partitions

Q... m points in R 1< r<m, Qcan be partitioned into g < 2r sets Q, ... Qq s.t.
e m/(2r) <|Qi| < m/r

@ @ contained in the relative interior of a simplex A;

@ every hyperplane crosses O(r'~1/9) of these simplices
5 . — . m =30 q==56
o..t. .. . r:4 4§|QI’S7
each hyperplane crosses < 3 simplices
Note: dim A; can be < d ... necessary in degenerate cases

T q=0(r) H cross all the simplices



Proof sketch Il — upper bound
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Proof sketch Il — upper bound

S8 L%

inside simplices use a simple bound /(P;, H;) < [H;||P;|*/?¢*/? + |Pi|,
where / is the max number of points of P lying on a (d — 2)-flat

sum up over all simplices (Cauchy-Schwartz) < [#[¢V/2| P2 /D 4o td py
deal with low-dim simplices separately ... adds another ¢|H| incidences
specify the parameter r

obtain upper bound on /(P,H)
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Why it works?

Question: How come that using a simple bound gives something significantly better?
Answer: power of divide & conquer

o I(P,H) < [PIV2E2[H] +|P|in general weak, but if (/%] < |P['/?
= I(P,H) S|P

, which is optimal

@ simplicial partition guarantees we have much less hyperplanes than points
(we did the partition in the dual)

Moral: having a tight bound for unbalanced case can be helpful

make the setting unbalanced (divide the space) — use the tight bound — sum it up
— optimize the dividing parameter & deal with “non-crossing” intersections
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Setting: a =d +1 for simplicity d = 3, k is a square
Thm: number of k-rich planes > n3/k* + n/k = 3 a line with > v/k points of P

Construction: P ...set of vertices of vk x vk x vk integer grid in R3

o n=|P|= k2
@ number of k-rich planes > Vk

@ no line contains more than vk points of P

Conclusion: Our bound is worst-case asymptotically tight when k = ©(n'~1/9)

Open problem: What happens for other values of k?
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Tightness: construction [l

Setting: « =d =3 k,u > 2 integers

Thm: number of k-rich planes = n3/l<3 = da line with > k points of P

Construction: L ...a set of u pairwise skew lines in R3
P ... k distinguished points on each line

e n:=|P|=ku
@ infinitely many k-rich planes wrt P \\
@ no line contains > k points of P \

Conclusion: Our thm is tight for a« = d =3

Open problem: What happens for other values of «?
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The case of spheres

P ...n points in RY
k-rich sphere wrt P ...contains > k points from P

> k>d+1 d+1<a<2d+1
(e + 7) k-rich (d — 1)-spheres
= there is a (d — 2)-sphere containing > k(24+1-®)/d points of P




The case of spheres

P ...n points in RY

°
@ k-rich sphere wrt P ...contains > k points from P
d> k>d+1 d+1<a<2d+1

° = (”::1 + #) k-rich (d — 1)-spheres

= there is a (d — 2)-sphere containing > k(24+1-®)/d points of P

Proof sketch:
o transform (d — 1)-spheres in R? to hyperplanes in R9+1

(X1y ey Xd) > (Xy ey Xdy X2+ -+ + X3)

@ observe it's the same problem as before, just in R9+1
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Main result (P., Sharir):
oP...npointsin]Rd 3<d<k d<a<?2d-1
° (,’Z—Z + #) k-rich hyperplanes
= there is a (d — 2)-flat containing > k(2d=1-2)/(d=1) points of P

Open problems:
@ tightness for various values of « tightness for spheres

@ What are further conditions, in d > 4, enforcing the existence of even lower-dim
flat containing many points of P?

@ P in general position
@ oo many k-rich hyperplanes
e V (d — 3)-flat has < (d — 2) points of P
Thank you!




