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Arens products

Let 2 be a Banach algebra.

» Back in 1951, Arens proved that the multiplication of 20 can be extended to its
bidual 2(** (so that the embedding e: 2 — 2** is an algebra homomorphism).
There are actually two symmetric, canonical ways of doing it:
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Arens products

Let 2 be a Banach algebra.

» Back in 1951, Arens proved that the multiplication of 20 can be extended to its
bidual 2(** (so that the embedding e: 2 — 2** is an algebra homomorphism).
There are actually two symmetric, canonical ways of doing it:

e The first multiplication, say [J, is defined in such a way that whenever p = lim,, a.,
q = limg bg (these are o(A™", A™)-limits):

pOq = lim Iign(a,\ -bg).
e The second one, ¢, would yield:

pOq = Ii[gn Ii(r:'](aﬂ ~bg) (1)

> (2**,0) and (A**, Q) are Banach algebras.

» For each p € 2**, the maps g — qOp and g +— p{q are weak*-continuous.
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L(G)

P> Let G be a locally compact metric group (nondiscrete). If ¢ € L°°(G) is not continuous at

1, we can find bounded approximate identities {e, 1: « € A} and {e, >: @ € A} such that

Ii;n(d), en,1) # Iirr"n(</)7 €n,2)-
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1, we can find bounded approximate identities {e, 1: « € A} and {e, >: @ € A} such that
lim{¢, ea,1) # lim(¢, eq,2).
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(e1 and e, are O-right and O-left identities). Hence
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P> Let G be a locally compact metric group (nondiscrete). If ¢ € L°°(G) is not continuous at

1, we can find bounded approximate identities {e, 1: « € A} and {e, >: @ € A} such that
lim{¢, ea,1) # lim(¢, eq,2).
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P> Let G be a locally compact metric group (nondiscrete). If ¢ € L°°(G) is not continuous at

1, we can find bounded approximate identities {e, 1: « € A} and {e, >: @ € A} such that
lim{¢, ea,1) # lim(¢, eq,2).
> Lete; € L'(G)"*, i =1,2, be, respectively, weak*-accumulation points of {eq,i: @ € A}
Then:

(e1,9) # (&2, 8) = e #e,
pOei = p, eOp = p, foreachpe [}(G)** andi=1,2

(e1 and e, are O-right and O-left identities). Hence
(&1 — &2)0er = &1 — e, el(e; — &) =0,
ad(er —&)=ea —e (e1 — &)0er = 0.
And the maps g — (e1 — &)0q and g — pO(e1 — e2) are not weak™-continuous.

In addition: (e1 — e2)Ter# (e1 — ez)Oey and

(e1 — Ez)f—lelsf e1D(e1 — ez).
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Arens regularity and the center

We say that 2 is Arens regular if for every p, g € A**, piig = p{q.
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We define:
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Arens regularity and the center

We say that 2 is Arens regular if for every p, g € A**, piig = p{q.

We define:

Zgl) (A**) = {p € A : g — pOgq is continuous} (left topological center)
Zﬁ’) (A**) ={p € A**: g qOp is continuous} (right topological center)

Z,(A™) = {p € A**: png = qOp for every g € A**} (algebraic center)

2 C 20 (). If 2 is commutative Z, (A**) = 2 () = 2{) ().

Definition

We say that 2 is strongly Arens irregular (SAI) if 2 = ZEI) (A**) = zﬁ’) (2A**)

Jorge Galindo



L1(G) is (left) strongly Arens irregular

Theorem (Isik, Pym, Ulger, 1987)

Let G be a compact group and let e be a right identity of Ll(G)**. For m € Ll(G)**
. 1
m=C."(e) +r where n € M(G) and r € C(G)™.
Cu: LY(G) — LY(G) is the convolution operator and pOr = 0, for every p € LY(G)**, i.e, risa

right annihilator.
o
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Let G be a compact group and let e be a right identity of Ll(G)**. For m € Ll(G)**
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L'(G) is always SAI .

Proof, compact commutative case.

Hands on G: If u € M(G) \ L*(G), there is ¢ € L°°(G) such that u * ¢ is not continuous.
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L1(G) is (left) strongly Arens irregular

Theorem (Isik, Pym, Ulger, 1987)

Let G be a compact group and let e be a right identity of Ll(G)**. For m € Ll(G)**
m=C""(e)+r| wherep € M(G)andre C(G)".

=C,

Cu: LY(G) — LY(G) is the convolution operator and pOr = 0, for every p € LY(G)**, i.e, risa

right annihilator.

L'(G) is always SAI .

Proof, compact commutative case.

Hands on G: If u € M(G) \ L*(G), there is ¢ € L°°(G) such that u * ¢ is not continuous.
Let m € Z(A**). Then m = C;*(e) +r.
If o ¢ L*(G), pick ¢ € L°(G) and s € C(G)* with 0 # (s, /i ¢) . But
(s,7i%9) = (5,(Ca"(e) + 1.9 ) = (s0m, $)
= (mOs, ¢) =0.

If w € L*(G), then r € Z(A**). But 0 = edr = rOe = r and m € L*(G). O
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Strongly Arens irregular algebras

= {QI Banach algebra : 2( is WSC, has a BAI and 2 is an ldeal of 521**}.
The algebra L}(G) is in iff G is compact.
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Theorem (Grosser 1979, Baker-Lau-Pym, 1998)
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where g € 2** and r € WAP(A)™ is a right annihilator.
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Strongly Arens irregular algebras

:= {2 Banach algebra : 2 is WSC, has a BAl and 2 is an Ideal of 21**}.
The algebra L}(G) is in iff G is compact.

Theorem (Grosser 1979, Baker-Lau-Pym, 1998)

Let 2 € and let e be a mixed identity of A** (pOe = eQp = p for every p € A™™*). For
p e A

where g € 2** and r € WAP(A)™ is a right annihilator.

Theorem (Baker-Lau-Pym, 1998)
IfA e , then Z(A™™) =2, ie, A is SAL

Proof with sequential BAI (e,),.

Let m € Zil)(‘ll**). Then an accumulation point of (mOe,), will be of the form mOe with e an

accumulation point of (e,),. But, if m = limy a, ao € A,
mle = limg limg aaeng) = limg aq = m.
Hence lim, mOe, = m and WSC implies m € 2. O
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Ideals of algebras 2 € WaSaBl/

UNERST
1 | R

i: J — 2 will be the inclusion map, i A » J*, the restriction map. G will be a compact Abelian group and

I a discrete amenable group.

P> Let J < 2A be a closed ideal.
Let W be the topology that ed2** receives from o (WAP(A)*, WAP(2)). Then

Elements of J* can always be identified with elements of M(2)
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Ideals of algebras 2 € WaSaBl/ IV

i: J — 2 will be the inclusion map, i A > J*, the restriction map. G will be a compact Abelian group and

" a discrete amenable group.

» Let J <2 be a closed ideal.
Let W be the topology that e0A** receives from o (WAP()*, WAP(2)). Then

=T e (war@)t).
Elements of J* can always be identified with elements of M(2()
» (particular case) Let E C G, then
LE(G)™ = Me(G) @ i" (C(6)) ,
where Mg(G) = {pn € M(G): fi(x) =0, for every x ¢ E}.
P (another particular case) Let E C T, then
Be(n) @ 1" (Wap (an) ),

where Be([) = {u € B(): u(s) =0, forevery s ¢ E}.

IR

Ae(M)™"

Jorge Galindo



Ideals of algebras 2 € WaSaBl/

it J — 2 will be the inclusion map, i 2 J*, the restriction map. G will be a compact Abelian group and

I a discrete amenable group.

P> Let J < 2A be a closed ideal.
Let W be the topology that ed2** receives from o (WAP(A)*, WAP(2)). Then
S =J" g (WAP(‘Z[)L> A
Elements of J* can always be identified with elements of M(2()
» (particular case) Let E C G, then
LE(G)™ = Me(G) & i" (C(6)),
where Mg(G) = {pu € M(G): fi(x) =0, for every x ¢ E}.

A subset E C G is said to be a Riesz set if M (G) = fie

Theorem (Ulger 2011)

If E C G is a Riesz set, then LE(G) is Arens regular.
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Ideals of algebras 2 € WaSaBl/

i: J — 2 will be the inclusion map, i* : 2 J*, the restriction map. G will be a compact Abelian group and

I a discrete amenable group.

P> Let J < 2A be a closed ideal.
Let W be the topology that ed2** receives from o (WAP(A)*, WAP(2)). Then
7 =7 e (WAP(Ql)L> A
Elements of J* can always be identified with elements of M(2()
» (particular case) Let E C G, then
LE(G)™ = Me(G) & i" (C(6)),
where Mg(G) = {pu € M(G): fi(x) =0, for every x ¢ E}.

A subset E C G is said to be a Riesz set if M (G) = fie

Theorem (Ulger 2011)

If E C G is a Riesz set, then LE(G) is Arens regular.

Classify ideals LL(G) < L}(G) (JLA € ) in terms of their Arens regularity properties.

- = =
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Big and small subsets of G

» Riesz sets are usually found among sparse sets. .. but not always: the classical

thick example of a Riesz set is N, so LL(T) is Arens regular.
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Big and small subsets of G N

» Riesz sets are usually found among sparse sets. .. but not always: the classical

thick example of a Riesz set is N, so LL(T) is Arens regular.

» In general, the smaller E C G is, the better Arens regularity properties are
expected.
» The extreme cases are clear:

o If E is finite, LE(G) = Mg(G) is reflexive. This can be extended: Lj(G) is reflexive if
and only if E is a A(1)-set (Hare, 1988). A(1)-sets are Riesz sets. (E is a A(p) set if
there exist 0 < g < p and C such that for every f € Trige(G), ||f||, < C||f|lq)-

e If G\ E is finite, then LE(G) € and LE(G) is SAI. This can be extended:
LIE(G) € if and only if E is in the coset ring of G (Liu, van Rooij and Wang,

1973; a consequence of Cohen’s idempotent theorem).
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Let G be a compact Abelian group and let E C G. Then, LIE(G) is Arens regular if and only if
i*(M_g(G) x L°(G)) C i*(C(G)).
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Let G be a compact Abelian group and let E C G. Then, LIE(G) is Arens regular if and only if
i*(M_g(G) x L°(G)) C i*(C(G)).

Let G be a compact Abelian group and let E C G. Then, LIE(G) is SAl if and only if
m(: (M_g(G) * L“’(G))) = LE(G)*.

\

It is obvious here how the existence of a measure with 17 € M(G) implies that LE(G) is SAI
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Let G be a compact Abelian group and let E C G. Then, LIE(G) is Arens regular if and only if
i*(M_g(G) x L°(G)) C i*(C(G)).

Let G be a compact Abelian group and let E C G. Then, LIE(G) is SAl if and only if
m(: (M_g(G) * L““(G))) = LE(G)*.

v

Let 2A € and let J . Then:

» J is Arens regular if and only if i* (A".J"" U J*T.AT) C i*(WAP(L)).

» Jis SAl if and only if@(i* (J**.Ql*.J**)) = .
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Characterizations

Let 2 € and let J < 2. Then:
» J is Arens regular if and only if i* (A".J"" U JTT.AT) C i*(WAP(2L)).

» J is SAl if and only ifﬁ(i* (J**.Q{*J**)) = J*.

Corollary (sample)

Let G be a discrete amenable group and let E C G. Then Ag(G) is SAl if and only if
(i (Be(G).VN(G))) = Ae(G)".

The same can be done with Ll(G), G compact and E C X, the dual object of G or, more
generally with 20 € and E C X a set of representations of 2. ..
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Small sets

G will be a compact Abelian group and E C G.

A subset E C G is a small-1-1 set if py, p» € Mg(G) implies that py % pup € L1(G).
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G will be a compact Abelian group and E C G.

A subset E C G is a small-1-1 set if py, p» € Mg(G) implies that py % pup € L1(G).

» Examples of small-1-1 sets: Riesz sets are small-1-1 but ... no more examples.

> Old problem: Are there any small-2 sets (i * pu € L}(G) for all u € Mg(G)) that
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Big sets —

G will be a compact Abelian group and E C G

> If E is in the coset ring of G, (e.g., if G \ E is finite), Z (LL(G)**) = LL(G).

Let E C G be such that any x - f (f € L and x € 6) has just one invariant mean. Then LIE\E

is not regular.

We call the sets 6\ E with this property co-LP sets. If LEC\E C C(G), then we say that E is

co-Rosenthal.

Let E; C G be an element of the coset ring.

» If E; is a Riesz set but is not a \(1)-set, then
Lt ug(6) & Z ((Lhus (6)') € (Lgug, ()™

» If E; is a Sidon set, then
1 ok 1
z (LEIUE2(G) ) = LEIUEZ(G)'
L1E1UE2(G) is SAl while E; U E, is not in the coset ring because E, being Sidon set then

1: ¢ m(T).
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» A subset E of Z that is a Sidon set: E = {2": n € N} (Sidon sets are A(p) for
every p, Sidon sets are Rosenthal sets and Rosenthal sets are Riesz),

» A subset E of Z that is a Riesz set but is not A(1) or Rosental: E =N, (of
course).

» There are subsets E of Z such that E is co-LP but is not co-Rosenthal (every
f € L (G) has a unique mean but some f € L2°(G) is discontinuous, i.e. Z\ E
is not a Rosenthal set): they are the complements of carefully constructed unions
of some finite (thin enough) set. These sets are not A(1) and are even dense in
the Bohr topology (Lefévre and Rodriguez-Piazza, 2006).

» A subset E of Z such that E is co-Rosenthal but Z \ E is not Sidon:
E=;2,{(2n)lj: 1 <j < 2n} (Rosenthal, 1967).
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Ideals in other algebras

2 is a Banach algebra in

> Riesz ideals: we say that J is a Riesz ideal if jw C 2 . Riesz ideals are Arens

regulars.

» Small-1-1 ideals: we say that J is small-1-1 if p,q € 7" implies that pog € 2. If
J is small-1-1 and J is not reflexive, then Z(J) # J**. If J is not small-1-1, then

*

W(J) contains a copy of J* (J is ENAR).

> Co-Rosenthal ideals: We say that J is co-Rosenthal, if J= C WAP(J). If J is
co-Rosenthal and is not Riesz, then J is not Arens regular. If J is co-Rosenthal
and M(2() = A @1 Ms, then J cannot be Riesz.
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Some questions G

> (Ulger 2011) If LL(T) is Arens regular, must E C Z be Riesz?
» If E C Zis small-1-1, must LL(T) be Arens regular?
» If E C Z is co-Rosenthal (or co-LP), must LL be SAI?

» Same questions for algebras in . Can any of the answers be different?
Special attention to LL(G), G compact not Abelian, and Ag(G), G discrete and
amenable. Interesting: if G = SU(2), no infinite subset of G is a A(1)-set.
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Some questions G

THANKS FOR YOUR ATTENTION
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Multipliers in the second dual G

RM(2) e €
WAP(21)* M(2L)
LM(A) A**Ge

Re

A = eOA*™* @ WAP(A)L = A Oe & WAP() L

= M(2) & WAP(2)" = WAP()* & (%@t)) '

Back
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E€A1) 2A(p) Emd E Riesz
L};-(G) reflexive

E small 1-1
E finite

L% (G) regular

L% (G) not SAI

LL(G) finite

dimensional

E co-LP

G\E finite

LL(G) sal

E not small-1-1

L (G) not

Arens regular

I

L% (G) ENAR
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