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Motivation from computational geometry

Hyperplane cover problem:
given a set P of n points in Rd and a number h, can we find h hyperplanes that cover
all points from P?

geometric variant of a set-cover problem

NP-hard and APX-hard for d = 2 [Meggido-Tamir ’82; Kumar-Arya-Ramesh ’00]

several FPT-algorithms known (fixed h) [e.g. Wang-Li-Chen ’10]

d = 2, 3 use of incidence bounds [Afshani-Berglin-van Duijn-Nielsen ’16]
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Motivation II: point-hyperplane incidences

P . . . n points in Rd H . . .m hyperplanes in Rd

incidence . . . a pair (p,H) s.t. p ∈ P,H ∈ H and p ∈ H

Basic question: What is the max number of incidences between P and H in Rd?

O(m2/3n2/3 + m + n) for d = 2 tight! [Szemerédi-Trotter ’83]

mn for d ≥ 3

Improvements under further assumptions, e.g.:

no lower-dim flat contains too many points
or is contained in too many hyperplanes [Edelsbrunner-Guibas-Sharir ’90]

incidence graph between P and H doesn’t contain Kr ,r [Braß-Knauer ’03]

P = vertices of the arrangement of H [Agarwal-Aronov ’92]
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mn for d ≥ 3

Improvements under further assumptions, e.g.:

no lower-dim flat contains too many points
or is contained in too many hyperplanes [Edelsbrunner-Guibas-Sharir ’90]

incidence graph between P and H doesn’t contain Kr ,r [Braß-Knauer ’03]

P = vertices of the arrangement of H [Agarwal-Aronov ’92]



Side remark: related problem from computational geometry

Hopcroft’s problem (80’s):
given a set P of n points and H a set of m hyperplanes, both in Rd , is there a
point-hyperplane incidence?

special case of many other geometric problems
(collision detection, ray shooting, range searching, . . . )

other variants: compute the number of incidences, report all of them

prompted a strain of research in CG community, mainly in 2D
[Chazelle ’86, ’93], [Edelsbrunner ’87], [Edelsbrunner, Guibas, Sharir ’90],

[Agarwal ’90], [Chazelle, Sharir, Welzl ’92], [Matoušek ’93], [Erickson ’96]

recent progress after cca 30 years [Chan, Zheng ’21]



Main result

Setting:

P . . . n points in Rd

k-rich hyperplane wrt P . . . contains ≥ k points from P

Problem (by Peyman Afshani):

& ( nd

kd+1 + n
k ) k-rich hyperplanes ⇒ is there a low-dim flat with “many” points of P?

Answer: YES! [P., Sharir ’22]

3 ≤ d ≤ k d ≤ α < 2d − 1

& ( nd

kα + n
k ) k-rich hyperplanes

⇒ there is a (d − 2)-flat containing & k(2d−1−α)/(d−1) points of P

Note: Tight in some cases
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High-level overview of the proof

Main result:

P . . . n points in Rd 3 ≤ d ≤ k d ≤ α < 2d − 1

& ( nd

kα + n
k ) k-rich hyperplanes

⇒ there is a (d − 2)-flat containing & k(2d−1−α)/(d−1) points of P

H . . . all k-rich hyperplanes determined by P

H is finite

k|H| ≤ I (P,H) . . . number of incidences between P and H
compute an upper bound on I (P,H); compare

we need point-hyperplane duality, simplicial partitions, Cauchy-Schwartz



Proof sketch – upper bound

apply point-hyperplane duality
preserves incidences
each (d − 2)-flat contains ≤ ` points of P

each line is contained in ≤ ` hyperplanes of P∗

apply simplicial partitions

Simplicial partitions (Matoušek ’92)

Q . . .m points in Rd , 1 < r ≤ m, Q can be partitioned into q ≤ 2r sets Q1, . . .Qq s.t.

m/(2r) ≤ |Qi | ≤ m/r

Qi contained in the relative interior of a simplex ∆i

every hyperplane crosses O(r1−1/d) of these simplices

H crosses S if H ∩ S 6= ∅ but S * H

X 7

H H
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every hyperplane crosses O(r1−1/d) of these simplices

m = 30

q = 6

r = 4

4 ≤ |Qi | ≤ 7
each hyperplane crosses ≤ 3 simplices

Note: dim ∆i can be < d . . . necessary in degenerate cases

q = O(r) H cross all the simplices
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Proof sketch II – upper bound

inside simplices use a simple bound I (Pi ,Hi ) . |Hi ||Pi |1/2`1/2 + |Pi |,
where ` is the max number of points of P lying on a (d − 2)-flat

sum up over all simplices (Cauchy-Schwartz) . |H|`1/2|P|1/2r−1/(2d) + r 1−1/d |P|

deal with low-dim simplices separately . . . adds another `|H| incidences

specify the parameter r

obtain upper bound on I (P,H)
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Why it works?

Question: How come that using a simple bound gives something significantly better?

Answer: power of divide & conquer

I (P,H) . |P|1/2`1/2|H|+ |P| in general weak, but if `1/2|H| . |P|1/2

⇒ I (P,H) . |P|, which is optimal

simplicial partition guarantees we have much less hyperplanes than points
(we did the partition in the dual)

Moral: having a tight bound for unbalanced case can be helpful

make the setting unbalanced (divide the space) use the tight bound sum it up
optimize the dividing parameter & deal with “non-crossing” intersections
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Tightness of our result: construction I

Setting: α = d + 1 for simplicity d = 3, k is a square

Thm: number of k-rich planes & n3/k4 + n/k ⇒ ∃ a line with ≥
√
k points of P

Construction: P . . . set of vertices of
√
k ×
√
k ×
√
k integer grid in R3

n = |P| = k3/2

number of k-rich planes ≥
√
k

no line contains more than
√
k points of P

Conclusion: Our bound is worst-case asymptotically tight when k = Θ(n1−1/d)

Open problem: What happens for other values of k?
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Tightness: construction II

Setting: α = d = 3 k, u ≥ 2 integers

Thm: number of k-rich planes & n3/k3 ⇒ ∃ a line with ≥ k points of P

Construction: L . . . a set of u pairwise skew lines in R3

P . . . k distinguished points on each line

n := |P| = ku

infinitely many k-rich planes wrt P

no line contains > k points of P

Conclusion: Our thm is tight for α = d = 3

Open problem: What happens for other values of α?
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The case of spheres

P . . . n points in Rd

k-rich sphere wrt P . . . contains ≥ k points from P

d ≥ 3 k ≥ d + 1 d + 1 ≤ α < 2d + 1

& (n
d+1

kα + n
k ) k-rich (d − 1)-spheres

⇒ there is a (d − 2)-sphere containing & k(2d+1−α)/d points of P

Proof sketch:

transform (d − 1)-spheres in Rd to hyperplanes in Rd+1

(x1, . . . , xd) 7→ (x1, . . . , xd , x
2
1 + · · ·+ x2d )

observe it’s the same problem as before, just in Rd+1
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Summary & open problems

Main result (P., Sharir):

P . . . n points in Rd 3 ≤ d ≤ k d ≤ α < 2d − 1

& ( nd

kα + n
k ) k-rich hyperplanes

⇒ there is a (d − 2)-flat containing & k(2d−1−α)/(d−1) points of P

Open problems:

tightness for various values of α tightness for spheres

What are further conditions, in d ≥ 4, enforcing the existence of even lower-dim
flat containing many points of P?

(d− 2)-flat

Rd
P in general position

∞ many k-rich hyperplanes

∀ (d − 3)-flat has ≤ (d − 2) points of P

Thank you!



Summary & open problems

Main result (P., Sharir):

P . . . n points in Rd 3 ≤ d ≤ k d ≤ α < 2d − 1

& ( nd

kα + n
k ) k-rich hyperplanes

⇒ there is a (d − 2)-flat containing & k(2d−1−α)/(d−1) points of P

Open problems:

tightness for various values of α tightness for spheres

What are further conditions, in d ≥ 4, enforcing the existence of even lower-dim
flat containing many points of P?

(d− 2)-flat

Rd
P in general position

∞ many k-rich hyperplanes

∀ (d − 3)-flat has ≤ (d − 2) points of P

Thank you!



Summary & open problems

Main result (P., Sharir):

P . . . n points in Rd 3 ≤ d ≤ k d ≤ α < 2d − 1

& ( nd

kα + n
k ) k-rich hyperplanes

⇒ there is a (d − 2)-flat containing & k(2d−1−α)/(d−1) points of P

Open problems:

tightness for various values of α tightness for spheres

What are further conditions, in d ≥ 4, enforcing the existence of even lower-dim
flat containing many points of P?

(d− 2)-flat

Rd
P in general position

∞ many k-rich hyperplanes

∀ (d − 3)-flat has ≤ (d − 2) points of P

Thank you!



Summary & open problems

Main result (P., Sharir):

P . . . n points in Rd 3 ≤ d ≤ k d ≤ α < 2d − 1

& ( nd

kα + n
k ) k-rich hyperplanes

⇒ there is a (d − 2)-flat containing & k(2d−1−α)/(d−1) points of P

Open problems:

tightness for various values of α tightness for spheres

What are further conditions, in d ≥ 4, enforcing the existence of even lower-dim
flat containing many points of P?

(d− 2)-flat

Rd
P in general position

∞ many k-rich hyperplanes

∀ (d − 3)-flat has ≤ (d − 2) points of P

Thank you!


