The Inverse Mean Curvature Flow and Minimal Surfaces

Brian Harvie

National Taiwan University
BIRS New Directions in Geometric Flows

November 8, 2021

Introduction

- We are interested in the Inverse Mean Curvature Flow of closed hypersurfaces in Euclidean space.

Introduction

- We are interested in the Inverse Mean Curvature Flow of closed hypersurfaces in Euclidean space.

Definition 1

Given a closed, oriented n-dimensional smooth manifold N, a one-parameter family of immersions $F: N \times[0, T) \rightarrow \mathbb{R}^{n+1}$ with outward normal ν and $H>0$ is a solution to Inverse Mean Curvature Flow (IMCF) if

$$
\begin{equation*}
\frac{\partial F_{t}}{\partial t}(x, t)=\frac{1}{H} \nu(x, t), \quad(x, t) \in N \times[0, T) . \tag{1}
\end{equation*}
$$

Introduction

- We are interested in the Inverse Mean Curvature Flow of closed hypersurfaces in Euclidean space.

Definition 1

Given a closed, oriented n-dimensional smooth manifold N, a one-parameter family of immersions $F: N \times[0, T) \rightarrow \mathbb{R}^{n+1}$ with outward normal ν and $H>0$ is a solution to Inverse Mean Curvature Flow (IMCF) if

$$
\begin{equation*}
\frac{\partial F_{t}}{\partial t}(x, t)=\frac{1}{H} \nu(x, t), \quad(x, t) \in N \times[0, T) . \tag{1}
\end{equation*}
$$

- Explicit solution: $N_{0}=\mathbb{S}_{R}\left(x_{0}\right)$, then $N_{t}=\mathbb{S}_{r(t)}\left(x_{0}\right)$ for $r(t)=R e^{\frac{t}{n}}$.

Singularities of IMCF

- One example of singularity formation in IMCF is for a "thin" $(H>0)$ torus $N_{0} \subset \mathbb{R}^{3}$.

N_{0}

N_{t}

Singularities of IMCF

- One example of singularity formation in IMCF is for a "thin" $(H>0)$ torus $N_{0} \subset \mathbb{R}^{3}$.

N_{0}

N_{t}
- One principal curvature is negative at the part of N_{t} closest to the axis of rotation.
- Since flow speed is bounded below, H must eventually reach 0 along this part, terminating the flow.

Characterizing the Thin Torus Singularity

- Does the expanding torus N_{t} "pinch" at its axis of rotation as $t \rightarrow T_{\text {max }}$, or does the flow terminate prior to this?

Characterizing the Thin Torus Singularity

- Does the expanding torus N_{t} "pinch" at its axis of rotation as $t \rightarrow T_{\text {max }}$, or does the flow terminate prior to this?
- If the latter possibility is true, then $\sup _{N_{t}}|A| \leq C$ for all $t \in\left[0, T_{\max }\right)$, implying a limit surface $N_{T_{\text {max }}}$ without rescaling.

Characterizing the Thin Torus Singularity

- Does the expanding torus N_{t} "pinch" at its axis of rotation as $t \rightarrow T_{\text {max }}$, or does the flow terminate prior to this?
- If the latter possibility is true, then $\sup _{N_{t}}|A| \leq C$ for all $t \in\left[0, T_{\text {max }}\right)$, implying a limit surface $N_{T_{\text {max }}}$ without rescaling.
- From [Har20c], no pinching occurs in the thin torus- this generalizes to any mean-convex, rotationally symmetric torus in \mathbb{R}^{3}.

Characterizing the Thin Torus Singularity

- Does the expanding torus N_{t} "pinch" at its axis of rotation as $t \rightarrow T_{\text {max }}$, or does the flow terminate prior to this?
- If the latter possibility is true, then $\sup _{N_{t}}|A| \leq C$ for all $t \in\left[0, T_{\max }\right)$, implying a limit surface $N_{T_{\text {max }}}$ without rescaling.
- From [Har20c], no pinching occurs in the thin torus- this generalizes to any mean-convex, rotationally symmetric torus in \mathbb{R}^{3}.

Theorem 1, The Limit of IMCF on a Torus

Let $N_{0}=F_{0}\left(\mathbb{T}^{2}\right) \subset \mathbb{R}^{3}$ be an $H>0$, rotationally symmetric embedded torus and $F: \mathbb{T}^{2} \times\left[0, T_{\max }\right) \rightarrow \mathbb{R}^{3}$ the corresponding maximal solution to (1). Then $T_{\text {max }}<+\infty$ and $\lim _{t \rightarrow T_{\text {max }}} \max _{N_{t}}|A| \leq L<+\infty$.
Furthermore, there exists a subsequence of times $t_{k} \nearrow T_{\text {max }}$ and corresponding diffeomorphisms $\alpha_{k}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ so that the maps $\widetilde{F}_{t_{k}}=F_{t_{k}} \circ \alpha_{k}: \mathbb{T}^{2} \rightarrow \mathbb{R}^{3}$ converge in C^{1} topology to an immersion $\widetilde{F}_{T_{\max }}$.

Rescaling the Singularity

- Standard techniques for singularity analysis- maximum principles, tangent flows- are either insufficient or cannot be applied here.

Rescaling the Singularity

- Standard techniques for singularity analysis- maximum principles, tangent flows- are either insufficient or cannot be applied here.
- Proof by contradiction: let $y_{\min }(t)$ be the distance from N_{t} to the axis of rotation and assume $\lim _{t \rightarrow T_{\text {max }}} y_{\text {min }}(t)=0$.
- Define $\tilde{N}_{t}=\frac{1}{y_{\text {min }}(t)} N_{t}$. Since $\max _{N_{t}} H \leq \max _{N_{0}} H$, we have

$$
\begin{equation*}
\lim _{t \rightarrow T_{\max }} \max _{\tilde{N}_{t}} H=0 \tag{2}
\end{equation*}
$$

- One expects some subset of \tilde{N}_{t} to converge to a catenoid.

The Energy Method

- We rule out the catenoid as a candidate limit via an energy estimate.

The Energy Method

- We rule out the catenoid as a candidate limit via an energy estimate.

Figure: A cross section of the un-scaled surface N_{t}.

The Energy Method

- We rule out the catenoid as a candidate limit via an energy estimate.

Figure: A cross section of the un-scaled surface N_{t}.

- $S_{t} \subset N_{t}$ between $y=$ const. planes has Gauss curvature K satisfying

$$
\begin{equation*}
\int_{S_{t}}|K| d \mu \leq 4 \pi(1-\epsilon) \tag{3}
\end{equation*}
$$

for some $\epsilon>0$.

The Contradiction

- Let $\tilde{S}_{t}=\frac{1}{y_{\text {min }}(t)} S_{t}$, then

$$
\begin{equation*}
\int_{\tilde{S}_{t}}|K| d \mu \leq 4 \pi(1-\epsilon) \tag{4}
\end{equation*}
$$

since the previous estimate is scale invariant.

The Contradiction

- Let $\tilde{S}_{t}=\frac{1}{y_{\text {min }}(t)} S_{t}$, then

$$
\begin{equation*}
\int_{\tilde{S}_{t}}|K| d \mu \leq 4 \pi(1-\epsilon) \tag{4}
\end{equation*}
$$

since the previous estimate is scale invariant.

- On the other hand, generating graphs $y_{t}(x)$ of \tilde{S}_{t} (or a subsequence) converge in $C_{\text {loc }}^{2}(\mathbb{R})$ to a catenary $y(x)=\frac{1}{a} \cosh (a x)$.
- $y(x)$ generates a catenoid C with $\int_{C}|K| d \mu=4 \pi$: this is a contradiction.

The Contradiction

- Let $\tilde{S}_{t}=\frac{1}{y_{\text {min }}(t)} S_{t}$, then

$$
\begin{equation*}
\int_{\tilde{S}_{t}}|K| d \mu \leq 4 \pi(1-\epsilon) \tag{4}
\end{equation*}
$$

since the previous estimate is scale invariant.

- On the other hand, generating graphs $y_{t}(x)$ of \tilde{S}_{t} (or a subsequence) converge in $C_{\text {loc }}^{2}(\mathbb{R})$ to a catenary $y(x)=\frac{1}{a} \cosh (a x)$.
- $y(x)$ generates a catenoid C with $\int_{C}|K| d \mu=4 \pi$: this is a contradiction.
- This implies $\sup _{N_{t}}|A| \leq C\left(N_{0}\right)$ - the limit immersion is guaranteed by a compactness theorem from [Lan85].

Further Questions

- What is the regularity of $N_{T_{\max }}$?

Further Questions

- What is the regularity of $N_{T_{\text {max }}}$?
- Is taking a subsequence and surface diffeos neccessary to obtain $F_{T_{\max }}$?

Further Questions

- What is the regularity of $N_{T_{\text {max }}}$?
- Is taking a subsequence and surface diffeos neccessary to obtain $F_{T_{\text {max }}}$?
- Conjecture: $\sup _{N \times\left[0, T_{\max }\right)}|A| \leq C\left(N_{0}\right)$ for any solution $\left\{N_{t}\right\}_{0 \leq t<T_{\text {max }}}$ of IMCF in \mathbb{R}^{3}.

Further Questions

- What is the regularity of $N_{T_{\text {max }}}$?
- Is taking a subsequence and surface diffeos neccessary to obtain $F_{T_{\text {max }}}$?
- Conjecture: $\sup _{N \times\left[0, T_{\max }\right)}|A| \leq C\left(N_{0}\right)$ for any solution $\left\{N_{t}\right\}_{0 \leq t<T_{\max }}$ of IMCF in \mathbb{R}^{3}.
- Remark: one can show

$$
\begin{equation*}
\sup _{t \in\left[0, T_{\max)}\right.}\|A\|_{L^{2}\left(N_{t}\right)} \leq C\left(N_{0}\right) \tag{5}
\end{equation*}
$$

for any immersed solution in \mathbb{R}^{3}. Does this energy concentrate?

Long-Time Existence in IMCF

- Finite-time singularities may not develop for closed solutions of IMCF: the first result in this direction is due to Gerhardt.

Long-Time Existence in IMCF

- Finite-time singularities may not develop for closed solutions of IMCF: the first result in this direction is due to Gerhardt.

Theorem 2, [Ger90], Long-Time Existence in Star-Shaped IMCF

Let $N_{0} \subset \mathbb{R}^{n+1}$ be an $H>0$, strictly star-shaped hypersurface. Then for the corresponding maximal solution $\left\{N_{t}\right\}_{0 \leq t<T_{\text {max }}}$ to $\mathrm{IMCF}, T_{\text {max }}=+\infty$ and N_{t} is strictly star-shaped for each $t \in[0,+\infty)$.

Long-Time Existence in IMCF

- Finite-time singularities may not develop for closed solutions of IMCF: the first result in this direction is due to Gerhardt.

Theorem 2, [Ger90], Long-Time Existence in Star-Shaped IMCF

Let $N_{0} \subset \mathbb{R}^{n+1}$ be an $H>0$, strictly star-shaped hypersurface. Then for the corresponding maximal solution $\left\{N_{t}\right\}_{0 \leq t<T_{\max }}$ to $\mathrm{IMCF}, T_{\text {max }}=+\infty$ and N_{t} is strictly star-shaped for each $t \in[0,+\infty)$.

- [Har20a] contains a similar result for rotationally symmetric spheres.

Theorem 3, Long-Time Existence in Rotationally Symmetric IMCF

Let $N_{0} \subset \mathbb{R}^{n+1}$ be an $H>0$, rotationally symmetric embedded sphere with principal curvature p of rotation satisfying

$$
\frac{\max _{N_{0}} p}{\min _{N_{0}} p}<n^{\frac{n}{2(n-1)}}
$$

Then for the corresponding maximal solution $\left\{N_{t}\right\}_{0 \leq t<T_{+ \text {max }}}, T_{\text {max }}=+\infty$ and N_{t} is a cylindrical graph (away from the axis of rotation) for each $t \in[0,+\infty$).

The Number and Embeddedness of Area-Minimizers

- Given a Jordan curve $\gamma \subset \mathbb{R}^{3}$, how many stable minimal disks does it bound, and are they embedded?

Figure: Source: [Cos12]

- In [MY82], Meeks and Yau consider these questions in a compact domain with mean-convex boundary.

The Number and Embeddedness of Area-Minimizers

- Given a Jordan curve $\gamma \subset \mathbb{R}^{3}$, how many stable minimal disks does it bound, and are they embedded?

Figure: Source: [Cos12]

- In [MY82], Meeks and Yau consider these questions in a compact domain with mean-convex boundary.

Theorem 4, [MY82], Area-Minimizers in Mean-Convex Domains

Let $M \subset \mathbb{R}^{3}$ be a bounded domain with $\partial M \cong \mathbb{S}^{2}$ a $C^{2}, H>0$ surface. For any Jordan curve $\gamma \subset \partial M, \gamma$ bounds an immersed disk $D \subset M$ which minimizes area among all other immersed disks in M bounded by γ. Furthermore, this D is embedded.
Also, if γ is $C^{4, \alpha}$, then for any $k \in \mathbb{R}$ there are only finitely many stable minimal disks in M with areas less than k.

Minimal Disks and IMCF

- It is possible that γ bounds minimal disks in \mathbb{R}^{3} which exit the domain M.
- In particular, solutions to Plateau's problem for this γ may not be embedded, and the finiteness property may not hold over \mathbb{R}^{3}.

Minimal Disks and IMCF

- It is possible that γ bounds minimal disks in \mathbb{R}^{3} which exit the domain M.
- In particular, solutions to Plateau's problem for this γ may not be embedded, and the finiteness property may not hold over \mathbb{R}^{3}.
- From [Har20b], [Har20a], IMCF rules above possibilities out for certain M.

Theorem 5, Embeddedness and Finiteness of Area-Minimizers

Let $M \subset \mathbb{R}^{3}, \gamma \subset \partial M$ be as in the previous theorem. Suppose $N_{0}=\partial M$ admits a long-time embedded solution $\left\{N_{t}\right\}_{0 \leq t<+\infty}$ to IMCF. Then all stable minimial disks bounded by γ lie in M.
In particular, the solution to Plateau's problem for γ is embedded, and if γ is $C^{4, \alpha}$ then it bounds only finitely many stable minimal disks with areas less than k.

Minimal Disks and IMCF

- It is possible that γ bounds minimal disks in \mathbb{R}^{3} which exit the domain M.
- In particular, solutions to Plateau's problem for this γ may not be embedded, and the finiteness property may not hold over \mathbb{R}^{3}.
- From [Har20b], [Har20a], IMCF rules above possibilities out for certain M.

Theorem 5, Embeddedness and Finiteness of Area-Minimizers

Let $M \subset \mathbb{R}^{3}, \gamma \subset \partial M$ be as in the previous theorem. Suppose $N_{0}=\partial M$ admits a long-time embedded solution $\left\{N_{t}\right\}_{0 \leq t<+\infty}$ to IMCF. Then all stable minimial disks bounded by γ lie in M.
In particular, the solution to Plateau's problem for γ is embedded, and if γ is $C^{4, \alpha}$ then it bounds only finitely many stable minimal disks with areas less than k.

- The second part of the above result holds in particular for star-shaped or admissibly rotationally symmetric $H>0$ domains.

The Comparison Principle

- If $\mathbb{R}^{3} \backslash M$ is foliated by embedded, mean-convex closed surfaces, then for any immersed C^{2} surface D with $\partial D \subset \partial M$ and $D \not \subset M$, $H(x)>0$ for some $x \in D$.

Figure: Let $\lambda_{i}, \tilde{\lambda}_{i}$ be the principal curvatures of $D, \partial E_{t_{0}}$ at x respectively. Then $\lambda_{i} \geq \tilde{\lambda}_{i}$ and hence $H_{D}(x)>0$.

Conditions for a Mean-Convex Foliation

- Caution: global solutions to IMCF need not remain embedded, and may also fail to foliate a region.
- Example: two disjoint round spheres in \mathbb{R}^{3}.

Conditions for a Mean-Convex Foliation

- Caution: global solutions to IMCF need not remain embedded, and may also fail to foliate a region.
- Example: two disjoint round spheres in \mathbb{R}^{3}.

Lemma 1, Foliations by IMCF

Let $\left\{N_{t}\right\}_{0 \leq t<T}$ be a solution to IMCF. Then the N_{t} foliate the region $\cup_{0 \leq t<T} N_{t} \subset \mathbb{R}^{n+1}$ if and only if N_{t} is embedded for each $t \in[0, T)$.

Conditions for a Mean-Convex Foliation

- Caution: global solutions to IMCF need not remain embedded, and may also fail to foliate a region.
- Example: two disjoint round spheres in \mathbb{R}^{3}.

Lemma 1, Foliations by IMCF

Let $\left\{N_{t}\right\}_{0 \leq t<T}$ be a solution to IMCF. Then the N_{t} foliate the region $\cup_{0 \leq t<T} N_{t} \subset \mathbb{R}^{n+1}$ if and only if N_{t} is embedded for each $t \in[0, T)$.

- Proof relies on a "one-sided" avoidance principle for IMCF.

You have reached the time $T_{\max }$.

