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VIRTUAL DIAGONALS

In this talk, ® denotes the projective tensor product of Banach spaces

(not the operator space version).
Given a Banach algebra A, let us temporarily write pi: A® A — A for
the bounded linear map satisfying

ula®b) = ab foralla,be A

and write Kk : A — A** for the natural embedding.

A virtual diagonal for A is some A € (A® A)** such thata-A=A-a
and p**(A) - a = k(a) for all @ € A. If A has a virtual diagonal, we say
that it is amenable (JOHNSON, 1972).



When A is finite-dimensional, (A ® A)** = A® A, so we speak of a
diagonal element for A.
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Example 1. Let A be any Banach algebra that is algebra-isomorphic to
C™ with pointwise product. Then A has a (unique!) diagonal: this is the
element of A® A corresponding to 37, d; ® d;. However, it is not clear
how large the norm of this element is in A ® A.
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Example 1. Let A be any Banach algebra that is algebra-isomorphic to
C™ with pointwise product. Then A has a (unique!) diagonal: this is the
element of A® A corresponding to 37, d; ® d;. However, it is not clear
how large the norm of this element is in A ® A.

Example 2. G a finite group; A = ¢*(G) with standard basis vectors

(eg)gec, viewed as a Banach algebra with the convolution product. Then

1
1l Z €g @ €(g-1)

geG

is a diagonal element for A, which turns out to have norm 1 inside AR A.



THE AMENABILITY CONSTANT OF A BANACH ALGEBRA

For a Banach algebra A, we define its amenability constant to be
AM(A) := inf HAH(A@A)**

where the infimum is over all virtual diagonals for A. We adopt the
convention that AM(A) := 400 when A is not amenable.
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For a Banach algebra A, we define its amenability constant to be
AM(A) := inf HAll(A@A)**

where the infimum is over all virtual diagonals for A. We adopt the
convention that AM(A) := 400 when A is not amenable.

Example 3. For any finite group G, we saw an explicit witness that
AM(£Y(G)) = 1. In fact, AM(L'(G)) = 1 for every amenable locally
compact group G (STOKKE, 2004).

So for L'-group algebras there is a dichotomy: the amenability constant
is either 1 or +00. This is very much not true when we work with Fourier
algebras (unless we switch to discussing operator (space) amenabiity).



THE FOURIER NORM ON THE COMPLEX GROUP ALGEBRA

Let G be a finite group. Given f € C%, and a representation
o:G— U(H,), we define

o(f) =) fl@)o(x) € B(H,).
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THE FOURIER NORM ON THE COMPLEX GROUP ALGEBRA

Let G be a finite group. Given f € C%, and a representation
o:G— U(H,), we define

o(f) =) fl@)o(x) € B(H,).

zeG

We then define A(G) to be C¢ equipped with the following norm:

dTr
17l = 3 Dl

where ||| ;) is the trace-class norm.

Although the norm on A(G) ® A(G) is hard to work with, there is a
remarkable exact formula for AM(A(G)) when G is finite.



Let G be a finite group. Then AM(A(G)) = ﬁ Z(dw)‘q’.
reG

If G is a finite abelian group then AM(A(G)) = 1. If G is a finite
non-abelian group, then AM(A(G)) > 3/2.
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Theorem (JOHNSON, 1994)

1
Let G be a finite group. Then AM(A(G)) = @l > (da)?.

Corollary

If G is a finite abelian group then AM(A(G)) = 1. If G is a finite
non-abelian group, then AM(A(G)) > 3/2.

Sketch of the proof of the 2nd part

Suppose G is finite and non-abelian, and let L be the set of
1-dimensional irreps of G. Since d, > 2 for all 7w € @ \ L,

AM(A(G)) + 'él > Té” %2@#)? _2.

But |G|/|L| is the size of the derived subgroup of G, so must be > 2. [



THE FOURIER ALGEBRA OF A LOCALLY COMPACT GROUP

For any locally compact group GG, one can define its Fourier algebra
A(G), in a way that extends the definition for finite groups.

The locally compact abelian setting

When G is a LCA group, it has a dual group G, and then A(G) is the
range of the Gelfand/Fourier transform L'(G) — Co(G).



THE FOURIER ALGEBRA OF A LOCALLY COMPACT GROUP

For any locally compact group GG, one can define its Fourier algebra
A(G), in a way that extends the definition for finite groups.
The locally compact abelian setting

When G is a LCA group, it has a dual group G, and then A(G) is the
range of the Gelfand/Fourier transform L'(G) — Co(G).

The canonical map A(G1) ® A(Gs) — A(G1 x Gz) has dense range, but
is usually not an isometry.

In fact: for this comparison map to be surjective, either G; or G2 must

be virtually abelian (i.e. have an abelian subgroup of finite index).



For a group G, define

adiag(G) = {(z,271): 1 € G} = {(=,y) € G x G: zy = €}.

7/15



LOWER BOUNDS ON AM(A(G))

Some notation
For a group G, define

adiag(G) = {(z, 2™ 1): 2 € G} = {(v,y) € G x G: zy = €}.

Theorem (FORREST-RUNDE, 2005)

Let G be a locally compact group for which A(G) is amenable, and let
Gy be the same group with the discrete topology. Then:
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LOWER BOUNDS ON AM(A(G))

Some notation
For a group G, define

adiag(G) = {(z, 2™ 1): 2 € G} = {(v,y) € G x G: zy = €}.

Theorem (FORREST-RUNDE, 2005)

Let G be a locally compact group for which A(G) is amenable, and let
Gy be the same group with the discrete topology. Then:

Q Lugiag(a) € B(Ga x Ga);
Q the check map is completely bounded A(G4) — A(Gq);
Q G, (and hence G) is virtually abelian.

The first part can be refined to give a quantitative statement:



Let G be a locally compact group. Then
AM(A(G)) > H]-adiag(G)”B

where ||-|| g denotes the norm in B(G4 x Gg).
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Lemma (RUNDE, 2006)
Let G be a locally compact group. Then

AM(A(G)) > || Ladiag(a) || 5

where ||-||z denotes the norm in B(G4 x Gg).

Quote from [Run06]
It remains to be seen whether or not Lemma 3.1 will eventually
lead to a more satisfactory bound from below for the
amenability constant of a Fourier algebra: very little seems to
be known on the norms of idempotents in Fourier-Stieltjes

algebras.

The point of this talk: we can say quite a bit about the norm of this
particular idempotent!



A CANONICAL MINORANT FOR AM(A(G))

If A is a discrete group, we introduce the notation

AD(A) = Hladiag(A) ||B

Reminder: AM(A(G)) > AD(Gy).

AD is an intrinsic invariant of a virtually abelian group, and we believe it
deserves further study (regardless of the connection to amenability of
Banach algebras). It has several useful hereditary properties.

o If H is a subgroup of G then AD(H) < AD(G).
] AD(Gl X Gg) = AD(Gl)AD(Gg)

@ For any G, there is a countable subgroup A such that
AD(A) = AD(G).



THE NEW RESULTS (1)

Let G be a finite group. Then AD(G) = [|1.giag(c)ll , and

1
Hladiag(G) HA = m ZA drdy H(T" ® U)(ladiag(G)) H(l)

T,0€G



THE NEW RESULTS (1)

Let G be a finite group. Then AD(G) = [|1.giag(c)ll , and

1
||1adiag(G) HA - m ZA drdy H (77 ® U)(ladiag(G)) H(l)

T,0€G

For a Hilbert space H let Xy be the “flip map” on H ®5 H.
Proposition

Let G be a finite group and let m,0 € G. Then

0 ifm o
TR o ]-a ia G)) =
roN @)= [Cly,

Corollary (C., submitted)

For G finite, AD(G) = ﬁ > (dr)? = AM(A(G)).
71'66



THE NEW RESULTS (2)

Now let G be a countable virtually abelian group. (This implies that

SUp_ & dr < 00.) Let v be Plancherel measure on G, normalized so that

2
S U@ = [ (IrDlle)) dvim)  (f € can()
z€G JG
where ||-[| (5, is the Hilbert-Schmidt norm.

With this normalization, 1 = /A dr dv(m).
G



THE NEW RESULTS (2)

Now let G be a countable virtually abelian group. (This implies that

SUp_ & dr < 00.) Let v be Plancherel measure on G, normalized so that

2
S U@ = [ (IrDlle)) dvim)  (f € can()
z€G JG
where ||-[| (5, is the Hilbert-Schmidt norm.

With this normalization, 1 = /Ad7T dv ().
G

Theorem (C., submitted)

Let G, v be as above. Then AD(G) = /

G

(dr)? dv().

e e d _
Note: if G is finite, then v({m}) = —- and we recover our earlier result.

G|



Ideas in the proof
@ By old results of ARSAC the inverse Fourier transform for G x G

defines an isometry W from an appropriate vector-valued L!-space to

B(G x G).
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Ideas in the proof
@ By old results of ARSAC the inverse Fourier transform for G x G
defines an isometry ¥ from an appropriate vector-valued L!-space to
B(G x G).
@ We construct an operator-valued distribution/measure F' on G x G,
such U(F) = ladiag (G).

o By the previous remarks, AD(G) = ||F|| ;. O

(whatever)

Technical details
Let 1 denote the pushforward of v under the diagonal embedding
G — G x G. Then (in the sense of Radon—Nikodym derivatives)

dF 0 ifroto
du X(H,r) ifmr=o0

where, as before, X denotes the flip on the square of a Hilbert space.
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SOME APPLICATIONS

It was asked in [Run06] if Johnson's lower bound on AM(A(QG)) for finite

groups remained true in general. We can now give an affirmative answer.

Theorem (C.)

Let G be a locally compact VA group which is non-abelian. Then
AM(A(G)) > AD(G4) > 3/2.

Proof. There is a countable non-abelian subgroup A < G, which is also
VA since G is. Since AD(G) > AD(A) it suffices to show that

AD(A) > 3/2. This follows from our explicit formula for AD(A) and the
following technical fact. O

Lemma
Let A be a countable, non-abelian VA group with normalized Plancherel
measure v. Let O = {m € A:dy = 1}. Thenv(§21) < 1/2.



In fact, if AD(A) = 3/2 then v(21) = 1/2 and every irrep of A has

degree < 2. Pursuing this observation further, we obtain a complete
characterization of those non-abelian groups which achieve the lower
bound on AD.



In fact, if AD(A) = 3/2 then v(21) = 1/2 and every irrep of A has
degree < 2. Pursuing this observation further, we obtain a complete
characterization of those non-abelian groups which achieve the lower
bound on AD.

Theorem (C., submitted)

Let G be a (virtually abelian) discrete group. Then
AD(G)=3/2 <= |G: Z(G)| = 4.

Finite groups with this property include the dihedral group and
quaternion group of order 8. For an infinite example: take the integer
Heisenberg group and quotient by a suitable subgroup of its centre.



SOME REMAINING CHALLENGES

Conjecture
AM(A(G)) = AD(Gy) for every locally compact group G.

Character-theoretic invariants of finite groups
What is the relationship of AM(A(-)) = AD(:) to more traditional
invariants of finite groups?

Further gap results

Work in progress indicates that if G is finite and non-abelian and

AD(G) > 3/2 then AD(G) > 5/3. Can we prove the same gap result for
general (virtually abelian) groups?



