

The Shintani-Casselman-Shalika formula and its generalizations; harmonic analysis, L-functions, and geometry.

Yiannis Sakellaridis, Johns Hopkins University
Casselman @ 80, BIRS (online), Friday, November 19, 2021
G : connected reductive group over $\mathfrak{o} \subset F, \mathfrak{o} \rightarrow \mathbb{F}_{q}$.
$X^{\curvearrowleft G}$. Problem: Compute eigenfunctions of $\mathcal{H}(G, K)$ on $X=X(F)$ (where $G=G(F), K=G(\mathfrak{o})$).

The problem shows up, e.g., when $X=H \backslash G$ has some multiplicity- 1 property, and for an automorphic representation π of G over a global field k, the map $\pi \rightarrow C^{\infty}(X(\mathbb{A}))$ sending f to $g \mapsto \int_{[H]} f(h g) d h$ is of the form $\prod_{v} \Phi_{v}(g)$, with $\Phi_{v} \in C^{\infty}\left(X\left(k_{v}\right)\right)$ an $\mathcal{H}\left(G\left(k_{v}\right), G\left(\mathfrak{o}_{v}\right)\right)$-eigenfunction at almost every place.

In two 1980 papers in Compositio, Casselman and Casselman-Shalika introduced a new method to solve this problem, applied to the group case $(X=H, G=H \times H)$ and to the Whittaker model $\left(X=N \backslash G\right.$, with $C^{\infty}(X)$ replaced by $\left.C^{\infty}\left(X, \mathcal{L}_{\psi}\right)=\operatorname{Ind}_{N}^{G}(\psi)\right)$.

The goal of this talk is to revisit this method, in the light of subsequent developments.

What you need in order to follow this talk

$G \supset B, \quad 1 \rightarrow N \rightarrow B \rightarrow A \rightarrow 1$.
$N \backslash G / K \leftrightarrow A / A(\mathfrak{o})=\Lambda$ by $[\lambda(\omega)] \leftrightarrow \lambda$.
L^{2}-normalized action of A on $N \backslash G, a \cdot f(N g)=\delta^{-\frac{1}{2}}(a) f(N a g)$.
$\mathcal{S}(X):=C_{c}^{\infty}(X)$, basis for $\mathcal{S}(N \backslash G)^{K}$ consisting of

$$
e^{\lambda}:=\omega^{\lambda} \cdot 1_{N \backslash N K}=q^{\langle\rho, \lambda\rangle} 1_{N \omega^{-\lambda} K} .
$$

$\operatorname{Hom}\left(\Lambda, \mathbb{C}^{\times}\right)=\check{A}=$ the Langlands dual torus of A.
For $\chi \in \check{A}$, the (A, χ)-eigenfunctions in $C^{\infty}(N \backslash G)$ to be denoted by $I(\chi)$ (normalized induction, unramified principal series).

Fixing suitable invariant measures throughout, identifying $C^{\infty}(X)$ as the smooth dual of $\mathcal{S}(X)$.

What you need in order to follow this talk

Mellin transforms $\mathcal{S}(N \backslash G) \rightarrow I(\chi)$,

$$
\hat{f}(\chi, g)=\int_{A}(a \cdot f)(g) \chi^{-1}(a) d a
$$

The Mellin transform of e^{λ} is λ understood as a character of \check{A}, also to be denoted e^{λ}.

In this notation, $\left(1-e^{\lambda}\right)^{-1}$ means the function $\sum_{n \geq 0} e^{n \lambda}$, which has Mellin transform $\left(1-e^{\lambda}(\chi)\right)^{-1}$.
Basic example: $N \backslash \mathrm{SL}_{2}=F^{2} \backslash\{0\}$, the function

$$
1_{\mathfrak{o}^{2}}=\frac{1}{1-q^{-1} e^{\alpha}}=\sum_{n \geq 0} 1_{\mathscr{Q}^{n} \cdot(\mathfrak{o} \times)^{2}}
$$

This function is invariant under Fourier transform on (the symplectic space) F^{2}, which acts as $\hat{f}(\chi) \leftrightarrow \frac{1-q^{-1} e^{-\alpha}}{1-q^{-1} e^{\alpha}} \hat{f}\left(\chi^{-1}\right)$

The Whittaker model

For simplicity, from now on, G is split. (CS formula applies to general unramified groups.)

Fix a maximal unipotent $N^{-} \subset G$ over \mathfrak{o}, and let $\psi: N^{-} \rightarrow \mathbb{C}^{\times}$be a character whose restriction to any simple root space has conductor \mathfrak{o}. It defines the Whittaker model $\operatorname{Ind}_{N^{-}}^{G}(\psi)=C^{\infty}\left(N^{-}, \psi \backslash G\right)$.
The (Shintani for GL_{n}, Casselman-Shalika for general G) formula for $\mathcal{H}(G, K)$-eigenfunctions on the Whittaker model

$$
I(\chi)^{K} \ni \phi_{K, \chi} \mapsto \Omega_{\chi} \in C^{\infty}\left(N^{-}, \psi \backslash G\right)^{K}
$$

states that (up to an arbitrary scalar)

$$
q^{\langle\rho, \lambda\rangle} \Omega_{\chi}\left(\omega^{-\lambda}\right)= \begin{cases}\operatorname{tr}\left(\chi, V_{\lambda}^{\vee}\right), & \text { if } \lambda \text { is dominant }, \\ 0 & \text { otherwise }\end{cases}
$$

where $\operatorname{tr}\left(\chi, V_{\lambda}^{\vee}\right)=$ the trace of $\chi \in \check{A}$ on the dual of the irreducible \check{G}-module with highest weight λ.

The Whittaker model - dual formulation

For $\lambda \in \Lambda^{+}$(dominant), let W_{λ} denote the "basic Whittaker function" with $\left.W_{\lambda}\right|_{\omega^{-\lambda} K}=q^{-\langle\rho, \lambda\rangle}$ and $W_{\lambda}=0$ off $N^{-} \omega^{-\lambda} K$.
Consider the Satake isomorphism $\mathcal{H}(G, K) \xrightarrow{\sim} \mathbb{C}[\operatorname{Rep} G \check{]}$, denoted $h_{\lambda} \leftrightarrow V_{\lambda}$.

Theorem

$$
h_{\lambda} \cdot W_{0}=W_{\lambda} .
$$

Remark: If, instead, we replaced ψ by the trivial character, we would have the definition of the Satake isomorphism:

$$
h_{\lambda} \cdot 1_{N^{-} K}=\operatorname{tr} V_{\lambda},
$$

where $\operatorname{tr} V_{\lambda}$ is understood as a function on $N^{-} \backslash G / K$ as explained previously (i.e., its Mellin transform is $\chi \mapsto \operatorname{tr} V_{\lambda}(\chi)$).
Proof that Theorem \Rightarrow CS formula.
$q^{\langle\rho, \lambda\rangle} \Omega_{\chi}\left(\omega^{-\lambda}\right)=\left\langle\Omega_{\chi}, W_{\lambda}\right\rangle=\left\langle\Omega_{\chi}, h_{\lambda} \cdot W_{0}\right\rangle=\left\langle h_{\lambda}^{\vee} \cdot \Omega_{\chi}, W_{0}\right\rangle=$ $\operatorname{tr}\left(\chi, V_{\lambda}^{\vee}\right)\left\langle\Omega_{\chi}, W_{0}\right\rangle=\operatorname{tr}\left(\chi, V_{\lambda}^{\vee}\right)$.

Radon transforms

From now on, use $X=\left(N^{-}, \psi\right) \backslash G$.
Up to now, we have not fixed a morphism $I(\chi) \rightarrow C^{\infty}(X)$, but we can fix one (up to Haar measures) as the adjoint of the χ^{-1}-Radon transform

$$
R_{\chi^{-1}}: \mathcal{S}(X) \rightarrow I\left(\chi^{-1}\right),
$$

sending Φ to $g \mapsto \int_{B} \Phi\left(N^{-} b g\right) \chi \delta^{-\frac{1}{2}}(b) d b$.
This is the χ^{-1}-Mellin transform composed with the Radon transform

$$
R: \mathcal{S}(X) \rightarrow \mathcal{S}^{+}(N \backslash G),
$$

sending Φ to $g \mapsto \int_{N} \Phi\left(N^{-} n g\right) d n$. (Doesn't quite preserve compact support, but Mellin transform makes sense by meromorphic continuation.)

The problem of computing Ω_{χ} is equivalent to the problem of computing $R\left(W_{\lambda}\right)$ for all (dominant) λ.

Functional equations

The idea (Idea 1) of Casselman was to use functional equations,

for some (meromorphic in w) family of intertwining operators F_{w}, and (Idea 2), instead of the unramified functions, to compute $\left.R\left(W_{J, \lambda}\right)\right|_{B}$ for $W_{J, \lambda}=$ the Iwahori-invariant Whittaker function supported on $N^{-} \omega^{-\lambda} B(\mathfrak{o})$:

$$
\left.R\left(W_{J, \lambda}\right)\right|_{B}=1_{N \omega^{-\lambda} B(\mathfrak{o})} .
$$

Dually, if $\phi_{J, \chi} \in I(\chi)$ is the image of $1_{N J}$ under Mellin transform, this says that, for λ dominant,

$$
R_{\chi^{-1}}^{*} \phi_{J, \chi}\left(\omega^{-\lambda}\right)=q^{-\langle\rho, \lambda\rangle} \chi\left(\omega^{-\lambda}\right) .
$$

If we can write a spherical vector in terms of the operators F_{w}^{*} applied to $\phi_{J, \chi}$,

$$
\phi_{K, \chi}=\sum_{W} c_{w}(\chi) F_{w}^{*} \phi_{J, w}{ }^{w} \chi
$$

this gives the desired formula

$$
\Omega_{\chi}\left(\omega^{-\lambda}\right):=R_{\chi}^{*} \phi_{K, \chi}\left(\omega^{-\lambda}\right)=\sum_{W} c_{w w}(\chi) q^{-\langle\rho, \lambda\rangle} \chi\left(\omega^{-\lambda}\right) .
$$

Remarkably, these look like eigenfunction for the torus A, although it doesn't act on the Whittaker model!

The same arguments work to compute $\mathcal{H}(G, K)$-eigenvectors $\Omega_{\chi} \in C^{\infty}(X)$ for every X with an open B-orbit (\& good integral model). The only thing that changes are the intertwiners $F_{w, \chi}$, which we will now describe for the Whittaker model.

Fourier transforms

As was known to Gelfand and Kazhdan, the operators F_{w} that make the diagram above commute are the Fourier transforms on the basic affine space,

Assuming G simply connected, for every simple root α the fibers of $N \backslash G \rightarrow\left[P_{\alpha}, P_{\alpha}\right] \backslash G$ are $\simeq N_{\mathrm{SL}_{2}} \backslash \mathrm{SL}_{2} \simeq F^{2} \backslash\{(0,0)\}$, and Fourier transform $F_{w_{\alpha}}: \mathcal{S}^{+}(N \backslash G) \rightarrow \mathcal{S}^{+}(N \backslash G)$ is defined fiberwise, with a symplectic structure on F^{2} determined by the Whittaker character.
(This has been used by Nadya Gurevich and D. Kazhdan to extend the definition of Fourier transforms to the general quasisplit case.)

Digression: Bernstein-Casselman asymptotics

Casselman's theorem: For an admissible representation π of G, there is an invariant pairing of Jacquet modules $\pi_{N} \otimes \pi_{N^{-}} \rightarrow \mathbb{C}$, such that the matrix coefficients asymptotically (on $t \in A$ sufficiently dominant) satisfy

$$
\langle\pi(t) v, \tilde{v}\rangle=\left\langle\pi_{N}(t) v_{N}, \tilde{v}_{N^{-}}\right\rangle .
$$

Generalized by Bernstein to arbitrary smooth representations; can be formulated in terms of a $G \times G$-equivariant morphism $f \mapsto f_{\varnothing}: C^{\infty}(G) \rightarrow C^{\infty}\left(G_{\varnothing}\right)$, where the asymptotic cone is

$$
G_{\varnothing}=A^{\text {diag }}\left(N \times N^{-}\right) \backslash(G \times G) .
$$

This map is characterized by the property that $f=f_{\varnothing}$ when restricted to "a neighborhood of infinity" (e.g., evaluated on sufficiently dominant elements of $(T \times 1) \subset(G \times G)$.

Asymptotics for the Whittaker model

There is a similar map $W \mapsto W_{\varnothing}: C^{\infty}\left(N^{-}, \psi \backslash G\right) \rightarrow C^{\infty}\left(N^{-} \backslash G\right)$, and its restriction to compactly supported functions is related to Radon transforms by the diagram

Casselman's Idea $1+$ Idea 2 combine to give the following surprising corollary, for which I don't know a conceptual reason:

Proposition

For W unramified, the asymptotic equality holds on the entire dominant cone:

$$
W\left(\omega^{-\lambda}\right)=W_{\varnothing}\left(\omega^{-\lambda}\right), \quad \lambda \in \Lambda^{+} .
$$

$$
W\left(\omega^{-\lambda}\right)=W_{\varnothing}\left(\omega^{-\lambda}\right), \quad \lambda \in \Lambda^{+} .
$$

To prove the Theorem $\left(h_{\lambda} \cdot W_{0}=W_{\lambda}\right)$, now, it suffices to calculate $R W_{0}$, the Radon transform of the basic function. Indeed,

$$
h_{\lambda} \cdot W_{0}\left(\omega^{-\mu}\right)=h_{\lambda} \cdot R_{\varnothing}^{-1} \circ R W_{0}\left(\omega^{-\mu}\right),
$$

and the inversion R_{\varnothing}^{-1} of Radon transform (standard intertwining operator) is well-known on spherical functions, while the action of h_{λ} is given by its Satake transform.

Given its invariance under Fourier transforms, and certain support restrictions, there are not many options for $R_{\varnothing} W_{0}$. (Recall Fourier:
$\hat{f}(\chi) \leftrightarrow \frac{1-q^{-1} e^{-\alpha}}{1-q^{-1} e^{\alpha}} \hat{f}\left(\chi^{-1}\right)$.)
Theorem
We have $R_{\varnothing} W_{0}=\prod_{\check{\alpha}>0}\left(1-q^{-1} e^{-\check{\alpha}}\right)$,
and $W_{0, \varnothing}=R_{\varnothing}^{-1} \circ R W_{0}=\prod_{\check{\alpha}>0}\left(1-e^{-\check{\alpha}}\right)$

Theorem

We have $R_{\varnothing} W_{0}=\prod_{\check{\alpha}>0}\left(1-q^{-1} e^{-\check{\alpha}}\right)$,
and $W_{0, \varnothing}=R_{\varnothing}^{-1} \circ R W_{0}=\prod_{\check{\alpha}>0}\left(1-e^{-\check{\alpha}}\right)$

Corollary

We have
$h_{\lambda} \cdot W_{0}=\left.h_{\lambda} \cdot \prod_{\check{\alpha}>0}\left(1-e^{-\check{\alpha}}\right)\right|_{\Lambda^{+}}=\left.e^{-\check{\rho}} \sum_{W}(-1)^{w} e^{\check{\rho}+\lambda}\right|_{\Lambda^{+}}=\left.e^{\lambda}\right|_{\Lambda^{+}}$
$\Rightarrow h_{\lambda} \cdot W_{0}=W_{\lambda}$.

Other spherical spaces

For more general spherical varieties X, the functional equations

involve multiples of the Fourier transforms by certain abelian gamma factors, corresponding to a representation $\check{A} \rightarrow \mathrm{GL}\left(V_{X}\right)$ that determines the "L-function of the spherical variety."
These gamma factors, in turn, modify the asymptotic formula

$$
W_{0, \varnothing}=\prod_{\check{\alpha}>0}\left(1-e^{-\check{\alpha}}\right)
$$

by an abelian local L-factor,

$$
\Phi_{0, \varnothing}=L\left(\chi, V_{X}\right) \cdot \prod\left(1-e^{-\check{\alpha}}\right)
$$

Example: In the group case, $X=H, \Phi_{0}=1_{H(\mathfrak{o})}$, and its asymptotics are

$$
\Phi_{0, \varnothing}=\prod_{\check{\alpha}>0} \frac{1-e^{-\check{\alpha}}}{1-q^{-1} e^{-\check{\alpha}}}
$$

the product ranging over positive coroots of H. This implies the Macdonald formula for zonal spherical functions (reproved by Casselman).

Here, $V_{X}=\check{\mathfrak{n}}_{-}$, and this formula implies the formula for the unramified Plancherel measure, $\frac{L(\chi, \check{\mathfrak{g}} / \check{\mathrm{a}}, 1)}{L(\chi, \check{\mathfrak{g}} / 0)}$.

Digression: basic functions

Let V be a representation of \check{H} on which the center of \check{H} acts by a nontrivial character. The formal sum $L_{V}:=\bigoplus_{n \geq 0} \operatorname{Sym}^{n} V$ corresponds under the Satake isomorphism to a series $h_{L V}$ of elements in the Hecke algebra of H. Casselman asked for a calculation of this series, as a function on $K_{H} \backslash H / K_{H}=\Lambda_{H}^{+}$.
This is motivated by "Beyond Endoscopy," where one would like to feed L-functions into the trace formula, in the form of non-compactly supported test functions (of the form above).

Answer (S.; \exists similar formula by W.W. Li):

$$
h_{L V}=\left.L_{V} \cdot \prod_{\check{\alpha}>0} \frac{1-e^{-\check{\alpha}}}{1-q^{-1} e^{-\check{\alpha}}}\right|_{\Lambda^{+}}
$$

Other spherical spaces (cont.)

Example: For the $G=\mathrm{GL}_{n} \times \mathrm{GL}_{n+1}$-Rankin-Selberg variety, $X=G L_{n}^{\text {diag }} \backslash G$, with $\Phi_{0}=1_{X(\mathfrak{o})}$, its asymptotics are

$$
\Phi_{0, \varnothing}=\frac{\prod_{\check{\alpha}>0}\left(1-e^{-\check{\alpha}}\right)}{\prod_{\theta \in \Theta^{+}}\left(1-q^{-\frac{1}{2}} e^{-\theta}\right)},
$$

where θ ranges over half the weights of the tensor product representation and its dual $\otimes \oplus \otimes^{\vee}: \breve{G} \rightarrow \mathrm{GL}_{n(n+1)}$ (those with $\langle\rho, \theta\rangle>0)$.

Geometric meaning (joint w. Jonathan Wang)

Consider X with $\check{G}_{X}=\check{G}$ (a condition that implies that B acts with trivial generic stabilizers, such as in the Whittaker model and the Rankin-Selberg case).

As we have seen, the gist of the CS method is the computation of the functional equations satisfied by $\pi_{!} \Phi_{0}=\left.R \Phi_{0}\right|_{B}$, where $\pi: X \rightarrow X / / N=\operatorname{spec} F[X]^{N}$.

Example: In the Whittaker case,

$$
\pi_{!} \Phi_{0}=\prod_{\check{\alpha}>0}\left(1-q^{-1} e^{-\check{\alpha}}\right),
$$

and in the Rankin-Selberg case

$$
\pi_{!} \Phi_{0}=\frac{\prod_{\check{\alpha}>0}\left(1-q^{-1} e^{-\breve{\alpha}}\right)}{\prod_{\theta \in \Theta^{+}}\left(1-q^{-\frac{1}{2}} e^{-\theta}\right)} .
$$

Geometric meaning (joint w. Jonathan Wang)

The basic function Φ_{0} can be defined even when X is (affine and) singular, and is obtained by the sheaf-function dictionary from the intersection complex of the arc space $L^{+} X$ (really, defined via finite-dimensional global models, [Bouthier-Ngô-S.]; here, we work in equal characteristic).
The Radon transform $\pi_{!} \Phi_{0}$ corresponds to the !-pushforward under $L^{+} X \rightarrow L^{+}(X / / N)$.
The map π factors through the stack quotient $X \rightarrow X / N \rightarrow X / / N$. We can "compactify" X / N by replacing it by $(X \times \overline{N \backslash G}) / G$. If we replace the basic function of X by the basic function $\overline{\Phi_{0}}$ of $(X \times \overline{N \backslash G}) / G$, we will have

$$
\pi!\overline{\Phi_{0}}=\frac{1}{\prod_{\theta \in \Theta^{+}}\left(1-q^{-\frac{1}{2}} e^{-\theta}\right)},
$$

i.e., the factor $\prod_{\check{\alpha}>0}\left(1-q^{-1} e^{-\breve{\alpha}}\right)$ disappears.

Geometric functional equations

The geometric interpretation of this formula involves:

- Perversity of the sheaves corresponding to $\pi_{!} \overline{\Phi_{0}}$.
- The fact that $\pi_{!} \overline{\Phi_{0}}$ has this form follows from factorization structures over a curve. The remaining problem is to determine the θ^{\prime} s.

The functional equations for X, now, amount to the statement:
For every simple root α, we have

$$
\frac{\left(\pi_{!} \overline{\Phi_{0}}\right)^{w_{\alpha}}}{\pi_{!} \overline{\Phi_{0}}}=\frac{\left(1-q^{-\frac{1}{2}} e^{-\theta_{1}}\right)\left(1-q^{-\frac{1}{2}} e^{-\theta_{2}}\right)}{\left(1-q^{-\frac{1}{2}} e^{\theta_{1}}\right)\left(1-q^{-\frac{1}{2}} e^{\theta_{2}}\right)}
$$

as functions on \check{A}, where $\theta_{1}, \theta_{2} \in \Lambda$ are the valuations induced by the B-stable prime divisors ("colors") contained in $X^{\circ} P_{\alpha}$.
(This applies to cases such as the Rankin-Selberg variety, where $X^{\circ} P_{\alpha} / \mathcal{R}\left(P_{\alpha}\right) \simeq \mathbb{G}_{m} \backslash \mathrm{PGL}_{2}$; in the Whittaker case, these factors are trivial.)

The half-crystal of a spherical variety

To understand the θ^{\prime} s, we define the "half-crystal of a spherical variety" in terms of (a global model of) $L^{+} X / L^{+} B$.

Definition

The half-crystal of a spherical variety X is a set $\mathfrak{B}_{+}=\bigsqcup_{\theta \in \Lambda} \mathfrak{B}_{\theta}$, where \mathfrak{B}_{θ} denotes the components "of maximal possible dimension" (= those which contribute an irreducible perverse sheaf to $\pi_{!} \overline{\Phi_{0}}$) in the preimage of $\omega^{-\theta} A(\mathfrak{o})$ in $L^{+} X=X(\mathfrak{o})$.

Theorem (S.-Wang)

There is an embedding of $X^{\circ}(F) / B(\mathfrak{o})$ into the affine Grassmannian, with the preimage of $\omega^{-\theta} A(\mathfrak{o})$ belonging the semiinfinite orbit
$N(F) \omega^{\theta} G(\mathfrak{o}) / G(\mathfrak{o})$. For every simple root α, intersection of the closure with $N(F) \omega^{\theta-\alpha} G(\mathfrak{o}) / G(\mathfrak{o})$ gives rise to a weight-lowering operator $f_{\alpha}: \mathfrak{B}_{\theta} \rightarrow \mathfrak{B}_{\theta-\alpha} \sqcup\{0\}$, with $f_{\alpha}(b)=0$ only if $\langle\theta, \alpha\rangle<0$ or α is a color in $X^{\circ} P_{\alpha}$, and for every $b \in \mathfrak{B}^{+}$there is a series of weight-lowering operators lowering it to \mathfrak{B}_{θ}, for θ a color.
The set $\mathfrak{B}_{+} \sqcup \mathfrak{B}_{-}$(where \mathfrak{B}_{-}is a copy of \mathfrak{B}_{-}lying over the opposite weights $-\theta$), has the structure of a seminormal crystal over \mathfrak{g}.

Thus, the weights θ that appear can be read off from the colors of the spherical variety.

In minuscule cases, we can also identify the multiplicities, showing that this is the crystal associated to a \breve{G}-representation. For example,

Theorem (S.-Jonathan Wang)

For

$$
X=\text { the affine closure of } \mathbb{G}_{m}^{\text {diag }} N_{0} \backslash \mathrm{GL}_{2}^{n}
$$

where
$N_{0}=\left\{\left.\left(\begin{array}{cc}1 & x_{1} \\ & 1\end{array}\right) \times\left(\begin{array}{cc}1 & x_{2} \\ & 1\end{array}\right) \times \cdots \times\left(\begin{array}{cc}1 & x_{n} \\ & 1\end{array}\right) \right\rvert\, x_{1}+x_{2}+\cdots+x_{n}=0\right\}$,
with $\Phi_{0}=$ the IC function of $L^{+} X$, we have

$$
\pi_{!} \Phi_{0}=\frac{\prod_{\tilde{\alpha}>0}\left(1-q^{-1} e^{-\alpha}\right)}{\prod_{\theta>0}\left(1-q^{-\frac{1}{2}} e^{-\theta}\right)},
$$

where θ ranges over "half" the weights of the n-fold tensor product representation and its dual, $\otimes \oplus \otimes^{\vee}: \mathrm{GL}_{2}^{n} \xrightarrow{\otimes} \mathrm{GL}_{2^{n+1}}$.

Happy Birthday, Bill! Many happy returns and travels!

