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Overview

1. Review: Thomson’s multitaper method

2. Dyadic processes (motivation, no actual results here)

3. Thomson’s method for dyadic processes requires dyadic
optimizers of spatio–spectral limiting (SSL)

4. SSL on Hypercube (ZN
2 ) graphs: definitions

5. Identification and computation of eigenvectors of SSL on ZN
2
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Thomson’s multitaper method

Thomson [1982]: estimate power spectrum of a (stationary
ergodic, Gaussian) process from N equally spaced samples of an
instance by averaging K tapered periodograms.
{x(0), . . . , x(N − 1)}: N-contiguous sample observation

Cramér representation: x(n) =
∫ 1/2
−1/2 e

2πiv [n−(N−1)/2] dZ (v),
dZ : zero mean, orthogonal increments;
S : true spectrum of X
S(f ) df = E{|dZ (f )|2}.
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Tapers: Slepian DPSS’s (Fourier coefficients of DPSWFs)

DPSSs v
(k)
n satisfy

∑N−1
m=0

sin 2πW (n−m)
π(n−m) v

(k)
m = λkv

(k)
n

Spectrum estimate S̄(f0): average of tapered eigenspectra
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Figure: (Continuous) prolates ϕn, n = 0, 3, 10, c = πTΩ/2 = 5
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Dyadic processes

X = {Xn : n = 0, 1, 2, . . . } is dyadic stationary if
B(n,m) = cov(Xn,Xm) = E (XnXm) depends only on n ⊕m
Dyadic representation: n =

∑
εk(n)2k ,

n ⊕m =
∑

[(εk(n) + εk(m))mod2] 2k

Walsh functions W (n, x) define the dyadic Fourier transform.
Hadamard–Walsh Fourier transform of x(0), . . . , x(M − 1) is
(Hx)(λ) = 1√

M

∑M−1
t=0 X (t)W (t, λ).

Dyadic stationary processes admit a spectral representation:
Xn =

∫ 1
0 W (n, x) dZ (x)

dZ : orthogonal increments; E [|dZ (x)|2] = dF (x) with

B(τ) =
∫ 1

0 W (τ, x) dF (x).
F is called the dyadic spectral distribution function of X .
Morettin [1981, SIAM Review] Walsh spectrum estimation based
on averaged Walsh periodograms of temporal slices.
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Dyadic processes originally regarded as defined on [0, 1]
Interest in dyadic processes waned in late 1980s
Stoffer [JASA, 1991]: reviewed use in analysis of categorical data
Observed problem with insistence on concept of dyadic time
More appropriate for study of processes indexed by (limits of) ZN

2 ?

Graph Setting
Stationary Graph Processes and Spectral Estimation: Marques et
al., 2017, IEEE Trans. Sig. Process.
Signals on Graphs: Uncertainty Principle and Sampling, Tsitsvero
et al. , 2016, IEEE Trans. Sig. Process. (“prolates”)
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Finite version of Slepian sequences for ZN
2

ZN
2 = {(ε1, . . . , εN) : εk ∈ {0, 1}}

QK : truncation to K -Hamming nbhd of zero:
{(ε1, . . . , εN) :

∑
εk ≤ K}

ZN
2 has an isomorphic Fourier dual group

PK : bandlimiting, PK = HQKH
T

Fix 0 < K < N. P = PK , Q = QK .
BSV (Boolean Slepian Vectors) ϕ are eigenvectors of PQ:
PQϕ = λϕ for suitable λ > 0
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Figure: Eigenvectors of PQ on ZN
2 , N = 8, K = 3, r = 2.

Dotted curves: two different elements g of Wr

Dashed curves: corresponding eigenvectors f of QP
Solid curves: Eigenvector Hf of PQ for eigenvector f of QP
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Comparison of properties

Properties in Common (with PSWFs in L2(R))

PSWF setting Property Hypercube (BSV) setting Property

Q̂ϕn = ±αi
√
λnvn Trunc. Fourier eigenprop. Hv = ±

√
λQv X

λn = ‖Qϕn‖2 Concentrations λ = ‖Qv‖2 X∫ 1
−1 ϕn(t)ϕm(t) dt = δnm Double orthogonality 〈Qv,Qw〉 = 0, v 6= w X

spanϕn dense in L2[−1, 1] Local completeness span {v} = rangeQ X∑
λk |Uk |2 = const Spectral accumulation

∑
λ|Hv|2 = dim(K) X

Differences
λn > λn+1 Simple eigenvalues

(
N
k

)
−
(

N
k−1

)
high multiplicity

λn ≈ 1, n < 2ΩT 2ΩT -Theorem 7
d
dt

(1− t2) d
dt
− c2t2 Commuting differential op D(αI − T 2)D + βT 2, Almost

D = HTH
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Eigenvalues for 1025 points, normalized area of 64

Figure: Eigenvalues of PQ for 1025 point DFT, 2NW ≈ 64
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Figure: Eigenvalues of PQ, for Boolean FT on Z20
2 , K = 6 , with

multiplicity, (60460). Corresponding case on Z220 would have about 3486
eigenvalues larger than 1/2
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GOAL: eigen-decomposition of PQ on BN

Outline
Geometry of BN
D(αI − T 2)D + βT 2 almost commutes with PQ
Adjacency invariant spaces on which D(αI − T 2)D + βT 2 acts as
a tridiagonal matrix
Basis of eigenvectors of BDO
Numerical method to compute eigenvectors of QP
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Boolean cubes BN : N = 5

00000

10000 01000 00100 00010 00001

11000 10100 10010 10001 01100 01010 01001 00110 00101 00011

11100 11010 11001 10110 10101 10011 01110 01101 01011 00111

11110 11101 11011 10111 01111

11111

VS
◦ // ◦ ◦ // ◦ · · · ◦ // ◦ ◦ // ◦ff
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Some conventions for BN

v = (ε1, . . . , εN) ∈ ZN
2

S = {i : εi = 1} ⊂ {1, . . . ,N}
v = vS or “v ∼ S”
Adjacency: ARS = 1 if R∆S is a singleton
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Figure: Adjacency matrix for N = 8 in dyadic lexicographic order.
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Fourier transform H

The graph Fourier transform on BN is the same as the group
Fourier transform on ZN

2 .
It is represented by a Walsh–Hadamard matrix H.

Lemma (Boolean Fourier transform)

Let HS(R) = 2−N/2(−1)|R∩S | and L = NI − A (Laplacian of BN).
Then HS is an eigenvector of L with eigenvalue 2|S |.

Slepian vectors on cubes



Figure: Hadamard (Fourier) matrix, N = 8 in dyadic lexicographic order.
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Spatial and spectral limiting on BN

Space-limiting matrix Q = QK : QR,S =

{
1, R = S & |S | ≤ K

0, else

Spectrum-limiting matrix P = PK by P = HQH

Slepian vectors on cubes



Results and approach

Results: identify eigenvectors of spatio–spectral limiting PQ
Approach:

I Work in spectral domain: QP = HPQH

I Identify salient invariant subspaces of QP

I Subspaces factor

I Reduce to small matrix problem on radial factor

I Eigenvectors of small matrix determine eigenvectors of QP

I Numerical computation via almost commuting operator and
power method with a weight
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Hamming spheres

Σr : Hamming sphere of radius r : vertices with r one-bits

00000 Σ0

10000 01000 00100 00010 00001 Σ1

11000 10100 10010 10001 01100 01010 01001 00110 00101 00011 Σ2

11100 11010 11001 10110 10101 10011 01110 01101 01011 00111 Σ3

11110 11101 11011 10111 01111 Σ4

11111 Σ5
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Eigenspaces of SSL on BN : Adjacency-invariant spaces

A: adjacency matrix of BN (dyadic lexicographic order)
A = A+ + A−: A− = AT

+; A+: lower triangular
A+ maps data on Σr to data on Σr+1: outer adjacency
A− maps data on Σr to data on Σr−1: inner adjacency

Figure: Highlighted: A−, Σ3 → Σ2
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Wr : the orthogonal complement of A+`
2(Σr−1) inside `2(Σr ).

`2(Σr ) = A+`
2(Σr−1)⊕Wr

Theorem (Multiplier theorem)

Let g ∈ Wr and k such that k ≤ N − 2r . Then

A−A
k+1
+ g = (k + 1)(N − 2r − k)Ak

+g ≡ m(r , k)Ak
+g
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Adjacency invariant subspaces

Vr =: span {Ak
+g : g ∈ Wr , k = 0, . . . ,N − 2r} ' Wr ⊗ RN−2r+1

Lemma
A+ and A− map Vr to itself.

Idea: Fix Wr coordinate. A+ acts as right shift of coefficients:
(c0 + c1A+ + . . . )g 7→ (c0A+ + c1A

2
+ + . . . )g

By multiplier theorem, A− acts as multiplicative left shift:
(c0 + c1A+ + . . . )g 7→ (c1m(r , 0) + c2m(r , 1)A+ + . . . )g

Corollary

A = A+ + A− maps Vr to itself. Polynomials p(A) preserve Vr .
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Proposition

The spectrum-limiting operator P = PK can be expressed as a
polynomial p(A) of degree N.

Proof.

pk =
N∏

j=0,j 6=k

x − (N − 2j)

2(j − k)
; p(x) =

K∑
k=0

pk

Then P = p(A) as verified on Hadamard basis.
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Coefficient matrices on Vr : MP
(r) = p(MA)

Matrices MA+ ,MA− of A+, A− on RN−2r+1:

MA+ =



0 0 · · · 0 0
1 0 · · · 0 0
0 1 0 · · · 0

.

.

.

.
.
.

.
.
. 0

0 · · · 0 1 0


MA− =



0 m(r, 0) 0 · · · 0
0 0 m(r, 1) 0 · · ·
.
.
.

.
.
.

.
.
.

.

.

.
0 · · · 0 m(r, K + 1 − r)
0 · · · 0


MA = MA+ + MA−

Matrix of MP
(r) of P by substituting MA for A in P = p(A)

Matrix of MQP
(r) of QP by truncating MP

(r) to principal minor
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Figure: Matrices MA and MP , N = 9, K = 4, r = 1. (log scale)
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Corollary

(i) Eigenvectors of coefficient matrices MQP
(r) define coefficients of

eigenvectors of QP
(ii) (Completeness) Any eigenvector of QP comes from a
coefficient eigenvector of MQP

(r) for some r .

Issue: Coefficient eigenvectors are orthogonal wrt
Wr = [w(0), . . . ,w(K + 1− r)]; wk = (k!)2

(N−2r
k

)
Problem: wk are large numbers
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Boolean analogue of prolate differential operator

(BDO) D(αI − T 2)D + βT 2 .

T : diagonal; T 2: eigenvalues of Laplacian
D = HTH; D2 = L.
HBDO= HBDOH

Proposition

If β = 2
√
K (K + 1) then HBDO commutes with QK , almost

commutes with PK , and has tridiagonal, W -s.a. coefficient matrix
MHBDO

Eigenvectors of MHBDO can be used as seeds for a weighted power
method to compute coefficient eigenvectors of MQP

r
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Figure: Matrix MHBDO, N = 9, K = 4

PQ eigenvectors

PQ eigenvalues
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