The Inverse Mean Curvature Flow and Minimal Surfaces

Brian Harvie

National Taiwan University

BIRS New Directions in Geometric Flows

November 8, 2021

• We are interested in the Inverse Mean Curvature Flow of closed hypersurfaces in Euclidean space.

• We are interested in the Inverse Mean Curvature Flow of closed hypersurfaces in Euclidean space.

Definition 1

Given a closed, oriented *n*-dimensional smooth manifold N, a one-parameter family of immersions $F : N \times [0, T) \to \mathbb{R}^{n+1}$ with outward normal ν and H > 0 is a solution to Inverse Mean Curvature Flow (IMCF) if

$$\frac{\partial F_t}{\partial t}(x,t) = \frac{1}{H}\nu(x,t), \qquad (x,t) \in N \times [0,T).$$
(1)

2/14

• We are interested in the Inverse Mean Curvature Flow of closed hypersurfaces in Euclidean space.

Definition 1

Given a closed, oriented *n*-dimensional smooth manifold N, a one-parameter family of immersions $F : N \times [0, T) \to \mathbb{R}^{n+1}$ with outward normal ν and H > 0 is a solution to Inverse Mean Curvature Flow (IMCF) if

$$\frac{\partial F_t}{\partial t}(x,t) = \frac{1}{H}\nu(x,t), \qquad (x,t) \in \mathbb{N} \times [0,T).$$
(1)

• Explicit solution: $N_0 = \mathbb{S}_R(x_0)$, then $N_t = \mathbb{S}_{r(t)}(x_0)$ for $r(t) = Re^{\frac{t}{n}}$.

2/14

Singularities of IMCF

• One example of singularity formation in IMCF is for a "thin" (H > 0) torus $N_0 \subset \mathbb{R}^3$.

Singularities of IMCF

• One example of singularity formation in IMCF is for a "thin" (H > 0) torus $N_0 \subset \mathbb{R}^3$.

- One principal curvature is negative at the part of N_t closest to the axis of rotation.
- Since flow speed is bounded below, *H* must eventually reach 0 along this part, terminating the flow.

• Does the expanding torus N_t "pinch" at its axis of rotation as $t \rightarrow T_{max}$, or does the flow terminate prior to this?

- Does the expanding torus N_t "pinch" at its axis of rotation as $t \rightarrow T_{max}$, or does the flow terminate prior to this?
- If the latter possibility is true, then $\sup_{N_t} |A| \leq C$ for all $t \in [0, T_{\max})$, implying a limit surface $N_{T_{\max}}$ without rescaling.

- Does the expanding torus N_t "pinch" at its axis of rotation as $t \rightarrow T_{max}$, or does the flow terminate prior to this?
- If the latter possibility is true, then $\sup_{N_t} |A| \leq C$ for all $t \in [0, T_{\max})$, implying a limit surface $N_{T_{\max}}$ without rescaling.
- From [Har20c], no pinching occurs in the thin torus- this generalizes to any mean-convex, rotationally symmetric torus in \mathbb{R}^3 .

- Does the expanding torus N_t "pinch" at its axis of rotation as $t \rightarrow T_{max}$, or does the flow terminate prior to this?
- If the latter possibility is true, then $\sup_{N_t} |A| \leq C$ for all $t \in [0, T_{\max})$, implying a limit surface $N_{T_{\max}}$ without rescaling.
- From [Har20c], no pinching occurs in the thin torus- this generalizes to any mean-convex, rotationally symmetric torus in \mathbb{R}^3 .

Theorem 1, The Limit of IMCF on a Torus

Let $N_0 = F_0(\mathbb{T}^2) \subset \mathbb{R}^3$ be an H > 0, rotationally symmetric embedded torus and $F : \mathbb{T}^2 \times [0, T_{\max}) \to \mathbb{R}^3$ the corresponding maximal solution to (1). Then $T_{\max} < +\infty$ and $\lim_{t \to T_{\max}} \max_{N_t} |A| \leq L < +\infty$. Furthermore, there exists a subsequence of times $t_k \nearrow T_{\max}$ and corresponding diffeomorphisms $\alpha_k : \mathbb{T}^2 \to \mathbb{T}^2$ so that the maps $\widetilde{F}_{t_k} = F_{t_k} \circ \alpha_k : \mathbb{T}^2 \to \mathbb{R}^3$ converge in C^1 topology to an immersion $\widetilde{F}_{T_{\max}}$.

• Standard techniques for singularity analysis- maximum principles, tangent flows- are either insufficient or cannot be applied here.

- Standard techniques for singularity analysis- maximum principles, tangent flows- are either insufficient or cannot be applied here.
- Proof by contradiction: let $y_{\min}(t)$ be the distance from N_t to the axis of rotation and assume $\lim_{t \to T_{\max}} y_{\min}(t) = 0$.

• Define
$$ilde{N}_t = rac{1}{y_{\min}(t)} N_t$$
. Since $\max_{N_t} H \leq \max_{N_0} H$, we have

$$\lim_{t \to T_{\max}} \max_{\tilde{N}_t} H = 0.$$
⁽²⁾

• One expects some subset of \tilde{N}_t to converge to a catenoid.

The Energy Method

• We rule out the catenoid as a candidate limit via an energy estimate.

The Energy Method

• We rule out the catenoid as a candidate limit via an energy estimate.

Figure: A cross section of the un-scaled surface N_t .

The Energy Method

• We rule out the catenoid as a candidate limit via an energy estimate.

Figure: A cross section of the un-scaled surface N_t .

• $S_t \subset N_t$ between y = const. planes has Gauss curvature K satisfying

$$\int_{S_t} |K| d\mu \le 4\pi (1-\epsilon) \tag{3}$$

for some $\epsilon > 0$.

6/14

The Contradiction

• Let
$$ilde{S}_t = rac{1}{y_{\min}(t)}S_t$$
, then $\int_{ ilde{S}_t} |K| d\mu \leq 4\pi(1-\epsilon).$

since the previous estimate is scale invariant.

э

• Let
$$ilde{S}_t = rac{1}{y_{\min}(t)}S_t$$
, then

$$\int_{\tilde{S}_t} |K| d\mu \le 4\pi (1-\epsilon). \tag{4}$$

since the previous estimate is scale invariant.

- On the other hand, generating graphs y_t(x) of S
 t (or a subsequence) converge in C²{loc}(ℝ) to a catenary y(x) = ¹/_a cosh(ax).
- y(x) generates a catenoid C with ∫_C |K|dμ = 4π: this is a contradiction.

• Let
$$ilde{S}_t = rac{1}{y_{\min}(t)}S_t$$
, then

$$\int_{\tilde{S}_t} |K| d\mu \le 4\pi (1-\epsilon). \tag{4}$$

since the previous estimate is scale invariant.

- On the other hand, generating graphs y_t(x) of S
 t (or a subsequence) converge in C²{loc}(ℝ) to a catenary y(x) = ¹/_a cosh(ax).
- y(x) generates a catenoid C with ∫_C |K|dμ = 4π: this is a contradiction.
- This implies $\sup_{N_t} |A| \le C(N_0)$ the limit immersion is guaranteed by a compactness theorem from [Lan85].

• What is the regularity of $N_{T_{\text{max}}}$?

æ

- What is the regularity of $N_{T_{max}}$?
- Is taking a subsequence and surface diffeos neccessary to obtain $F_{T_{max}}$?

- What is the regularity of $N_{T_{max}}$?
- Is taking a subsequence and surface diffeos neccessary to obtain $F_{T_{max}}$?
- Conjecture: sup_{N×[0, Tmax}) |A| ≤ C(N₀) for any solution {N_t}_{0≤t<Tmax} of IMCF in ℝ³.

- What is the regularity of $N_{T_{max}}$?
- Is taking a subsequence and surface diffeos neccessary to obtain $F_{T_{max}}$?
- Conjecture: $\sup_{N \times [0, T_{max})} |A| \leq C(N_0)$ for any solution $\{N_t\}_{0 \leq t < T_{max}}$ of IMCF in \mathbb{R}^3 .
- Remark: one can show

$$\sup_{t \in [0, T_{\max})} ||A||_{L^2(N_t)} \le C(N_0)$$
(5)

for any immersed solution in \mathbb{R}^3 . Does this energy concentrate?

Long-Time Existence in IMCF

• Finite-time singularities may not develop for closed solutions of IMCF: the first result in this direction is due to Gerhardt.

Long-Time Existence in IMCF

• Finite-time singularities may not develop for closed solutions of IMCF: the first result in this direction is due to Gerhardt.

Theorem 2, [Ger90], Long-Time Existence in Star-Shaped IMCF

Let $N_0 \subset \mathbb{R}^{n+1}$ be an H > 0, strictly star-shaped hypersurface. Then for the corresponding maximal solution $\{N_t\}_{0 \leq t < T_{max}}$ to IMCF, $T_{max} = +\infty$ and N_t is strictly star-shaped for each $t \in [0, +\infty)$.

Long-Time Existence in IMCF

• Finite-time singularities may not develop for closed solutions of IMCF: the first result in this direction is due to Gerhardt.

Theorem 2, [Ger90], Long-Time Existence in Star-Shaped IMCF

Let $N_0 \subset \mathbb{R}^{n+1}$ be an H > 0, strictly star-shaped hypersurface. Then for the corresponding maximal solution $\{N_t\}_{0 \leq t < T_{max}}$ to IMCF, $T_{max} = +\infty$ and N_t is strictly star-shaped for each $t \in [0, +\infty)$.

• [Har20a] contains a similar result for rotationally symmetric spheres.

Theorem 3, Long-Time Existence in Rotationally Symmetric IMCF

Let $N_0 \subset \mathbb{R}^{n+1}$ be an H > 0, rotationally symmetric embedded sphere with principal curvature p of rotation satisfying

$$\frac{\max_{N_0}p}{\min_{N_0}p} < n^{\frac{n}{2(n-1)}}.$$

Then for the corresponding maximal solution $\{N_t\}_{0 \le t < T_{+ \max}}$, $T_{\max} = +\infty$ and N_t is a cylindrical graph (away from the axis of rotation) for each $t \in [0, +\infty)$.

The Number and Embeddedness of Area-Minimizers

• Given a Jordan curve $\gamma \subset \mathbb{R}^3$, how many stable minimal disks does it bound, and are they embedded?

Figure: Source: [Cos12]

• In [MY82], Meeks and Yau consider these questions in a compact domain with mean-convex boundary.

The Number and Embeddedness of Area-Minimizers

 Given a Jordan curve γ ⊂ ℝ³, how many stable minimal disks does it bound, and are they embedded?

Figure: Source: [Cos12]

• In [MY82], Meeks and Yau consider these questions in a compact domain with mean-convex boundary.

Theorem 4, [MY82], Area-Minimizers in Mean-Convex Domains

Let $M \subset \mathbb{R}^3$ be a bounded domain with $\partial M \cong \mathbb{S}^2$ a C^2 , H > 0 surface. For any Jordan curve $\gamma \subset \partial M$, γ bounds an immersed disk $D \subset M$ which minimizes area among all other immersed disks in M bounded by γ . Furthermore, this D is embedded.

Also, if γ is $C^{4,\alpha}$, then for any $k \in \mathbb{R}$ there are only finitely many stable minimal disks in M with areas less than k.

Minimal Disks and IMCF

- It is possible that γ bounds minimal disks in \mathbb{R}^3 which exit the domain M.
- In particular, solutions to Plateau's problem for this γ may not be embedded, and the finiteness property may not hold over \mathbb{R}^3 .

Minimal Disks and IMCF

- It is possible that γ bounds minimal disks in \mathbb{R}^3 which exit the domain M.
- In particular, solutions to Plateau's problem for this γ may not be embedded, and the finiteness property may not hold over \mathbb{R}^3 .
- From [Har20b], [Har20a], IMCF rules above possibilities out for certain *M*.

Theorem 5, Embeddedness and Finiteness of Area-Minimizers

Let $M \subset \mathbb{R}^3$, $\gamma \subset \partial M$ be as in the previous theorem. Suppose $N_0 = \partial M$ admits a long-time embedded solution $\{N_t\}_{0 \le t < +\infty}$ to IMCF. Then all stable minimial disks bounded by γ lie in M. In particular, the solution to Plateau's problem for γ is embedded, and if γ is $C^{4,\alpha}$ then it bounds only finitely many stable minimal disks with areas

less than k.

11/14

Minimal Disks and IMCF

- It is possible that γ bounds minimal disks in \mathbb{R}^3 which exit the domain M.
- In particular, solutions to Plateau's problem for this γ may not be embedded, and the finiteness property may not hold over \mathbb{R}^3 .
- From [Har20b], [Har20a], IMCF rules above possibilities out for certain *M*.

Theorem 5, Embeddedness and Finiteness of Area-Minimizers

Let $M \subset \mathbb{R}^3$, $\gamma \subset \partial M$ be as in the previous theorem. Suppose $N_0 = \partial M$ admits a long-time embedded solution $\{N_t\}_{0 \le t < +\infty}$ to IMCF. Then all stable minimial disks bounded by γ lie in M. In particular, the solution to Plateau's problem for γ is embedded, and if γ is $C^{4,\alpha}$ then it bounds only finitely many stable minimal disks with areas

less than *k*.

• The second part of the above result holds in particular for star-shaped or admissibly rotationally symmetric H > 0 domains.

Brian Harvie (NTU)

11/14

The Comparison Principle

If ℝ³ \ M is foliated by embedded, mean-convex closed surfaces, then for any immersed C² surface D with ∂D ⊂ ∂M and D ⊄ M, H(x) > 0 for some x ∈ D.

Figure: Let λ_i , $\tilde{\lambda}_i$ be the principal curvatures of D, ∂E_{t_0} at x respectively. Then $\lambda_i \geq \tilde{\lambda}_i$ and hence $H_D(x) > 0$.

- Caution: global solutions to IMCF need not remain embedded, and may also fail to foliate a region.
- Example: two disjoint round spheres in \mathbb{R}^3 .

- Caution: global solutions to IMCF need not remain embedded, and may also fail to foliate a region.
- Example: two disjoint round spheres in \mathbb{R}^3 .

Lemma 1, Foliations by IMCF

Let $\{N_t\}_{0 \le t < T}$ be a solution to IMCF. Then the N_t foliate the region $\bigcup_{0 \le t < T} N_t \subset \mathbb{R}^{n+1}$ if and only if N_t is embedded for each $t \in [0, T)$.

- Caution: global solutions to IMCF need not remain embedded, and may also fail to foliate a region.
- Example: two disjoint round spheres in \mathbb{R}^3 .

Lemma 1, Foliations by IMCF

Let $\{N_t\}_{0 \le t < T}$ be a solution to IMCF. Then the N_t foliate the region $\bigcup_{0 \le t < T} N_t \subset \mathbb{R}^{n+1}$ if and only if N_t is embedded for each $t \in [0, T)$.

• Proof relies on a "one-sided" avoidance principle for IMCF.

You have reached the time T_{max} .