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Context and Overview

Random Graph Model: Random d-process
@ Start with an empty graph on n vertices
@ In each step: add one random edge so that max-degree stays < d

o Natural random greedy algorithm to generate d-regular graph
(Balinska—Quintas 1985, Ruciniski-Wormald 1992)

Basic Question: Wormald (1999)

How similar are d-process and uniform random d-regular graph G47?

e Wormald conjectured they are similar (contiguous)

This Talk: Variant for degree sequences d,

Degree-restricted process differs from uniform Gq, for irregular d,




Variant for degree sequences d,, = (d, ..., d,)

Degree-restricted random d,-process

@ Start with an empty graph on n vertices

@ In each step: add one random edge to the graph,
so that the degree of each vertex v; stays < d;

Example for d5 = (2, 2,2, 3, 3): 2




Variant for degree sequences d,, = (d, ..., d,)

Degree-restricted random d,-process
@ Start with an empty graph on n vertices

@ In each step: add one random edge to the graph,
so that the degree of each vertex v; stays < d;

Basic Distributional Question:

How similar is final graph GdF; of degree-restricted random d,,-process
to a uniform random graph Gq, with degree sequence d,?

e Statistics: can we (algorithmically) distinguish them?

o Combinatorial Probability: do both have similar typical properties?
@ Algorithms: can d,,-process be used for random sampling?

e Modeling/Physics: does the simplest model work?



Main Result: d,-process and uniform model differ

dn = (di,...,ds) not nearly regular : no degree appears > 0.99n times

Molloy, Surya, Warnke (2022+)

If the bounded degree sequence d,, is not nearly regular, then
can whp distinguish d,-process G(f; and uniform random d,-graph Gy,

Simple case (today): Assume # degree 1 vertices € [0.01n,0.99n]

@ Proof Idea: Show discrepancy in edge statistic
» Number of 1-1 edges differ whp (i.e., evolution of process matters)

o Proof Technique: ‘Switching method’ applied to d,-process
» Usually only applied to uniform models (not stochastic processes)



Intuition: why d,-process prefers 1-1 edges
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Main Technical Result: Discrepancy in Edge Statistic
X1,1(G) = # of edges with endpoints of degree 1 in G

Can distinguish both models via X ;

There exists 1 and € = ¢(A) > 0 such that with high probability

X11(Ga,) € (L=, (L+€)u] and  X11(Gg) & [(1— ), (1 + )]

X11(Gy)  Xi1(Ga,) X11(Gg)
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e Concentration of X; 1(Gy,): standard via configuration model

o Understanding X;1(G, ): adapt switching method (— This talk)



Switching: Change # of 1-1 edges by exactly one

Definition via Example:

1 1 1 o0 1

e Goal: compare ratio P(Gf = GT)/P(Gf = G™)

» # of 1-1 edges in G and G~ differ by exactly one
» switching between G+ and G~ is ‘local perturbation’

o Extra difficulty for stochastic processes:
» no longer uniform (order of edges matters)

@ Solution:
> look at all trajectories (= edge orderings) yielding a graph



How Switching Affect d,,-process Probabilities

@

G~ — mcﬁ

Switching Lemma (for probabilities)

PGy = C) L 1 v where ¢ > 0 depends on A
n >
P(Gcf: —6 )2 € where € epends on

Proof Ideas:
@ Expand probability based on edge-sequence o of G
P(Gcﬁ. =G)= ZP(dn—process returns o) =: ZIP’(U)

e Understand how switching affects P(o)
» Compare (averaged ratios of) probabilities of similar trajectories
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Switching edge-sequence

Edge-sequence o: e; e e3 €4 .
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o Key Inequality:
P(0abxy) + P(0xy,ab) > P(0ax,by) + P(0by ax)

@ LHS has one more 1-1 edge than RHS:

> Indicates d,-process prefers more 1-1 edges
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How Switching Affect d,,-process Probabilities

A A =

Switching Lemma (for probabilities)
P(Gg = GT)

IP’(G(f]—:G—) >1+¢ where ¢ > 0 depends on A

Proof Idea: Use key inequality for all edge-sequences o = 0,p 5, of G

P(G(f] = G+) = Z [P(Uab,xy) + P(ny,ab):|

O ab,xy

> Z [ (Tax,by) + P(oby, ax)] =P(Gg =G")

O ax,by

e Often win a factor of 1 + € in key inequality: get 1+ ¢



Switching: Graph Count Based on X

Notation: G € d, if G has degree sequence d,

Auxiliary Graph: by adding edge between G*,G:

(et ArA A2 ] — Gr={GEdn: X11(G) =(+1}

’ J S NNV N ‘—»Gg:{GEanXLl(G):f}

Key Point: Auxiliary graph is roughly regular when ¢ ~ p
Switching lemma then implies:

P(GF € G,
(dne €+1)21+6/
P(th. € Gg)




Uniform random graphs: switching easy

Notation: G € d, if G has degree sequence d,

Auxiliary Graph: by adding edge between G, G~:

(et ArA A2 ] —Gr={GEdn: X11(G) =(+1}

’ J S NNV N ‘—»Gg:{GEanXLl(G):f}

Uniform random graph Gq, simpler: classical switching works

Crux is that normalization constants cancel out:

P(Gd, € Gr11) _ |Get1
P(Ga, € Gr) |Gy




Degree-restricted process: why new ideas needed
Notation: G € d, if G has degree sequence d,

Auxiliary Graph: by adding edge between G, G™:

(o g A2 2t | —Gu={Gedn: X1(G)=0+1}

VTV VU] 6= {6 cdn: X1(G) = 1}

Degree-restricted random d,,-process: why more complicated
Normalization constants do not cancel out:

P(Gy € Giy1)  Yoreg,,, P(Gh = F)
P(G4 € Gy) > hee, P(G§ = H)




Proof of Main Theorem (Sketch)
Definition: N, = {G € dy : [X1,1(G) — p| < z}

Key Point implies (for z < 2epu)

IP[GC’I:.: S Nz] < ZN*ZSZSIkFZ]P)(GCﬁ < Gg) - 1
P[G(f] €Net1] T Xy scecpte P(Gcﬁ € Gpy1) ~ 1+¢€

Get exponential decay by telescoping product argument:

2epu—1
MWGN)<MQKNM=:ﬁ M%ENH< L o
I =TT PG € Nacy) smey P(G, € Nzsa) — (L4 €)

Conclusion: whp number of 1-1 edges satisfies

Xl’l(GdP") Xl,l(Gcﬁ)
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General case: more complicated

o Small vertex: |{v :deg(v) <s}| €[0.01n,0.99n] (previously s =1)
o Small edge: edge whose endpoints are small

@ Ximall(G) = number of small edges in G

Goal: Distinguish both models via X nan
There exists 1 and € = ¢(A) > 0 such that with high probability

Xonat(Ga,) € [(1= g (L4 )] and Xoman(G5) & (1= )ps (1+ )]

Xsmall( G(f ) Xs‘mall ( Gdn ) Xsmall( G.f )
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o Major Difficulty: Several key inequalities can fail



The point where old argument breaks down

Issue: the following key inequality is no longer true
P(Gy = GT)

—r 6 0 75 /
PG =G)-

The ratio is & 0.82 in the following example:

G~ Gt




General case: refined switching idea
Definition: N, = {G € dy : [Xsman(G) — p| < z}
Key Idea: Switching on clusters (=suitable sets of graphs)
P(Gs € Nz) o1
P(GL € Noysa) — 1+¢€

~C N
~ A0 A -
NIVAYAZ (/

ANV

Z+5
UUUW U \Q/U

M-2-54 c‘ AMAZHE N




General case: refined switching idea
Definition: N, = {G € dy : | Xsman(G) — | < z}
Key Idea: Switching on clusters (=suitable sets of graphs)
P(GS € V) _ 1
IP)(G(;: ENZ+5A) T 14¢€

Get exponential decay by telescoping product argument:

P(G§ € New) _E/(‘m) P(Gg, € Newrisn) < 1

P(GY e Nop) < ——an — W _ <
dn K IP’(G(;Z € Noey) I.l}) P(G(f] € j\/’eﬂ+(i+1)5A) (14 €)er

— 0

Conclusion: whp number of small edges satisfies
Xsmall( G(f] ) Xsmall( G(f] )
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Summary

Degree-restricted random d,-process G(f]

@ Start with an empty graph on n vertices

@ In each step: add one random edge to the graph,
so that the degree of each vertex v; stays < d;

Main result: d,-process G(ﬁ and uniform model Gy, differ

If the bounded degree sequence dy, is not nearly regular, then
can whp distinguish d,-process G(fr: and random dy-graph Gq,

@ Proof technique: adapt switching method to stochastic process

Open Question
Wormald's conjecture for 2-regular degree-restricted random process?




