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Introduction

We are interested in the Inverse Mean Curvature Flow of closed
hypersurfaces in Euclidean space.

Definition 1
Given a closed, oriented n-dimensional smooth manifold N, a one-parameter
family of immersions F : N × [0,T ) → Rn+1 with outward normal ν and H > 0 is
a solution to Inverse Mean Curvature Flow (IMCF) if

∂Ft

∂t
(x , t) =

1

H
ν(x , t), (x , t) ∈ N × [0,T ). (1)

Explicit solution: N0 = SR(x0), then Nt = Sr(t)(x0) for r(t) = Re
t
n .
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Singularities of IMCF

One example of singularity formation in IMCF is for a “thin” (H > 0)
torus N0 ⊂ R3.

One principal curvature is negative at the part of Nt closest to the
axis of rotation.

Since flow speed is bounded below, H must eventually reach 0 along
this part, terminating the flow.
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Characterizing the Thin Torus Singularity

Does the expanding torus Nt “pinch” at its axis of rotation as
t → Tmax, or does the flow terminate prior to this?

If the latter possibility is true, then supNt
|A| ≤ C for all t ∈ [0,Tmax),

implying a limit surface NTmax without rescaling.

From [Har20c], no pinching occurs in the thin torus– this generalizes
to any mean-convex, rotationally symmetric torus in R3.

Theorem 1, The Limit of IMCF on a Torus

Let N0 = F0(T2) ⊂ R3 be an H > 0, rotationally symmetric embedded torus and
F : T2 × [0,Tmax) → R3 the corresponding maximal solution to (1). Then
Tmax < +∞ and limt→Tmax maxNt |A| ≤ L < +∞.
Furthermore, there exists a subsequence of times tk ↗ Tmax and corresponding
diffeomorphisms αk : T2 → T2 so that the maps F̃tk = Ftk ◦ αk : T2 → R3

converge in C 1 topology to an immersion F̃Tmax .
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Rescaling the Singularity

Standard techniques for singularity analysis– maximum principles,
tangent flows– are either insufficient or cannot be applied here.

Proof by contradiction: let ymin(t) be the distance from Nt to the
axis of rotation and assume limt→Tmax ymin(t) = 0.

Define Ñt =
1

ymin(t)
Nt . Since maxNt H ≤ maxN0 H, we have

lim
t→Tmax

max
Ñt

H = 0. (2)

One expects some subset of Ñt to converge to a catenoid.
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The Energy Method

We rule out the catenoid as a candidate limit via an energy estimate.

Figure: A cross section of the un-scaled surface Nt .

St ⊂ Nt between y = const. planes has Gauss curvature K satisfying∫
St

|K |dµ ≤ 4π(1− ϵ) (3)

for some ϵ > 0.
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The Contradiction

Let S̃t =
1

ymin(t)
St , then∫

S̃t

|K |dµ ≤ 4π(1− ϵ). (4)

since the previous estimate is scale invariant.

On the other hand, generating graphs yt(x) of S̃t (or a subsequence)
converge in C 2

loc(R) to a catenary y(x) = 1
a cosh(ax).

y(x) generates a catenoid C with
∫
C |K |dµ = 4π: this is a

contradiction.

This implies supNt
|A| ≤ C (N0)– the limit immersion is guaranteed by

a compactness theorem from [Lan85].
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Further Questions

What is the regularity of NTmax?

Is taking a subsequence and surface diffeos neccessary to obtain
FTmax?

Conjecture: supN×[0,Tmax) |A| ≤ C (N0) for any solution {Nt}0≤t<Tmax

of IMCF in R3.

Remark: one can show

sup
t∈[0,Tmax)

||A||L2(Nt) ≤ C (N0) (5)

for any immersed solution in R3. Does this energy concentrate?
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Long-Time Existence in IMCF

Finite-time singularities may not develop for closed solutions of IMCF:
the first result in this direction is due to Gerhardt.

Theorem 2, [Ger90], Long-Time Existence in Star-Shaped IMCF

Let N0 ⊂ Rn+1 be an H > 0, strictly star-shaped hypersurface. Then for the
corresponding maximal solution {Nt}0≤t<Tmax to IMCF, Tmax = +∞ and Nt is
strictly star-shaped for each t ∈ [0,+∞).

[Har20a] contains a similar result for rotationally symmetric spheres.

Theorem 3, Long-Time Existence in Rotationally Symmetric IMCF

Let N0 ⊂ Rn+1 be an H > 0, rotationally symmetric embedded sphere with
principal curvature p of rotation satisfying

maxN0 p

minN0 p
< n

n
2(n−1) .

Then for the corresponding maximal solution {Nt}0≤t<T+max , Tmax = +∞ and Nt

is a cylindrical graph (away from the axis of rotation) for each t ∈ [0,+∞).
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The Number and Embeddedness of Area-Minimizers

Given a Jordan curve γ ⊂ R3, how many stable minimal disks does it
bound, and are they embedded?

Figure: Source: [Cos12]

In [MY82], Meeks and Yau consider these questions in a compact
domain with mean-convex boundary.

Theorem 4, [MY82], Area-Minimizers in Mean-Convex Domains

Let M ⊂ R3 be a bounded domain with ∂M ∼= S2 a C 2, H > 0 surface.
For any Jordan curve γ ⊂ ∂M, γ bounds an immersed disk D ⊂ M which
minimizes area among all other immersed disks in M bounded by γ.
Furthermore, this D is embedded.
Also, if γ is C 4,α, then for any k ∈ R there are only finitely many stable
minimal disks in M with areas less than k .

Brian Harvie (NTU) IMCF November 8, 2021 10 / 14
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Minimal Disks and IMCF

It is possible that γ bounds minimal disks in R3 which exit the
domain M.

In particular, solutions to Plateau’s problem for this γ may not be
embedded, and the finiteness property may not hold over R3.

From [Har20b], [Har20a], IMCF rules above possibilities out for
certain M.

Theorem 5, Embeddedness and Finiteness of Area-Minimizers

Let M ⊂ R3, γ ⊂ ∂M be as in the previous theorem. Suppose N0 = ∂M
admits a long-time embedded solution {Nt}0≤t<+∞ to IMCF. Then all
stable minimial disks bounded by γ lie in M.
In particular, the solution to Plateau’s problem for γ is embedded, and if γ
is C 4,α then it bounds only finitely many stable minimal disks with areas
less than k .

The second part of the above result holds in particular for star-shaped
or admissibly rotationally symmetric H > 0 domains.
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The Comparison Principle

If R3 \M is foliated by embedded, mean-convex closed surfaces, then
for any immersed C 2 surface D with ∂D ⊂ ∂M and D ̸⊂ M,
H(x) > 0 for some x ∈ D.

Figure: Let λi , λ̃i be the principal curvatures of D, ∂Et0 at x respectively.
Then λi ≥ λ̃i and hence HD(x) > 0.
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Conditions for a Mean-Convex Foliation

Caution: global solutions to IMCF need not remain embedded, and
may also fail to foliate a region.

Example: two disjoint round spheres in R3.

Lemma 1, Foliations by IMCF

Let {Nt}0≤t<T be a solution to IMCF. Then the Nt foliate the region
∪0≤t<TNt ⊂ Rn+1 if and only if Nt is embedded for each t ∈ [0,T ).

Proof relies on a “one-sided” avoidance principle for IMCF.
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You have reached the time Tmax.
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