Multipliers and quasicuspidal convolution operators

Raphaël Beuzart-Plessis
joint with Y. Liu, W. Zhang, X. Zhu.
CNRS, Aix-Marseille Université

Basic Functions, Orbital Integrals and Beyond Endoscopy
Banff, November 18th 2021

Lindenstrauss-Venkatesh ('05) : soft proof of the existence of spherical cusp forms e.g. even Maass forms.

- Set $\Gamma=\mathrm{PGL}_{2}(\mathbb{Z}) \curvearrowright \mathbb{H}=\mathrm{G} / \mathrm{K}$: upper half plane with $\mathrm{G}=\mathrm{PGL}_{2}(\mathbb{R})$, $\mathrm{K}=\mathrm{PO}_{2}(\mathbb{R})$.
- Then, $\mathrm{C}_{c}^{\infty}(\mathrm{K} \backslash \mathrm{G} / \mathrm{K})$ acts on $\mathrm{L}^{2}(\Gamma \backslash \mathbb{H})$ (by right convolution) and we have :

$$
\mathrm{L}^{2}(\Gamma \backslash \mathbb{H})=\mathrm{L}_{\text {cusp }}^{2} \oplus \mathbb{C} \mathbf{1} \oplus \int_{\mathbb{R}}^{\oplus} \mathbb{C} \mathrm{E}_{1 / 2+i t} d t
$$

- For $k \in \mathrm{C}_{c}^{\infty}(\mathrm{K} \backslash \mathrm{G} / \mathrm{K}), \mathrm{R}(\mathrm{k}) \mathrm{E}_{1 / 2+\lambda}=\widehat{\mathrm{k}}(\lambda) \mathrm{E}_{1 / 2+\lambda}$ where $\lambda \mapsto \widehat{\mathrm{k}}(\lambda)$ is the spherical transform of k.
- Paley-Wiener thm (Helgason) : $\mathrm{k} \mapsto \widehat{\mathrm{k}}$ induces $\mathrm{C}_{c}^{\infty}(\mathrm{K} \backslash \mathrm{G} / \mathrm{K}) \simeq \mathrm{PW}_{\text {even }}(\mathbb{C})$ (where $\mathrm{PW}_{\text {even }}(\mathbb{C}):=\mathcal{F} \mathrm{C}_{c, \text { even }}^{\infty}(\mathbb{R})$).
- On the other hand, $\mathrm{T}_{p} \mathrm{E}_{1 / 2+\lambda}=\left(p^{\lambda}+p^{-\lambda}\right) \mathrm{E}_{1 / 2+\lambda}$.
- Let $\mathrm{U}_{\log p}: \mathrm{C}_{c}^{\infty}(\mathrm{K} \backslash \mathrm{G} / \mathrm{K}) \rightarrow \mathrm{C}_{c}^{\infty}(\mathrm{K} \backslash \mathrm{G} / \mathrm{K})$ st $\left(\mathrm{U}_{\log p} \mathrm{k}\right)^{\wedge}(\lambda)=\left(p^{\lambda}+p^{-\lambda}\right) \widehat{\mathrm{k}}(\lambda)$.
- Remark that $\mathrm{R}_{p, \mathrm{k}}:=\mathrm{T}_{p} \mathrm{R}(\mathrm{k})-\mathrm{R}\left(\mathrm{U}_{\log p} \mathrm{k}\right)$ kills $\left(\mathrm{L}_{\text {cusp }}^{2}\right)^{\perp}$.
- "High in the cusp" $\mathrm{R}(k) \& \mathrm{R}\left(\mathrm{U}_{\log p} k\right)$ commute with horizontal translations whereas T_{p} doesn't \Rightarrow We can arrange $\mathrm{R}_{p, k} \neq 0 \Rightarrow$ existence of even Maass forms.
- More generally, $\mathrm{L} \& \mathrm{~V}$ construct "many" operators on $\mathrm{L}^{2}\left(\Gamma \backslash \mathrm{G}(\mathbb{R}) / \mathrm{K}_{\infty}\right)$ with cuspidal image (where : G / \mathbb{Q} split adjoint, $\Gamma \subset \mathrm{G}(\mathbb{Q})$ congruence subgroup, $K_{\infty} \subset G(\mathbb{R})$ maxl compact) \rightsquigarrow Weyl's law.

However :

- L \& V operators always kill some interesting automorphic forms like $\operatorname{Sym}^{2} \varphi$ for φ a form on GL_{2};
- It only works for forms that are spherical at the Archimedean place.

Schwartz spaces

- G / \mathbb{Q} conn. reductive, $\mathbb{A}=\mathbb{R} \times \prod_{p}^{\prime} \mathbb{Q}_{p}=\mathbb{R} \times \mathbb{A}_{f}, \mathrm{~K}=\mathrm{K}_{s} \times \prod_{p \notin \mathrm{~S}} \mathrm{~K}_{p} \subset G\left(\mathbb{A}_{f}\right)$ a "level" with K_{p} hyperspecial for $p \notin \mathrm{~S}$.
- Archimedean Schwartz space :

$$
\begin{aligned}
\mathcal{S}(\mathrm{G}(\mathbb{R})) & =\left\{f \in \mathrm{C}^{\infty}(\mathrm{G}(\mathbb{R})) \mid \forall \mathrm{D}: \text { polyn. differential op., }|\mathrm{D} f| \ll 1\right\} \\
& =\left\{f \in \mathrm{C}^{\infty}(\mathrm{G}(\mathbb{R}))\left|\forall X \in \mathcal{U}(\mathfrak{g}(\mathbb{R})), R>0:\left|R_{X} f(g)\right| \ll\|g\|^{-R}\right\} .\right.
\end{aligned}
$$

It is a space of "very rapidly decreasing" functions (together with all their derivatives) analog to

$$
S_{\exp }(\mathbb{R})=\left\{f \in \mathrm{C}^{\infty}(\mathbb{R})\left|\forall n \geqslant 0, \mathrm{R}>0,\left|f^{(n)}(x)\right| \ll e^{-\mathrm{R}|x|}\right\}\right.
$$

The space $\mathcal{S}(\mathrm{G}(\mathbb{R}))$ is an algebra under convolution $*$.

- Global Schwartz space :

$$
\mathcal{S}(\mathrm{G}(\mathbb{A}))_{\mathrm{K}}=\mathcal{S}(\mathrm{G}(\mathbb{R})) \otimes \bigotimes_{p}^{\prime} \mathrm{C}_{c}\left(\mathrm{~K}_{p} \backslash \mathrm{G}\left(\mathbb{Q}_{p}\right) / \mathrm{K}_{p}\right)
$$

that is the space of functions spanned by products $f_{\infty} \times \prod_{p} f_{p}$ where $f_{\infty} \in \mathcal{S}(\mathrm{G}(\mathbb{R})), f_{p} \in \mathrm{C}_{c}\left(\mathrm{~K}_{p} \backslash \mathrm{G}\left(\mathbb{Q}_{p}\right) / \mathrm{K}_{p}\right)$ and $f=\mathbf{1}_{\mathrm{K}_{p}}$ for a.a. p.

Multipliers

- For $p \notin S, \mathcal{H}_{p}=\mathrm{C}_{c}\left(\mathrm{~K}_{p} \backslash \mathrm{G}\left(\mathbb{Q}_{p}\right) / \mathrm{K}_{p}\right)$ (spherical Hecke algebra) acts on itself by convolution.
- Multipliers at ∞ : let

$$
\mathcal{M}_{\infty}(\mathrm{G})=\operatorname{End}_{\text {cont }, \mathcal{S}(\mathrm{G}(\mathbb{R}))-\operatorname{bimod}}(\mathcal{S}(\mathrm{G}(\mathbb{R})))
$$

be the space of continuous bimodule endomorphisms of $\mathcal{S}(\mathrm{G}(\mathbb{R}))$. It can be identified with the space of "rapidly decreasing invariant distributions on $G(\mathbb{R})$ " acting on $\mathcal{S}(\mathrm{G}(\mathbb{R}))$ by $*$.

- S-multipliers : $\mathcal{M}^{\mathrm{S}}(\mathrm{G})=\mathcal{M}_{\infty}(\mathrm{G}) \otimes \bigotimes_{p \notin \mathrm{~S}}^{\prime} \mathcal{H}_{p} \stackrel{*}{\curvearrowright} \mathcal{S}(\mathrm{G}(\mathbb{A}))$.

Quasi-cuspidal convolution operators

- Let $\pi=\pi_{\infty} \otimes \bigotimes_{\rho}^{\prime} \pi_{\rho}$ be an irreducible admissible repn of $\mathrm{G}(\mathbb{A})$ st $\pi^{\mathrm{K}} \neq 0$.
- For every $p \notin \mathrm{~S}, \mathcal{H}_{p}$ acts on $\pi_{p}^{\mathrm{K}_{p}}$ by a character $\lambda_{p}(\pi)$ (Satake parameter).
- We say that π is S-CAP if there exists an Eisenstein series E on $G(\mathbb{Q}) \backslash G(\mathbb{A}) / K$ such that $\lambda_{p}(\pi)=\lambda_{p}(\mathrm{E})$ for all $p \notin \mathrm{~S}$.

Theorem A (R.B.P., Y. Liu, W. Zhang, X. Zhu)

Assume that π is not S-CAP. Then, there exists $\mu_{\pi} \in \mathcal{M}^{\mathrm{S}}(\mathrm{G})$ such that for every $f \in \mathcal{S}(\mathrm{G}(\mathbb{A}))_{K}$ we have :
(0) $\mathrm{R}\left(\mu_{\pi} * f\right)$ acts by zero on $\mathrm{L}_{\text {cusp }}^{2}(\mathrm{G}(\mathbb{Q}) \backslash \mathrm{G}(\mathbb{A}))^{\perp}$;
(2) $\pi\left(\mu_{\pi} * f\right)=\pi(f)$.

Remarks:

- If $\mathrm{G}=\mathrm{GL}_{n}$, every cuspidal representation is not S-CAP (Jacquet-Shalika);
- The proof is robust and allows for many variants (e.g. isolation of a cuspidal datum).
- This theorem has been applied in conjunction with Jacquet-Rallis trace formulas to prove the Gan-Gross-Prasad conjecture for unitary groups (see Pierre-Henri's talk).

Spectral description : Spherical Hecke Algebras

- For simplicity assume G split, fix a Borel $B \subset G$ and let $A \leftarrow B$ be the universal Cartan, $\mathrm{W}=\mathrm{W}(\mathrm{G}, \mathrm{A})$ the Weyl group and $\widehat{\mathrm{A}}=\mathrm{X}^{*}(\mathrm{~A}) \otimes \mathbb{C}^{\times}$the dual torus.
- For every p, we identify $\widehat{\mathrm{A}} \simeq \widehat{\mathrm{A}}_{p}$ with the gp of unramified chars of $\mathrm{A}\left(\mathbb{Q}_{p}\right)$ by $\chi \otimes p^{s} \mapsto|\chi|_{p}^{s}$.
- Every unramified irred repn π_{p} of $\mathrm{G}\left(\mathbb{Q}_{p}\right)$ (i.e. satisfying $\pi_{p}^{\mathrm{G}\left(\mathbb{Z}_{\rho}\right)} \neq 0$) has a Satake parameter $\lambda_{p}\left(\pi_{p}\right) \in \widehat{\mathrm{A}}_{p} / \mathrm{W}$ st π_{p} appears as a subquotient of $\mathrm{I}_{B\left(\mathbb{Q}_{p}\right)}^{G\left(\mathbb{Q}_{p}\right)}\left(\lambda_{p}\left(\pi_{p}\right)\right)$ (normalized induction).
- Satake isomorphism :

$$
\mathcal{H}_{p} \simeq \mathbb{C}\left[\widehat{A}_{p}\right]^{W}, \mu \mapsto \widehat{\mu}
$$

such that for every unramified irred repn π_{p} and $v \in \pi_{\rho}^{G\left(\mathbb{Z}_{p}\right)}, \pi_{p}(\mu) v=\widehat{\mu}\left(\lambda_{p}\left(\pi_{p}\right)\right) v$.

Infinitesimal multipliers

- Similarly, for $\mu \in \mathcal{M}_{\infty}(\mathrm{G})$ and π_{∞} : irred admissible repn of $\mathrm{G}(\mathbb{R})$ we have

$$
\pi_{\infty}(\mu)=\widehat{\mu}\left(\pi_{\infty}\right) \text { Id } \text { (Schur) }
$$

and μ is characterized by $\pi_{\infty} \mapsto \widehat{\mu}\left(\pi_{\infty}\right)$.

- Harish-Chandra isomorphism :

$$
Z(\mathfrak{g}) \simeq \mathbb{C}\left[\operatorname{Lie}(\mathrm{A})_{\mathbb{C}}^{*}\right]^{w} \simeq \mathbb{C}[\operatorname{Lie}(\widehat{\mathrm{~A}})]^{w}
$$

where $Z(\mathfrak{g})$ denotes the center of the enveloping algebra of $\mathfrak{g}(\mathbb{C})$.

- Every π_{∞} has an infinitesimal character $\lambda_{\infty}\left(\pi_{\infty}\right) \in Z(\mathfrak{g})^{\wedge} \simeq \operatorname{Lie}(\widehat{\mathrm{A}}) / \mathrm{W}$.
- We only look for multipliers $\mu \in \mathcal{M}_{\infty}(\mathrm{G})$ such that $\widehat{\mu}$ factorizes through $\pi_{\infty} \mapsto \lambda_{\infty}\left(\pi_{\infty}\right)$ (infinitesimal multipliers).

Tubular neighborhoods of the tempered spectrum

- $\widehat{\mathrm{G}(\mathbb{R})}^{\text {temp }}$: set of all tempered irred. repns of $\mathrm{G}(\mathbb{R})$. Put

$$
\operatorname{lnf} f^{\text {temp }}=\lambda_{\infty}\left(\widehat{\mathrm{G}(\mathbb{R})}^{\text {temp }}\right) \subset \operatorname{Lie}(\widehat{\mathrm{A}}) / \mathrm{W}
$$

- Harish-Chandra : π_{∞} tempered iff $\exists \mathrm{B} \subset \mathrm{P} \subset \mathrm{G}$ with $\mathrm{P} \rightarrow \mathrm{M} \rightarrow \mathrm{A}_{\mathrm{M}}$, σ discrete series of $M(\mathbb{R})$ and $\lambda \in \sqrt{-1} \operatorname{Lie}\left(A_{M}\right)_{\mathbb{R}}^{*} \subset \operatorname{Lie}(A)_{\mathbb{C}}^{*}=\operatorname{Lie}(\widehat{A})$ st

$$
\pi_{\infty} \hookrightarrow \mathrm{I}_{\mathrm{P}(\mathbb{R})}^{\mathrm{G}(\mathbb{R})}(\sigma \otimes \lambda)
$$

- "Tubular neighborhood" $(C>0): \pi_{\infty} \in{\widehat{\mathrm{G}(\mathbb{R})^{\text {emp }}}}_{<c}^{\text {temp }}$ iff $\exists \mathrm{B} \subset \mathrm{P} \subset \mathrm{G}, \sigma$ d.s. of $\mathrm{M}(\mathbb{R})$ and $\lambda \in \operatorname{Lie}\left(\mathrm{A}_{\mathrm{M}}\right)_{\mathbb{C}}^{*}$ st $\|\Re(\lambda)\|<C$ and

$$
\pi_{\infty} \hookrightarrow \mathrm{I}_{\mathrm{P}(\mathbb{R})}^{\mathrm{G}(\mathbb{R})}(\sigma \otimes \lambda)
$$

- We set

$$
\operatorname{lnf}_{<c}^{\text {temp }}=\lambda_{\infty}\left(\widehat{\mathrm{G}(\mathbb{R})}_{<c}^{\text {temp }}\right) \subset \operatorname{Lie}(\widehat{\mathrm{A}}) / \mathrm{W}
$$

- Example : if $\mathrm{G}=\mathrm{SL}_{2}, \operatorname{Lie}(\widehat{\mathrm{~A}}) / \mathrm{W}=\mathbb{C} /\{ \pm 1\}$ and we have

$$
\operatorname{Inf}^{\text {temp }}=i \mathbb{R} /\{ \pm 1\} \cup \mathbb{Z} /\{ \pm 1\}, \quad \operatorname{lnf}_{<C}^{\text {temp }}=V_{C} /\{ \pm 1\} \cup \mathbb{Z} /\{ \pm 1\}
$$

where V_{C} is the vertical band $|\Re(z)|<C$.

Construction of Archimedean multipliers

Theorem B (R.B.P., Y. Liu, W. Zhang, X. Zhu)

Let $\widehat{\mathrm{v}}: \operatorname{Lie}(\widehat{\mathrm{A}}) \rightarrow \mathbb{C}$ be holomorphic and such that

- \widehat{v} is W-invariant;
- For every $C>0, \widehat{v}$ is bounded by a polynomial on $\operatorname{lnf}_{<C}^{\text {temp }}$.

Then, there exists $\mu \in \mathcal{M}_{\infty}(\mathrm{G})$ such that $\widehat{\mu}\left(\pi_{\infty}\right)=\widehat{\mathrm{v}}\left(\lambda_{\infty}\left(\pi_{\infty}\right)\right)$ for every irred adm repn π_{∞} of $\mathrm{G}(\mathbb{R})$. We denote the space of such multipliers by $\mathcal{M}_{\infty}^{\text {inf }}(\mathrm{G})$

- Arthur's multipliers : let $\mathrm{K}_{\infty} \subset \mathrm{G}(\mathbb{R})$ maxl compact subgroup then

$$
C_{c}^{\infty}(\mathrm{G}(\mathbb{R}))_{\left(\mathrm{K}_{\infty}\right)} \curvearrowleft \mathcal{M}_{\infty}^{A}=\operatorname{PW}(\operatorname{Lie}(\widehat{\mathrm{A}}))^{W}:=\mathcal{F} \mathscr{E}^{\prime}\left(\operatorname{Lie}(\mathrm{A})_{\mathbb{R}}\right)^{W}
$$

where (K_{∞}) means K_{∞}-finite (on both sides) and \mathcal{F} is the Fourier transform. Not sufficient for our purpose (ess. b/c PW functions are bounded by an exponential).

- Delorme's multipliers :

$$
\mathcal{S}(\mathrm{G}(\mathbb{R}))_{\left(\mathrm{K}_{\infty}\right)} \curvearrowleft \mathcal{M}_{\infty}^{D}=\mathcal{F} S_{\text {exp }}^{\prime}\left(\operatorname{Lie}(\mathrm{A})_{\mathbb{R}}\right)^{W}
$$

is \pm what we want (fns of poly growth vertical strips but no growth condition in the real direction). However, need to show that the action of $\mathcal{M}_{\infty}^{\text {inf }}$ extends by continuity to $\mathcal{S}(\mathrm{G}(\mathbb{R})) \rightsquigarrow \mathrm{L}^{2}$-argument (Plancherel formula)+translation by fin. diml repns.

On the proof of Theorem A

First recall the statement :

Theorem A

Let π be a cuspidal repn of $\mathrm{G}(\mathbb{A})$ that is not S -CAP. Then, there exists $\mu_{\pi} \in \mathcal{M}^{\mathrm{S}}(\mathrm{G})$ such that for every $f \in \mathcal{S}(\mathrm{G}(\mathbb{A}))_{K}$ we have :
(1) $\mathrm{R}\left(\mu_{\pi} * f\right)$ acts by zero on $\mathrm{L}_{\text {cusp }}^{2}(\mathrm{G}(\mathbb{Q}) \backslash \mathrm{G}(\mathbb{A}))^{\perp}$;
(2) $\pi\left(\mu_{\pi} * f\right)=\pi(f)$.

Set $\mathfrak{X}^{S}=\underbrace{\operatorname{Lie}(\widehat{\mathrm{A}}) / \mathrm{W}}_{\text {inf. chars. }} \times \prod_{p \notin S} \underbrace{\widehat{\mathrm{~A}}_{p} / \mathrm{W}}_{\text {Sat. param. at } p}$ and $\lambda^{S}(\pi)=\left(\lambda_{\infty}(\pi),\left(\lambda_{p}(\pi)\right)_{p \notin S}\right) \in \mathfrak{X}^{S}$.

- We define similarly $\lambda^{S}(\mathrm{E})$ for an Eisenstein series E on $\mathrm{G}(\mathbb{Q}) \backslash \mathrm{G}(\mathbb{A}) / K$ and we set

$$
\mathfrak{X}_{\text {Eis }}^{S}=\left\{\lambda^{S}(\mathrm{E}) \mid \mathrm{E} \text { Eis. series }\right\} \subset \mathfrak{X}^{S} .
$$

- Note that $\mathcal{M}^{\mathrm{S} \text { inf }}(\mathrm{G})=\mathcal{M}_{\infty}^{\text {inf }}(\mathrm{G}) \bigotimes_{p \notin \mathrm{~S}}^{\prime} \mathcal{H}_{p}$ can be seen as a space of functions on $\mathfrak{X}^{\mathrm{S}}$ by $\mu \mapsto \widehat{\mu}$.
- We are looking for $\mu_{\pi} \in \mathcal{M}^{\mathrm{S}, \text { inf }}(\mathrm{G})$ such that $\widehat{\mu}_{\pi}$ vanishes on $\mathfrak{X}_{\text {Eis }}^{S}$ but not on $\lambda^{S}(\pi)$.
- Eisenstein series come in a countable number of families $\mathcal{F}=\left\{\mathrm{E}\left(\varphi_{\lambda}\right)\right\}_{\varphi, \lambda}$ where $\mathrm{B} \subset \mathrm{P} \subsetneq \mathrm{G}, \mathrm{P} \rightarrow \mathrm{M} \rightarrow \mathrm{A}_{M}, \varphi \in \sigma \subset \mathcal{A}_{\text {cusp }}\left(\mathrm{M}(\mathbb{Q}) \mathrm{N}_{\mathrm{P}}(\mathbb{A}) \backslash \mathrm{G}(\mathbb{A})\right)$ and $\lambda \in \operatorname{Lie}\left(\mathrm{A}_{\mathrm{M}}\right)_{\mathbb{C}}^{*} \subset \operatorname{Lie}(\widehat{\mathrm{~A}})$.
- $\lambda^{S}(\mathcal{F})$ is then the image in $\mathfrak{X}^{\mathrm{S}}$ of a coset for

$$
\left\{\left(\lambda,\left(p^{\lambda}\right)_{p \notin \mathrm{~S}}\right) \mid \lambda \in \operatorname{Lie}\left(\mathrm{A}_{\mathrm{M}}\right)_{\mathbb{C}}^{*}\right\} \subset \operatorname{Lie}(\widehat{\mathrm{A}}) \times \prod_{p \notin \mathrm{~S}} \widehat{\mathrm{~A}}_{p} .
$$

- Harish-Chandra finiteness : $\lambda_{\infty}(\pi) \notin \lambda_{\infty}(\mathcal{F})$ for all except a finite number of \mathcal{F} 's. Moreover, the $\lambda_{\infty}(\mathcal{F})$ are images of affine subspaces of $\operatorname{Lie}(\widehat{\mathrm{A}})$ that are quite "sparse" \Rightarrow we can find $\mu_{\infty} \in \mathcal{M}_{\infty}^{\text {inf }}(\mathrm{G})$ st $\widehat{\mu}_{\infty}$ vanishes on all of them except finitely many and $\widehat{\mu}_{\infty}\left(\lambda_{\infty}(\pi)\right) \neq 0$. (Here it is crucial to be able to choose $\widehat{\mu}_{\infty}$ of arbitrary growth in the real direction).
- For the remaining \mathcal{F} 's, we can separate $\lambda^{\mathrm{S}}(\pi)$ from $\lambda^{\mathrm{S}}(\mathcal{F})$ by using product of W-translates of functions of the form

$$
\left(\lambda_{\infty},\left(\lambda_{p}\right)_{p \notin \mathrm{~S}}\right) \mapsto \chi\left(\frac{p^{\lambda_{\infty}}}{\lambda_{p}}\right)-c_{\chi, p}
$$

where $\chi: \widehat{\mathrm{A}} \rightarrow \mathbb{C}^{\times}$is a character and $c_{\chi, p} \in \mathbb{C}$.

Some open questions

Let G / \mathbb{R} be a connected reductive group.

- Is $\mathcal{M}_{\infty}^{\mathrm{inf}}(\mathrm{G})$ the space of all infinitesimal multipliers?
- Are there other elements in $\mathcal{M}_{\infty}(\mathrm{G})$? Besides infinitesimal multipliers we can also act by the center of $\mathrm{G}(\mathbb{R})$ but e.g. when $\mathrm{G}=\mathrm{PGL}_{2}$ we don't have any multiplier separating the principal series

$$
\mathrm{I}_{\mathrm{B}(\mathbb{R})}^{\mathrm{G}(\mathbb{R})}(\lambda) \text { and } \mathrm{I}_{\mathrm{B}(\mathbb{R})}^{\mathrm{G}(\mathbb{R})}(\operatorname{sgn} \otimes \lambda)
$$

when $\lambda: \mathbb{R}_{+}^{\times} \rightarrow \mathbb{C}^{\times}$is in generic position.

- What about a Paley-Wiener theorem for $\mathcal{S}(\mathrm{G}(\mathbb{R}))$?

Thank you!

