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o Let S, ={0,1,--- ,q—1}.
@ A g-ary code of length nis any subset C of S”, where
elements of C are called codewords.
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An overview of codes

o Let S, ={0,1,--- ,q—1}.
@ A g-ary code of length nis any subset C of S”, where
elements of C are called codewords.

@ M denotes the number of codewords in C.
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An overview of codes

Let S, ={0,1,---,g—1}.
A g-ary code of length n is any subset C of S/, where
elements of C are called codewords.

M denotes the number of codewords in C.

If all codewords have the same number of nonzero entires
(denoted w) the code is said to be of constant weight.
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An overview of codes

Let S, ={0,1,---,g—1}.
A g-ary code of length n is any subset C of S/, where
elements of C are called codewords.

M denotes the number of codewords in C.

If all codewords have the same number of nonzero entires
(denoted w) the code is said to be of constant weight.

@ The Hamming distance between two g-ary codes of length n is
the number of coordinates in which they differ.
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An overview of codes

Let S, ={0,1,---,g—1}.
A g-ary code of length n is any subset C of S/, where
elements of C are called codewords.

M denotes the number of codewords in C.

If all codewords have the same number of nonzero entires
(denoted w) the code is said to be of constant weight.

@ The Hamming distance between two g-ary codes of length n is
the number of coordinates in which they differ.

@ A constant weight g-ary code of length n, having minimum
Hamming distance d and weight w is denoted as an
(n, d, w)q-code.
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An example

@ As an example, take S = {0,—1,1}.
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An example

@ As an example, take S = {0,—1,1}.

01--1
101 - —
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An example

@ As an example, take S = {0,—1,1}.

01--1
101 - —

@ The number of codewords is 2 (M = 2).
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An example

@ As an example, take S = {0,—1,1}.

01--1
101 - —

@ The number of codewords is 2 (M = 2).
@ The above code has length 5 (n =5).
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An example

@ As an example, take S = {0, —1,1}.
01— 1
101 —
@ The number of codewords is 2 (M = 2).
@ The above code has length 5 (n = 5).

e The Hamming distance between the codewords is 4 (d = 4).
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An example

@ As an example, take S = {0,—1,1}.

0
0

The number of codewords is 2 (M = 2).
The above code has length 5 (n = 5).

The Hamming distance between the codewords is 4 (d = 4).

The code has constant weight 4 (w = 4).
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An example

@ As an example, take S = {0, —1,1}.

01--1
101 - —

The number of codewords is 2 (M = 2).

The above code has length 5 (n =5).

The Hamming distance between the codewords is 4 (d = 4).
The code has constant weight 4 (w = 4).

We denote this as a (5,4, 4)3-code.

e 6 6 o o
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An example

@ As an example, take S = {0, —1,1}.

01--1
101 - —

The number of codewords is 2 (M = 2).

The above code has length 5 (n =5).

The Hamming distance between the codewords is 4 (d = 4).
The code has constant weight 4 (w = 4).

We denote this as a (5,4, 4)3-code.

How many codewords can we have with n =5, d =4, w =4
(Maximize M)?

e 6 6 6 o o
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Upper bounds for M
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Upper bounds for M

@ The largest value of M for which there is a g-ary code of length n, minimum
distance d and constant weight w is denoted by Aq(n, d, w) and the code is
said to be optimal if M = Aq(n, d, w).
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Upper bounds for M

@ The largest value of M for which there is a g-ary code of length n, minimum
distance d and constant weight w is denoted by Aq(n, d, w) and the code is
said to be optimal if M = Aq(n, d, w).

The Johnson bounds for the constant weight g-ary codes:
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Upper bounds for M

@ The largest value of M for which there is a g-ary code of length n, minimum
distance d and constant weight w is denoted by Aq(n, d, w) and the code is
said to be optimal if M = Aq(n, d, w).

The Johnson bounds for the constant weight g-ary codes:

Aq(n,d,w) < {#Aq(n —1,d,w— 1)J 1)
nd(q —1) _
Aq(n,d,w) < LIW2 ~2(q — 1)ow + nd(q = I)J’a = gqw? —2(g — 1)nw + nd(q — 1) > 0.

()
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Upper bounds for M

@ The largest value of M for which there is a g-ary code of length n, minimum
distance d and constant weight w is denoted by Aq(n, d, w) and the code is
said to be optimal if M = Aq(n, d, w).

The Johnson bounds for the constant weight g-ary codes:

Aq(n,d,w) < {#Aq(n —1,d,w— 1)J 1)
nd(q —1) _
Aq(n,d,w) < LIW2 ~2(q — 1)ow + nd(q = I)J’a = gqw? —2(g — 1)nw + nd(q — 1) > 0.

()

] Forq:3, n=>5d=4and w = 4 we have
a=3(4)? —2(2)(5)(4) + 2(5)(4) = 8 > 0. Since the condition is met, we can
nd 0

use bound (2) to compute A3(5,4,4) < Lmj & =b5.
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Weighing matrices
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Weighing matrices

Definition

A weighing matrix, W, is a matrix of order n and weight w with
entries from {0, —1,1}, such that WWT = wl,. Often denoted by
W(n, w).
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Weighing matrices

A weighing matrix, W, is a matrix of order n and weight w with

entries from {0, —1,1}, such that WWT = wl,. Often denoted by
W(n,w).

A weighing matrix of order 6 and weight 5: a W(6,5)
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Weighing matrices

A weighing matrix, W, is a matrix of order n and weight w with

entries from {0, —1,1}, such that WWT = wl,. Often denoted by
W(n,w).

A weighing matrix of order 6 and weight 5: a W(6,5)

0111117
101——1
1101 ——
1-101—
1--101
11--10]
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Weighing matrices

A weighing matrix, W, is a matrix of order n and weight w with
entries from {0, —1,1}, such that WWT = wl,. Often denoted by

W(n,w).

o

A weighing matrix of order 6 and weight 5: a W(6,5)

011111] 5000007
101——1 050000
1101 -- r_|005000
W=1li2101-|""" = 000500
1--101 000050
11--10 1000005
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Codes from weighing matrices
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Codes from weighing matrices

Using the rows of any weighing matrix we can form an optimal
constant weight ternary code.
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Codes from weighing matrices

Using the rows of any weighing matrix we can form an optimal
constant weight ternary code. Consider the rows of W(6,5):

01 1 1 11
101 - — 1
11 0 1 — —
1 - 1 0 1 -—
1 - — 1 0 1
11 - -1 0

Vlad Alberta-Montana Combinatorics and Algorithms Days at BIRS



Codes from weighing matrices

Using the rows of any weighing matrix we can form an optimal
constant weight ternary code. Consider the rows of W(6,5):

01 1 1 1 1
101 - — 1
11 0 1 — —
1 - 1 0 1 -—
1 - - 1 0 1
11 - — 10
There are six codewords of length n = 6, distance d = 4 and

weight w = 5.
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Codes from weighing matrices

Using the rows of any weighing matrix we can form an optimal
constant weight ternary code. Consider the rows of W(6,5):

01 1 1 11
101 - — 1
11 0 1 — —
1 - 1 0 1 -—
1 - — 1 0 1
11 - -1 0

There are six codewords of length n = 6, distance d = 4 and
weight w = 5. Calculating the condition for Johnson Bound (2)
a=3(5%) —4(6)(5) +2(6)(4) =3 >0
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Codes from weighing matrices

Using the rows of any weighing matrix we can form an optimal
constant weight ternary code. Consider the rows of W(6,5):

01 1 1 11
101 - — 1
11 0 1 — —
1 - 1 0 1 -—
1 - — 1 0 1
11 - -1 0

There are six codewords of length n = 6, distance d = 4 and
weight w = 5. Calculating the condition for Johnson Bound (2)
a = 3(5%) — 4(6)(5) +2(6)(4) = 3 > 0. Using Johnson bound (2)
the upper bound is

A3(6,4,5) = { nd(q—1) J 48

~ % _16
gw? —2(q — 1)nw + nd(q — 1) 3
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Codes from weighing matrices

Using the rows of any weighing matrix we can form an optimal
constant weight ternary code. Consider the rows of W(6,5):

01 1 1 11
101 - — 1
11 0 1 — —
1 - 1 0 1 -—
1 - — 1 0 1
11 - -1 0

There are six codewords of length n = 6, distance d = 4 and
weight w = 5. Calculating the condition for Johnson Bound (2)
a = 3(5%) — 4(6)(5) +2(6)(4) = 3 > 0. Using Johnson bound (2)
the upper bound is

A3(6,4,5) = { nd(q—1) J 48

~ % _16
gw? —2(q — 1)nw + nd(q — 1) 3

There are only 6 codewords and it is hard to find 10 more.
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A 2002 Electronic Journal of Combinatorics result of

Patric Ostergard
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Ostergard's result

Showed that an optimal constant weight ternary code having
length n = 6, distance d = 4 and constant weight w = 5 consists
of 12 codewords:
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Ostergard's result

Showed that an optimal constant weight ternary code having
length n = 6, distance d = 4 and constant weight w = 5 consists
of 12 codewords:

Theorem (E.J.C. 2002)

If p > 3 is a prime power and m > 1, then

m43
As (p"’+1,p 5 ,p’") =2(p™ +1).
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Ostergard's result

Showed that an optimal constant weight ternary code having
length n = 6, distance d = 4 and constant weight w = 5 consists
of 12 codewords:

Theorem (E.J.C. 2002)

If p > 3 is a prime power and m > 1, then

m43
As (p"’+1,p 5 ,p’") =2(p™ +1).

Let p =5, m=1, then A3(6,4,5) = 12.
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An extension of Ostergérd's result
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An extension of Ostergérd's result

We begin by looking at the Derived part of W:
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An extension of Ostergérd's result

We begin by looking at the Derived part of W:

0[11111]7
1o1--1
11101 ——
1-101—
1l--101
(11 ——10]
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Ternary code from the Derived part of W
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Ternary code from the Derived part of W

Consider (5,4,4)3 code consisting of the rows of the Derived part:
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Ternary code from the Derived part of W

Consider (5,4,4)3 code consisting of the rows of the Derived part:

01-—-1
101 ——
-101-
-——-101
1--10
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Ternary code from the Derived part of W

Consider (5,4,4)3 code consisting of the rows of the Derived part:

01-—-1
101 ——
-101-
-——-101
1--10

Calculating the condition for Johnson bound (2)

a=3(4)?> — 4(5)(4) +2(5)(4) = 8 > 0. Applying Johnson bound
(2) we see that Asz(5,4,4) <5.
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Ternary code from the Derived part of W

Consider (5,4,4)3 code consisting of the rows of the Derived part:

01-—-1
101 ——
-101-
-——-101
1--10

Calculating the condition for Johnson bound (2)

a=3(4)?> — 4(5)(4) +2(5)(4) = 8 > 0. Applying Johnson bound
(2) we see that A3(5,4,4) < 5. The code is optimal.
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Ternary code from the Derived part of W

Consider (5,4,4)3 code consisting of the rows of the Derived part:

01-—-1
101 ——
-101-
-——-101
1--10

Calculating the condition for Johnson bound (2)
a=3(4)?> — 4(5)(4) +2(5)(4) = 8 > 0. Applying Johnson bound
(2) we see that A3(5,4,4) < 5. The code is optimal.
We now use Johnson bound (1):
2(6)

As(6,4,5) < {n(qw_l)Aq(n ~1,d,w— 1)J =) =12

and conclude that A3(6,4,5) < 12.
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Constructing the optimal code
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Constructing the optimal code

We add the rows of —W to the rows of W':
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Constructing the optimal code

We add the rows of —W to the rows of W':
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Constructing the optimal code

We add the rows of —W to the rows of W':

There we have the desired 12 codewords.
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The extension

Let C be a conference matrix of order n+1 (ie W(n+ 1, n) with 0
diagonal). Then the rows of C and —C together form an optimal
constant weight ternary code and so

n+3

As(n+1, —5 n)=2(n+1).

.
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The extension

Let C be a conference matrix of order n+1 (ie W(n+ 1, n) with 0
diagonal). Then the rows of C and —C together form an optimal
constant weight ternary code and so

n—+3
2

As(n+1, ,n)=2(n+1).

.

The 2002 E.J.C. result follows:
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The extension

Let C be a conference matrix of order n+1 (ie W(n+ 1, n) with 0
diagonal). Then the rows of C and —C together form an optimal
constant weight ternary code and so

n—+3

A3(n+ 17 2

,n)=2(n+1).

The 2002 E.J.C. result follows:

If p > 3 is a prime power and m > 1, then

p" +3
2

As (Pm +1, ,Pm> =2(p™ +1).

Remark: There is a W(16,15) and 15 is a composite number.
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The new class of optimal ternary codes
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The new class of optimal ternary codes

Next we try to show that for every odd prime power p and positive
integer m:

We begin with the definition and some examples of Orthogonal
Arrays
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Orthogonal Array
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Orthogonal Array

Definition

We say an n? X m matrix with entries in a set S of n symbols is an

orthogonal array on S, denoted OA(n, m), if superimposition of
each row on a different row will show exactly one common symbol
in the same column.
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Orthogonal Array

We say an n? X m matrix with entries in a set S of n symbols is an
orthogonal array on S, denoted OA(n, m), if superimposition of
each row on a different row will show exactly one common symbol
in the same column.

Let n = 3 and m = 4, then

1111
1222
1333
2123
0= 12312
2231
3132
3213
$5321

is an OA(3,4) on S = {1, 2, 3}.
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The orthogonal array forn=5 m=26
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Vlad

1111117
122222
133333
144444
155555
212345
223451
234512
245123
251234
313524
335241
352413
324135
341352
414253
442531
425314
453142
431425
515432
554321
543215
532154
521543
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O is an OA(5,6) on S = {1,2,3,4,5}.

Vlad

1111117
122222
133333
144444
155555
212345
223451
234512
245123
251234
313524
335241
352413
324135
341352
414253
442531
425314
453142
431425
515432
554321
543215
532154
521543
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1111117
122222
133333
144444
155555
212345
223451
234512
245123
251234
313524
335241
352413
324135
341352
414253
442531
425314
453142
431425
515432
554321
543215
532154
521543

O is an OA(5,6) on S = {1,2,3,4,5}. The superimposition of any two distinct rows
of O will have exactly one common symbol.
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r1111117
122222
133333
144444
155555
212345
223451
234512
245123
251234
313524
335241
O=[352413
324135
341352
414253
442531
425314
453142
431425
515432
554321
543215
532154

L521543]

O is an OA(5,6) on S = {1,2,3,4,5}. The superimposition of any two distinct rows

of O will have exactly one common symbol.
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r1111117
122222
133333
144444
155555
212345
223451
234512
245123
251234
313524
335241
O=[352413
324135
341352
414253
442531
425314
453142
431425
515432
554321
543215
532154

L521543]

O is an OA(5,6) on S = {1,2,3,4,5}. The superimposition of any two distinct rows

of O will have exactly one common symbol.
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Overview of BGWs

o Let G be some multiplicative group.
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Overview of BGWs

o Let G be some multiplicative group.

o A BGW(v, k,\) over G is a matrix W = [wj;] of order v with
entries from {G U 0}.
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Overview of BGWs

o Let G be some multiplicative group.

o A BGW(v, k,\) over G is a matrix W = [wj;] of order v with
entries from {G U 0}.

@ Every row of W contains exactly k non-zero entries.
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Overview of BGWs

Let G be some multiplicative group.

A BGW(v, k,\) over G is a matrix W = [wj;] of order v with
entries from {G U 0}.

Every row of W contains exactly k non-zero entries.

For every i,j € {1,--- ,v}, i # j the multisets
{W,-kvvj;1 P Wik 0 # wik,0 < k < v, i #j}

contain each group element exactly A\/|G| times.
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Overview of BGWs

o Let G be some multiplicative group.

o A BGW(v, k,\) over G is a matrix W = [wj;] of order v with
entries from {G U 0}.

@ Every row of W contains exactly k non-zero entries.

e Forevery i,j€ {1, --- v}, i #j the multisets
{W,-kvvj;1 P Wik 0 # wik,0 < k < v, i #j}

contain each group element exactly A\/|G| times.

@ Namely, the conjugate inner product of any two distinct rows
of W contains each element of G exactly A/|G| times.
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Example of a BGW
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Example of a BGW

Let v=6, k =5 and A = 4, then

[0 4 4 4 4 4
203412
2 10324
W=122104 3
2 34201
(2421 3 0|

isa BGW(6,5,4) over Zy.
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Example of a BGW

Let v=6, k =5 and A = 4, then

[0 4 4 4 4 4
203412
2 10324
W=122104 3
2 34201
(2421 3 0|

is a BGW(6,5,4) over Z4. Note that the entries of W are powers
of some primitive element of GF(5), say .
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Example of a BGW

Let v=6, k =5 and A = 4, then

N B2 O WS>
RN O W~ B>
O WA~ DN B

B OO NR O D
Wo s ND= B

NN NN DN

isa BGW(6,5,4) over Z4. Note that the entries of W are powers
of some primitive element of GF(5), say .
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Example of a BGW

N O
N B
i
o
> b
w
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Example of a BGW
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Example of a BGW
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Example of a BGW
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Example of a BGW
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Example of a BGW
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Example of a BGW

{a®> o o ol}

@ Each element of Z4 appears exactly A\/|G| =4/4 =1 time.
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The core of W(6,5)
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The core of W(6,5)

@ Recall our weighing matrix W(6,5):

111117
01-——1
101 ——
~101-
-—101
1——10]

e s k=)
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The core of W(6,5)

@ Recall our weighing matrix W(6,5):

111117
01-——1
101 ——
~101-
-—101
1——10]

e s k=)

@ The core of the matrix is:
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The core of W(6,5)
@ Recall our weighing matrix W(6,5):

0111117
o1 -—-1
11101 —-—
W= 1-101 -
1—-—101
|1/11 ——1 0]
@ The core of the matrix is:
01—-—-1
101 ——
C=|-101-
——101
1--10
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The core of W(6,5)
@ Recall our weighing matrix W(6,5):

0111117
o1 -—-1
11101 —-—
W= 1-101 -
1—-—101
|1/11 ——1 0]
@ The core of the matrix is:
01—-—-1
101 ——
C=|-101-
——101
1--10

@ Recall that the five rows of C provide an optimal (5,4,4)3
code as A3z(5,4,4) <5 =M.



An application
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An application

@ Using the weighing matrix W(6,5) and O, the OA(5,6) we
can construct a BGW/(31,25,20) over Z,.
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An application

@ Using the weighing matrix W(6,5) and O, the OA(5,6) we
can construct a BGW/(31,25,20) over Z,.

@ Changing the entry i in O with the i-th row of C results in the
Derived part of the BGW (31, 25, 20) over Zj.
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An application

@ Using the weighing matrix W(6,5) and O, the OA(5,6) we
can construct a BGW/(31,25,20) over Z,.

@ Changing the entry i in O with the i-th row of C results in the
Derived part of the BGW (31, 25, 20) over Zj.

e Using W(6,5) we compute W ® (11111) which results in the
Residual part of the following BGW .
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A BGW(31,25,20) over Z,
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..11, | o= | | HoO= | | He== | O | _11,0,101,_
= | |Ho|l] |HOHAH | |HOO | =#—= |~ |O |~ | |—HOH
= | |Ho|| o= | | |HOH—H |O | HO | =+ | = | | HO
= | | HOlHO = | | |HOH | |- |O--|]O|O™ | |~
= | |Holo= | |HHO-= | | |[O| - |O | H-A—=O~ | |
- | |HoH|H | |HOo-HOH | | |HH |OO | =+ | | | HOH
- | | HoH||] |HOHO- | |H |O |-+ |O | = | | -0
- | |HoH||HO= |- | |HO-H |O| |[O| O | | =
- | |HoHlHOo= | | | | HOHO | A= | |- |O—-HO~ | |
- | | Ho-HoOo—HA | |H | O |- |O |-~ |O| A |0 |
- | O™ ||H | |HO | HOH |O |-+ | |O| -~ | | -0
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o= | |9 | | 0o | |HOoH |O| A+ |O | O | |~
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Z n o | ||[HOoOH | |[OH | |HH |O|H |O | HH | | HOH >
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O o= | |H||]HOoOH | |HOH | |O | HH | HH |O | | HOH
— —“o-= | |HlHOHA | |HOH | |+ |]O |- |O |- | | -0
o= | |HOoH | |HOH | |HO |HH |O |- |O™ | | =
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An application of the BGW/(31, 25, 20) over Z, to optimal

ternary codes
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An application of the BGW/(31, 25, 20) over Z, to optimal

ternary codes

The derived part D of the BGW/(31, 25, 20) over Z; forms an
optimal constant weight ternary code with parameters n = 30,
d =20, and w = 24.
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An application of the BGW/(31, 25, 20) over Z, to optimal

ternary codes

20, and w = 24.

The derived part D of the BGW/(31, 25, 20) over Z; forms an

optimal constant weight ternary code with parameters n = 30,

d
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o= | |
— | |~
| | mo
| mo —
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o |
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o— | |
- | ] -
| | moO
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— o |
o~ | |
—
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—
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L

o1--11--101--101--101--101--10

101~--101~---101---1011--1001--1

101 --1--1001--1101---101---101

-101-01--1-101-1--10101—-—-—--101

-101--101-1--10101--—--10101-—-1

-101~---10101--1-101-1--10101--—

--10101--1--101101--1--10-101-—

--101--101101--1--10-101-01--1

--101101--1~--10-101-01—--1--101

--1011--10-101-01--1—-—-101101--—

--101-101-01--1--101101--1--10

1--1001--11--10--101-101-101-——

1--101--10--101-101-101--01--—1

1--10-101-101~--01--11--10--101

1--10101-~--01~--11--10--101-101-—

%)
4
m
=
©
P
2
&
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An application to ternary codes
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An application to ternary codes
The 25 rows of D form an optimal constant weight (30, 20, 24)3 code. I
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An application to ternary codes
The 25 rows of D form an optimal constant weight (30, 20, 24)3 code. I

Each row of D consists of 6 rows of C (recall C is the core of W(6,5)).
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An application to ternary codes
The 25 rows of D form an optimal constant weight (30, 20, 24)3 code. I

Each row of D consists of 6 rows of C (recall C is the core of W(6,5)). Any two
distinct rows of D share one row of C in the same column.
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An application to ternary codes

The 25 rows of D form an optimal constant weight (30, 20, 24)3 code.

Proof.

Each row of D consists of 6 rows of C (recall C is the core of W(6,5)). Any two
distinct rows of D share one row of C in the same column. Any two distinct rows of
C have a Hamming distance 4.
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An application to ternary codes

The 25 rows of D form an optimal constant weight (30, 20, 24)3 code.

Proof.

Each row of D consists of 6 rows of C (recall C is the core of W(6,5)). Any two
distinct rows of D share one row of C in the same column. Any two distinct rows of
C have a Hamming distance 4. Therefore the distance of the code is 20.
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An application to ternary codes
The 25 rows of D form an optimal constant weight (30, 20, 24)3 code.

Proof.

Each row of D consists of 6 rows of C (recall C is the core of W(6,5)). Any two
distinct rows of D share one row of C in the same column. Any two distinct rows of
C have a Hamming distance 4. Therefore the distance of the code is 20. Since
a=qw?—2(q—1)nw+ (g —1)nd = 3(24)? — 2(2)(30)(24) + 2(30)(20) = 48 > 0 we
can apply Johnson Bound (2) to obtain

nd(q —1)
AaER A2 < L:w? ~2(q—Dmw + (- 1)ndJ
2(30)(20)
- [3(24)2 —2(2)(30)(24) + 2(30)(20)J ‘
E ]
48
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An application to ternary codes
The 25 rows of D form an optimal constant weight (30, 20, 24)3 code.

Proof.

Each row of D consists of 6 rows of C (recall C is the core of W(6,5)). Any two
distinct rows of D share one row of C in the same column. Any two distinct rows of
C have a Hamming distance 4. Therefore the distance of the code is 20. Since
a=qw?—2(q—1)nw+ (g —1)nd = 3(24)? — 2(2)(30)(24) + 2(30)(20) = 48 > 0 we
can apply Johnson Bound (2) to obtain

{ nd(q —1) J
qw? —2(q — 1)nw + (q — 1)nd

B 2(30)(20)

N [3(24)2 —2(2)(30)(24) + 2(30)(20)J ’

1200
2>
48

IA

As(30, 20, 24)

Since D consists of 25 codewords, it follows that A3(30,20,24) < 25 = M and the
constant weight code is optimal. O

v
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Another application to ternary codes
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Another application to ternary codes

Let B3; be the BGW(31,25,20) over Zy. The rows of the matrix [78“;;1] form an

optimal constant weight (31,20, 25)3 code.
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Another application to ternary codes

Let B3; be the BGW(31,25,20) over Zy. The rows of the matrix [78“;;1] form an

optimal constant weight (31,20, 25)3 code. )

Using the properties of BGW/(31, 25, 20) the Hamming distance of any two distinct
rows of +Bs; is 20.
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Another application to ternary codes

Let B3; be the BGW(31,25,20) over Zy. The rows of the matrix [78“;;1] form an

optimal constant weight (31,20, 25)3 code. )

Using the properties of BGW/(31, 25, 20) the Hamming distance of any two distinct
rows of +Bj3; is 20. Similarly, a row from Bs3; and a row from —Bz; will also have
minimum Hamming distance 20.
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Another application to ternary codes

Let B3; be the BGW(31,25,20) over Zy. The rows of the matrix [78“;;1] form an

optimal constant weight (31,20, 25)3 code. )

Using the properties of BGW/(31, 25, 20) the Hamming distance of any two distinct
rows of +Bj3; is 20. Similarly, a row from Bs3; and a row from —Bz; will also have
minimum Hamming distance 20. We apply Johnson Bound (1) to obtain

Ag(n—1,d,w — l)J < {%Ag,@o, 20, 24)J

{g—i(zs)J =62.

—1
As(31,20,25) < {M
w
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Another application to ternary codes

Bs;
—Bs;

Let B3; be the BGW(31,25,20) over Zy. The rows of the matrix |: ] form an

optimal constant weight (31,20, 25)3 code. )

Using the properties of BGW/(31, 25, 20) the Hamming distance of any two distinct
rows of +Bj3; is 20. Similarly, a row from Bs3; and a row from —Bz; will also have
minimum Hamming distance 20. We apply Johnson Bound (1) to obtain

A3(31,20,25) < V(qiw_l)Aq(n —1,d,w— 1)J < {%Ag,(ao, 20, 24)J

{g—i(zs)J =62.

As B3 U —Bzs; consists of 62 codewords, it follows that A3(31,20,25) < 62 = M and
the constant weight code is optimal. O

4
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The new class of optimal ternary codes

If p is an odd prime power and m is a positive integer, then

m+1_1 +3 m+1_1
I e P N

p—1 2 P
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The new class of optimal ternary codes

If p is an odd prime power and m is a positive integer, then

pm+1_1 il P+3 m) _ pm+1_1
m(E e B em) =221,

4

We have seen the case for p =5 and m = 2. For m = 3 we would recursively
construct the matrix Bise = BGW/(156,125,100) over Zy.
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The new class of optimal ternary codes

If p is an odd prime power and m is a positive integer, then

pm+1_1 il P+3 m) _ pm+1_1
as (T e (B8 m) = 2(E1). |

We have seen the case for p =5 and m = 2. For m = 3 we would recursively
construct the matrix Bise = BGW/(156,125,100) over Zy. The rows of Bise U —Bisg
form an optimal constant weight (156, 100, 125)3 code.
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The new class of optimal ternary codes

If p is an odd prime power and m is a positive integer, then

pm+1_1 il P+3 m) _ pm+1_1
m(E e B em) =221,

4

We have seen the case for p =5 and m = 2. For m = 3 we would recursively
construct the matrix Bise = BGW/(156,125,100) over Zy. The rows of Bise U —Bisg
form an optimal constant weight (156, 100, 125)3 code. The derived part of Bise
forms an optimal constant weight (155, 100, 124)3 code.
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The End!
Thank You!
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