
The Shintani–Casselman–Shalika formula and
its generalizations; harmonic analysis,
L-functions, and geometry.

Yiannis Sakellaridis, Johns Hopkins University

Casselman @ 80, BIRS (online), Friday, November 19, 2021
1/24



G: connected reductive group over o ⊂ F, o � Fq.

XxG. Problem: Compute eigenfunctions ofH(G, K) on X = X(F)
(where G = G(F), K = G(o)).

The problem shows up, e.g., when X = H\G has some multiplicity-1
property, and for an automorphic representation π of G over a global
field k, the map π → C∞(X(A)) sending f to g 7→

∫
[H] f (hg)dh is of

the form ∏v Φv(g), with Φv ∈ C∞(X(kv)) an
H(G(kv), G(ov))-eigenfunction at almost every place.

In two 1980 papers in Compositio, Casselman and
Casselman–Shalika introduced a new method to solve this problem,
applied to the group case (X = H, G = H × H) and to the Whittaker
model (X = N\G, with C∞(X) replaced by C∞(X,Lψ) = IndG

N(ψ)).

The goal of this talk is to revisit this method, in the light of
subsequent developments.
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What you need in order to follow this talk

G ⊃ B, 1→ N → B→ A→ 1.

N\G/K ↔ A/A(o) = Λ by [λ(v)]↔ λ.

L2-normalized action of A on N\G, a · f (Ng) = δ−
1
2 (a) f (Nag).

S(X) := C∞
c (X), basis for S(N\G)K consisting of

eλ := vλ · 1N\NK = q〈ρ,λ〉1Nv−λK.

Hom(Λ, C×) = Ǎ = the Langlands dual torus of A.

For χ ∈ Ǎ, the (A, χ)-eigenfunctions in C∞(N\G) to be denoted by
I(χ) (normalized induction, unramified principal series).

Fixing suitable invariant measures throughout, identifying C∞(X) as
the smooth dual of S(X).

3/24



What you need in order to follow this talk

Mellin transforms S(N\G)→ I(χ),

f̂ (χ, g) =
∫

A
(a · f )(g)χ−1(a)da.

The Mellin transform of eλ is λ understood as a character of Ǎ, also to
be denoted eλ.

In this notation, (1− eλ)−1 means the function ∑n≥0 enλ, which has
Mellin transform (1− eλ(χ))−1.

Basic example: N\ SL2 = F2 r {0}, the function

1o2 =
1

1− q−1eα
= ∑

n≥0
1vn ·(o×)2

This function is invariant under Fourier transform on (the symplectic

space) F2, which acts as f̂ (χ)↔ 1−q−1e−α

1−q−1eα f̂ (χ−1)
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The Whittaker model

For simplicity, from now on, G is split. (CS formula applies to general
unramified groups.)

Fix a maximal unipotent N− ⊂ G over o, and let ψ : N− → C× be a
character whose restriction to any simple root space has conductor o.
It defines the Whittaker model IndG

N−(ψ) = C∞(N−, ψ\G).

The (Shintani for GLn, Casselman–Shalika for general G) formula for
H(G, K)-eigenfunctions on the Whittaker model

I(χ)K 3 φK,χ 7→ Ωχ ∈ C∞(N−, ψ\G)K

states that (up to an arbitrary scalar)

q〈ρ,λ〉Ωχ(v
−λ) =

{
tr(χ, V∨λ ), if λ is dominant,

0 otherwise,

where tr(χ, V∨λ ) = the trace of χ ∈ Ǎ on the dual of the irreducible
Ǧ-module with highest weight λ.
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The Whittaker model – dual formulation

For λ ∈ Λ+ (dominant), let Wλ denote the “basic Whittaker function”
with Wλ|v−λK = q−〈ρ,λ〉 and Wλ = 0 off N−v−λK.

Consider the Satake isomorphismH(G, K) ∼−→ C[RepǦ], denoted
hλ ↔ Vλ.

Theorem

hλ ·W0 = Wλ.

Remark: If, instead, we replaced ψ by the trivial character, we would
have the definition of the Satake isomorphism:

hλ · 1N−K = tr Vλ,

where tr Vλ is understood as a function on N−\G/K as explained
previously (i.e., its Mellin transform is χ 7→ tr Vλ(χ)).

Proof that Theorem⇒ CS formula.
q〈ρ,λ〉Ωχ(v−λ) = 〈Ωχ, Wλ〉= 〈Ωχ, hλ ·W0〉=

〈
h∨λ ·Ωχ, W0

〉
=

tr(χ, V∨λ ) 〈Ωχ, W0〉 = tr(χ, V∨λ ). 6/24



Radon transforms

From now on, use X = (N−, ψ)\G.

Up to now, we have not fixed a morphism I(χ)→ C∞(X), but we can
fix one (up to Haar measures) as the adjoint of the χ−1-Radon transform

Rχ−1 : S(X)→ I(χ−1),

sending Φ to g 7→
∫

B Φ(N−bg)χδ−
1
2 (b)db.

This is the χ−1-Mellin transform composed with the Radon transform

R : S(X)→ S+(N\G),

sending Φ to g 7→
∫

N Φ(N−ng)dn. (Doesn’t quite preserve compact
support, but Mellin transform makes sense by meromorphic
continuation.)

The problem of computing Ωχ is equivalent to the problem of
computing R(Wλ) for all (dominant) λ.
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Functional equations

The idea (Idea 1) of Casselman was to use functional equations,

I(χ)

Fw,χ

��

S(X)

Rχ

;;

Rwχ

##
I(wχ)

for some (meromorphic in w) family of intertwining operators Fw,

and (Idea 2), instead of the unramified functions, to compute
R(WJ,λ)|B for WJ,λ = the Iwahori-invariant Whittaker function
supported on N−v−λB(o):

R(WJ,λ)|B = 1Nv−λB(o).
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Dually, if φJ,χ ∈ I(χ) is the image of 1NJ under Mellin transform, this
says that, for λ dominant,

R∗
χ−1 φJ,χ(v

−λ) = q−〈ρ,λ〉χ(v−λ).

If we can write a spherical vector in terms of the operators F∗w applied
to φJ,χ,

φK,χ = ∑
W

cw(χ)F∗wφJ,wχ,

this gives the desired formula

Ωχ(v
−λ) := R∗

χ−1 φK,χ(v
−λ) = ∑

W
cw(χ)q−〈ρ,λ〉χ(v−λ).

Remarkably, these look like eigenfunction for the torus A, although it
doesn’t act on the Whittaker model!

The same arguments work to computeH(G, K)-eigenvectors
Ωχ ∈ C∞(X) for every X with an open B-orbit (& good integral
model). The only thing that changes are the intertwiners Fw,χ,
which we will now describe for the Whittaker model.
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Fourier transforms

As was known to Gelfand and Kazhdan, the operators Fw that make
the diagram above commute are the Fourier transforms on the basic
affine space,

S+(N\G) //

Fw

��

I(χ)

Fw,χ

��

S(N−, ψ\G)

R
77

R

''
S+(N\G) // I(wχ)

Assuming G simply connected, for every simple root α the fibers of
N\G → [Pα, Pα]\G are ' NSL2\ SL2 ' F2 r {(0, 0)}, and Fourier
transform Fwα : S+(N\G)→ S+(N\G) is defined fiberwise, with a
symplectic structure on F2 determined by the Whittaker character.

(This has been used by Nadya Gurevich and D. Kazhdan to extend
the definition of Fourier transforms to the general quasisplit case.) 10/24



Digression: Bernstein–Casselman asymptotics

Casselman’s theorem: For an admissible representation π of G, there
is an invariant pairing of Jacquet modules πN ⊗ πN− → C, such that
the matrix coefficients asymptotically (on t ∈ A sufficiently
dominant) satisfy

〈π(t)v, ṽ〉 = 〈πN(t)vN , ṽN−〉 .

Generalized by Bernstein to arbitrary smooth representations; can be
formulated in terms of a G× G-equivariant morphism
f 7→ f∅ : C∞(G)→ C∞(G∅), where the asymptotic cone is

G∅ = Adiag(N × N−)\(G× G).

This map is characterized by the property that f = f∅ when
restricted to “a neighborhood of infinity” (e.g., evaluated on
sufficiently dominant elements of (T × 1) ⊂ (G× G).
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Asymptotics for the Whittaker model

There is a similar map W 7→W∅: C∞(N−, ψ\G)→ C∞(N−\G), and
its restriction to compactly supported functions is related to Radon
transforms by the diagram

S(N−, ψ\G)

R

''

// S+(N−\G)

R∅

ww
S+(N\G).

Casselman’s Idea 1 + Idea 2 combine to give the following surprising
corollary, for which I don’t know a conceptual reason:

Proposition
For W unramified, the asymptotic equality holds on the entire dominant
cone:

W(v−λ) = W∅(v
−λ), λ ∈ Λ+.
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W(v−λ) = W∅(v
−λ), λ ∈ Λ+.

To prove the Theorem (hλ ·W0 = Wλ), now, it suffices to calculate
RW0, the Radon transform of the basic function. Indeed,

hλ ·W0(v
−µ) = hλ · R−1

∅ ◦ RW0(v
−µ),

and the inversion R−1
∅ of Radon transform (standard intertwining

operator) is well-known on spherical functions, while the action of hλ

is given by its Satake transform.

Given its invariance under Fourier transforms, and certain support
restrictions, there are not many options for R∅W0. (Recall Fourier:

f̂ (χ)↔ 1−q−1e−α

1−q−1eα f̂ (χ−1).)

Theorem
We have R∅W0 = ∏α̌>0(1− q−1e−α̌),

and W0,∅ = R−1
∅ ◦ RW0 = ∏α̌>0(1− e−α̌)
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Theorem
We have R∅W0 = ∏α̌>0(1− q−1e−α̌),

and W0,∅ = R−1
∅ ◦ RW0 = ∏α̌>0(1− e−α̌)

Corollary
We have
hλ ·W0 = hλ ·∏α̌>0(1− e−α̌)|Λ+ = e−ρ̌ ∑W(−1)weρ̌+λ

∣∣
Λ+ = eλ|Λ+

⇒ hλ ·W0 = Wλ.
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Other spherical spaces

For more general spherical varieties X, the functional equations

I(χ)

γX(χ)Fw,χ

��

S(X)

Rχ

;;

Rwχ

##
I(wχ)

involve multiples of the Fourier transforms by certain abelian gamma
factors, corresponding to a representation Ǎ→ GL(VX) that
determines the “L-function of the spherical variety.”
These gamma factors, in turn, modify the asymptotic formula

W0,∅ = ∏̌
α>0

(1− e−α̌)

by an abelian local L-factor,

Φ0,∅ = L(χ, VX) · ∏̌
α>0

(1− e−α̌). 15/24



Example: In the group case, X = H, Φ0 = 1H(o), and its asymptotics
are

Φ0,∅ = ∏̌
α>0

1− e−α̌

1− q−1e−α̌
,

the product ranging over positive coroots of H. This implies the
Macdonald formula for zonal spherical functions (reproved by
Casselman).

Here, VX = ň−, and this formula implies the formula for the
unramified Plancherel measure, L(χ,ǧ/ǎ,1)

L(χ,ǧ/ǎ,0) .
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Digression: basic functions

Let V be a representation of Ȟ on which the center of Ȟ acts by a
nontrivial character. The formal sum LV :=

⊕
n≥0 Symn V

corresponds under the Satake isomorphism to a series hLV of
elements in the Hecke algebra of H. Casselman asked for a
calculation of this series, as a function on KH\H/KH = Λ+

H .

This is motivated by “Beyond Endoscopy,” where one would like to
feed L-functions into the trace formula, in the form of non-compactly
supported test functions (of the form above).

Answer (S.; ∃ similar formula by W.W. Li):

hLV = LV · ∏̌
α>0

1− e−α̌

1− q−1e−α̌

∣∣∣∣∣
Λ+

.
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Other spherical spaces (cont.)

Example: For the G = GLn×GLn+1-Rankin–Selberg variety,
X = GLdiag

n \G, with Φ0 = 1X(o), its asymptotics are

Φ0,∅ =
∏α̌>0(1− e−α̌)

∏θ∈Θ+(1− q−
1
2 e−θ)

,

where θ ranges over half the weights of the tensor product
representation and its dual

⊗⊕⊗∨ : Ǧ → GLn(n+1) (those with
〈ρ, θ〉 > 0).
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Geometric meaning (joint w. Jonathan Wang)

Consider X with ǦX = Ǧ (a condition that implies that B acts with
trivial generic stabilizers, such as in the Whittaker model and the
Rankin–Selberg case).

As we have seen, the gist of the CS method is the computation of the
functional equations satisfied by π!Φ0 = RΦ0|B, where
π : X → X � N = spec F[X]N .

Example: In the Whittaker case,

π!Φ0 = ∏̌
α>0

(1− q−1e−α̌),

and in the Rankin–Selberg case

π!Φ0 =
∏α̌>0(1− q−1e−α̌)

∏θ∈Θ+(1− q−
1
2 e−θ)

.
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Geometric meaning (joint w. Jonathan Wang)

The basic function Φ0 can be defined even when X is (affine and)
singular, and is obtained by the sheaf-function dictionary from the
intersection complex of the arc space L+X (really, defined via
finite-dimensional global models, [Bouthier–Ngô–S.]; here, we work
in equal characteristic).
The Radon transform π!Φ0 corresponds to the !-pushforward under
L+X → L+(X � N).
The map π factors through the stack quotient X → X/N → X � N.
We can “compactify” X/N by replacing it by (X× N\G)/G. If we
replace the basic function of X by the basic function Φ0 of
(X× N\G)/G, we will have

π!Φ0 =
1

∏θ∈Θ+(1− q−
1
2 e−θ)

,

i.e., the factor ∏α̌>0(1− q−1e−α̌) disappears.
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Geometric functional equations

The geometric interpretation of this formula involves:

• Perversity of the sheaves corresponding to π!Φ0.
• The fact that π!Φ0 has this form follows from factorization

structures over a curve. The remaining problem is to determine
the θ’s.

The functional equations for X, now, amount to the statement:
For every simple root α, we have

(π!Φ0)
wα

π!Φ0
=

(1− q−
1
2 e−θ1)(1− q−

1
2 e−θ2)

(1− q−
1
2 eθ1)(1− q−

1
2 eθ2)

as functions on Ǎ, where θ1, θ2 ∈ Λ are the valuations induced by
the B-stable prime divisors (“colors”) contained in X◦Pα.

(This applies to cases such as the Rankin–Selberg variety, where
X◦Pα/R(Pα) ' Gm\PGL2; in the Whittaker case, these factors are
trivial.) 21/24



The half-crystal of a spherical variety

To understand the θ’s, we define the “half-crystal of a spherical
variety” in terms of (a global model of) L+X/L+B.

Definition
The half-crystal of a spherical variety X is a set B+ =

⊔
θ∈Λ Bθ ,

where Bθ denotes the components “of maximal possible dimension”
(= those which contribute an irreducible perverse sheaf to π!Φ0) in
the preimage of v−θ A(o) in L+X = X(o).

Theorem (S.–Wang)
There is an embedding of X◦(F)/B(o) into the affine Grassmannian, with
the preimage of v−θ A(o) belonging the semiinfinite orbit
N(F)vθG(o)/G(o). For every simple root α, intersection of the closure
with N(F)vθ−αG(o)/G(o) gives rise to a weight-lowering operator
fα : Bθ → Bθ−α t {0}, with fα(b) = 0 only if 〈θ, α〉 < 0 or α is a color in
X◦Pα, and for every b ∈ B+ there is a series of weight-lowering operators
lowering it to Bθ , for θ a color.
The set B+ tB− (where B− is a copy of B− lying over the opposite
weights −θ), has the structure of a seminormal crystal over ǧ. 22/24



Thus, the weights θ that appear can be read off from the colors of the
spherical variety.

In minuscule cases, we can also identify the multiplicities, showing
that this is the crystal associated to a Ǧ-representation. For example,

Theorem (S.–Jonathan Wang)
For

X = the affine closure of G
diag
m N0\GLn

2 ,

where

N0 =

{(
1 x1

1

)
×
(

1 x2

1

)
× · · · ×

(
1 xn

1

)∣∣∣∣∣ x1 + x2 + · · ·+ xn = 0

}
,

with Φ0 = the IC function of L+X, we have

π!Φ0 =
∏α̌>0(1− q−1e−α)

∏θ>0(1− q−
1
2 e−θ)

,

where θ ranges over “half” the weights of the n-fold tensor product

representation and its dual,
⊗⊕⊗∨ : GLn

2

⊗
−→ GL2n+1 . 23/24



Happy Birthday, Bill! Many happy returns and travels!
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