Multipliers and quasicuspidal convolution operators

Raphaël Beuzart-Plessis joint with Y. Liu, W. Zhang, X. Zhu.

CNRS, Aix-Marseille Université

Basic Functions, Orbital Integrals and Beyond Endoscopy Banff, November 18th 2021 Lindenstrauss-Venkatesh ('05) : soft proof of the existence of spherical cusp forms e.g. even Maass forms.

- Set $\Gamma = PGL_2(\mathbb{Z}) \curvearrowright \mathbb{H} = G/K$: upper half plane with $G = PGL_2(\mathbb{R})$, $K = PO_2(\mathbb{R})$.
- Then, $C^\infty_c(K\setminus G/K)$ acts on $L^2(\Gamma\setminus\mathbb{H})$ (by right convolution) and we have :

$$L^{2}(\Gamma \backslash \mathbb{H}) = L^{2}_{cusp} \oplus \mathbb{C} \mathbf{1} \oplus \int_{\mathbb{R}}^{\oplus} \mathbb{C} \operatorname{E}_{1/2+it} dt.$$

- For $k \in C_c^{\infty}(K \setminus G / K)$, $R(k)E_{1/2+\lambda} = \widehat{k}(\lambda)E_{1/2+\lambda}$ where $\lambda \mapsto \widehat{k}(\lambda)$ is the spherical transform of k.
- Paley-Wiener thm (Helgason) : $k \mapsto \widehat{k}$ induces $C^{\infty}_{c}(K \setminus G / K) \simeq PW_{even}(\mathbb{C})$ (where $PW_{even}(\mathbb{C}) := \mathcal{F} C^{\infty}_{c,even}(\mathbb{R})$).
- On the other hand, $T_{\rho}E_{1/2+\lambda}=(\rho^{\lambda}+\rho^{-\lambda})E_{1/2+\lambda}.$
- Let $U_{\log \rho} : C^{\infty}_{c}(K \setminus G / K) \to C^{\infty}_{c}(K \setminus G / K)$ st $(U_{\log \rho}k)^{\wedge}(\lambda) = (\rho^{\lambda} + \rho^{-\lambda})\widehat{k}(\lambda)$.
- Remark that $R_{\rho,k} := T_{\rho} R(k) R(U_{\log \rho} k)$ kills $(L^2_{cusp})^{\perp}$.
- "High in the cusp" $R(k) \& R(U_{\log p}k)$ commute with horizontal translations whereas T_p doesn't \Rightarrow We can arrange $R_{p,k} \neq 0 \Rightarrow$ existence of even Maass forms.

• More generally, L & V construct "many" operators on $L^2(\Gamma \setminus G(\mathbb{R})/K_{\infty})$ with cuspidal image (where : G/\mathbb{Q} split adjoint, $\Gamma \subset G(\mathbb{Q})$ congruence subgroup, $K_{\infty} \subset G(\mathbb{R})$ maxl compact) \rightsquigarrow Weyl's law.

However :

- L & V operators always kill some interesting automorphic forms like $\text{Sym}^2 \phi$ for ϕ a form on GL_2 ;
- It only works for forms that are spherical at the Archimedean place.

Schwartz spaces

- G / \mathbb{Q} conn. reductive, $\mathbb{A} = \mathbb{R} \times \prod_{\rho}' \mathbb{Q}_{\rho} = \mathbb{R} \times \mathbb{A}_{f}$, $K = K_{S} \times \prod_{p \notin S} K_{\rho} \subset G(\mathbb{A}_{f})$ a "level" with K_{ρ} hyperspecial for $p \notin S$.
- Archimedean Schwartz space :

$$\begin{split} \mathcal{S}(\mathrm{G}(\mathbb{R})) &= \{ f \in \mathrm{C}^{\infty}(\mathrm{G}(\mathbb{R})) \mid \forall \mathrm{D} : \text{ polyn. differential op., } |\mathrm{D} f| \ll \mathsf{1} \} \\ &= \{ f \in \mathrm{C}^{\infty}(\mathrm{G}(\mathbb{R})) \mid \forall X \in \mathcal{U}(\mathfrak{g}(\mathbb{R})), R > \mathsf{0} : |R_X f(g)| \ll \|g\|^{-R} \}. \end{split}$$

It is a space of "very rapidly decreasing" functions (together with all their derivatives) analog to

$$\mathcal{S}_{\exp}(\mathbb{R}) = \{ f \in \mathrm{C}^{\infty}(\mathbb{R}) \mid \forall n \geq 0, \mathrm{R} > 0, |f^{(n)}(x)| \ll e^{-\mathrm{R}|x|} \}.$$

The space $\mathcal{S}(G(\mathbb{R}))$ is an algebra under convolution *.

• Global Schwartz space :

$$\mathcal{S}(G(\mathbb{A}))_{\mathrm{K}} = \mathcal{S}(G(\mathbb{R})) \otimes \bigotimes_{\rho}^{\prime} C_{c}(\mathrm{K}_{\rho} \setminus G(\mathbb{Q}_{\rho}) / \mathrm{K}_{\rho})$$

that is the space of functions spanned by products $f_{\infty} \times \prod_{\rho} f_{\rho}$ where $f_{\infty} \in S(G(\mathbb{R})), f_{\rho} \in C_{c}(K_{\rho} \setminus G(\mathbb{Q}_{\rho})/K_{\rho})$ and $f = \mathbf{1}_{K_{\rho}}$ for a.a. p.

Multipliers

- For p ∉ S, H_p = C_c(K_p \G(Q_p)/K_p) (spherical Hecke algebra) acts on itself by convolution.
- Multipliers at ∞ : let

$$\mathcal{M}_{\infty}(\mathrm{G}) = \mathsf{End}_{\mathit{cont},\mathcal{S}(\mathrm{G}(\mathbb{R}))-\mathit{bimod}}(\mathcal{S}(\mathrm{G}(\mathbb{R})))$$

be the space of continuous bimodule endomorphisms of $\mathcal{S}(G(\mathbb{R}))$. It can be identified with the space of "rapidly decreasing invariant distributions on $G(\mathbb{R})$ " acting on $\mathcal{S}(G(\mathbb{R}))$ by *.

• S-multipliers : $\mathcal{M}^{S}(G) = \mathcal{M}_{\infty}(G) \otimes \bigotimes_{p \notin S}^{\prime} \mathcal{H}_{p} \stackrel{*}{\sim} \mathcal{S}(G(\mathbb{A})).$

Quasi-cuspidal convolution operators

- Let $\pi = \pi_{\infty} \otimes \bigotimes'_{\rho} \pi_{\rho}$ be an irreducible admissible repn of $G(\mathbb{A})$ st $\pi^{K} \neq 0$.
- For every $p \notin S$, \mathcal{H}_p acts on $\pi_p^{K_p}$ by a character $\lambda_p(\pi)$ (Satake parameter).
- We say that π is S-CAP if there exists an Eisenstein series E on $G(\mathbb{Q})\setminus G(\mathbb{A})/K$ such that $\lambda_{\rho}(\pi) = \lambda_{\rho}(E)$ for all $\rho \notin S$.

Theorem A (R.B.P., Y. Liu, W. Zhang, X. Zhu)

Assume that π is not S-CAP. Then, there exists $\mu_{\pi} \in \mathcal{M}^{S}(G)$ such that for every $f \in \mathcal{S}(G(\mathbb{A}))_{\mathcal{K}}$ we have :

- $R(\mu_{\pi} * f)$ acts by zero on $L^2_{cusp}(G(\mathbb{Q}) \setminus G(\mathbb{A}))^{\perp}$;
- $(\mu_{\pi} * f) = \pi(f).$

Remarks :

- If G = GL_n, every cuspidal representation is not S-CAP (Jacquet-Shalika);
- The proof is robust and allows for many variants (e.g. isolation of a cuspidal datum).
- This theorem has been applied in conjunction with Jacquet-Rallis trace formulas to prove the Gan-Gross-Prasad conjecture for unitary groups (see Pierre-Henri's talk).

Spectral description : Spherical Hecke Algebras

- For simplicity assume G split, fix a Borel $B \subset G$ and let $A \leftarrow B$ be the universal Cartan, W = W(G, A) the Weyl group and $\widehat{A} = X^*(A) \otimes \mathbb{C}^{\times}$ the dual torus.
- For every p, we identify $\widehat{A} \simeq \widehat{A}_p$ with the gp of unramified chars of $A(\mathbb{Q}_p)$ by $\chi \otimes p^s \mapsto |\chi|_p^s$.
- Every unramified irred repn π_p of $G(\mathbb{Q}_p)$ (i.e. satisfying $\pi_p^{G(\mathbb{Z}_p)} \neq 0$) has a **Satake parameter** $\lambda_p(\pi_p) \in \widehat{A}_p/W$ st π_p appears as a subquotient of $I_{B(\mathbb{Q}_p)}^{G(\mathbb{Q}_p)}(\lambda_p(\pi_p))$ (normalized induction).
- Satake isomorphism :

$$\mathcal{H}_{p} \simeq \mathbb{C}[\widehat{A}_{p}]^{W}, \mu \mapsto \widehat{\mu}$$

such that for every unramified irred repn π_p and $v \in \pi_p^{G(\mathbb{Z}_p)}$, $\pi_p(\mu)v = \widehat{\mu}(\lambda_p(\pi_p))v$.

Infinitesimal multipliers

• Similarly, for $\mu\in \mathcal{M}_\infty(G)$ and π_∞ : irred admissible repn of $G(\mathbb{R})$ we have

 $\pi_{\infty}(\mu) = \widehat{\mu}(\pi_{\infty}) \, \mathsf{Id}$ (Schur)

and μ is characterized by $\pi_{\infty} \mapsto \widehat{\mu}(\pi_{\infty})$.

• Harish-Chandra isomorphism :

$$\mathcal{Z}(\mathfrak{g})\simeq\mathbb{C}[\mathsf{Lie}(\mathrm{A})^*_{\mathbb{C}}]^{W}\simeq\mathbb{C}[\mathsf{Lie}(\widehat{\mathrm{A}})]^{W}$$

where $\mathcal{Z}(\mathfrak{g})$ denotes the center of the enveloping algebra of $\mathfrak{g}(\mathbb{C})$.

- Every π_{∞} has an infinitesimal character $\lambda_{\infty}(\pi_{\infty}) \in \mathcal{Z}(\mathfrak{g})^{\wedge} \simeq \text{Lie}(\widehat{A})/W.$
- We only look for multipliers $\mu \in \mathcal{M}_{\infty}(G)$ such that $\widehat{\mu}$ factorizes through $\pi_{\infty} \mapsto \lambda_{\infty}(\pi_{\infty})$ (infinitesimal multipliers).

Tubular neighborhoods of the tempered spectrum

• $\widehat{G(\mathbb{R})}^{\text{temp}}$: set of all tempered irred. repns of $G(\mathbb{R})$. Put

$$\mathsf{Inf}^{\mathsf{temp}} = \lambda_{\infty}\left(\widehat{G(\mathbb{R})}^{\mathsf{temp}}\right) \subset \mathsf{Lie}(\widehat{A})/\,W\,.$$

• Harish-Chandra : π_{∞} tempered iff $\exists B \subset P \subset G$ with $P \twoheadrightarrow M \twoheadrightarrow A_M$, σ discrete series of $M(\mathbb{R})$ and $\lambda \in \sqrt{-1} \operatorname{Lie}(A_M)^*_{\mathbb{R}} \subset \operatorname{Lie}(A)^*_{\mathbb{C}} = \operatorname{Lie}(\widehat{A})$ st

$$\pi_{\infty} \hookrightarrow I^{G(\mathbb{R})}_{P(\mathbb{R})}(\sigma \otimes \lambda).$$

• "Tubular neighborhood" ($\mathcal{C} > 0$) : $\pi_{\infty} \in \widehat{G(\mathbb{R})}_{<\mathcal{C}}^{\mathsf{temp}}$ iff $\exists \ B \subset P \subset G$, σ d.s. of $M(\mathbb{R})$ and $\lambda \in \mathsf{Lie}(A_M)^*_{\mathbb{C}}$ st $\|\Re(\lambda)\| < \mathcal{C}$ and

$$\pi_{\infty} \hookrightarrow \mathrm{I}^{\mathrm{G}(\mathbb{R})}_{\mathrm{P}(\mathbb{R})}(\sigma \otimes \lambda).$$

We set

$$\mathsf{Inf}_{<\mathcal{C}}^{\mathsf{temp}} = \lambda_{\!\!\infty}\left(\widehat{G(\mathbb{R})}_{<\mathcal{C}}^{\mathsf{temp}}\right) \subset \mathsf{Lie}(\widehat{A})/\,W\,.$$

• Example : if $G=\mathsf{SL}_2,$ $\mathsf{Lie}(\widehat{A})/W=\mathbb{C}/\{\pm 1\}$ and we have

 $\mathsf{Inf}^{\mathsf{temp}} = i\mathbb{R}/\{\pm 1\} \cup \mathbb{Z}/\{\pm 1\}, \ \mathsf{Inf}_{<\mathcal{C}}^{\mathsf{temp}} = V_{\mathcal{C}}/\{\pm 1\} \cup \mathbb{Z}/\{\pm 1\}$

where V_C is the vertical band $|\Re(z)| < C$.

Construction of Archimedean multipliers

Theorem B (R.B.P., Y. Liu, W. Zhang, X. Zhu)

Let $\widehat{\nu}: \text{Lie}(\widehat{A}) \to \mathbb{C}$ be holomorphic and such that

• \hat{v} is W-invariant;

• For every C > 0, \hat{v} is bounded by a polynomial on $\inf_{< C}^{\text{temp}}$.

Then, there exists $\mu \in \mathcal{M}_{\infty}(G)$ such that $\widehat{\mu}(\pi_{\infty}) = \widehat{\nu}(\lambda_{\infty}(\pi_{\infty}))$ for every irred adm repn π_{∞} of $G(\mathbb{R})$. We denote the space of such multipliers by $\mathcal{M}^{inf}_{\infty}(G)$

 $\bullet\,$ Arthur's multipliers : let $K_\infty \subset G(\mathbb{R})$ maxl compact subgroup then

$$\mathcal{C}^{\infty}_{c}(\mathrm{G}(\mathbb{R}))_{(\mathrm{K}_{\infty})}\curvearrowleft \mathcal{M}^{\mathcal{A}}_{\infty} = \mathrm{PW}(\mathsf{Lie}(\widehat{\mathrm{A}}))^{\mathcal{W}} := \mathcal{F}\mathscr{E}'(\mathsf{Lie}(\mathrm{A})_{\mathbb{R}})^{\mathcal{W}}$$

where (K_∞) means K_∞-finite (on both sides) and *F* is the Fourier transform. Not sufficient for our purpose (ess. b/c PW functions are bounded by an exponential).
Delorme's multipliers :

$$\mathcal{S}(G(\mathbb{R}))_{(K_{\infty})} \curvearrowleft \mathcal{M}^{\mathcal{D}}_{\infty} = \mathcal{F} \mathcal{S}'_{exp}(\mathsf{Lie}(A)_{\mathbb{R}})^{\mathcal{W}}$$

is \pm what we want (fns of poly growth vertical strips but no growth condition in the real direction). However, need to show that the action of $\mathcal{M}^{\mathsf{inf}}_{\infty}$ extends by continuity to $\mathcal{S}(G(\mathbb{R})) \rightsquigarrow L^2$ -argument (Plancherel formula)+translation by fin. diml repns.

On the proof of Theorem A

First recall the statement :

Theorem A

Let π be a cuspidal repn of $G(\mathbb{A})$ that is not S-CAP. Then, there exists $\mu_{\pi} \in \mathcal{M}^{S}(G)$ such that for every $f \in S(G(\mathbb{A}))_{K}$ we have :

• $R(\mu_{\pi} * f)$ acts by zero on $L^{2}_{cusp}(G(\mathbb{Q}) \setminus G(\mathbb{A}))^{\perp}$;

 $\ \, \mathbf{\mathfrak{a}}(\mu_{\pi}*f)=\pi(f).$

$$\mathsf{Set}\ \mathfrak{X}^{\mathcal{S}} = \underbrace{\mathsf{Lie}(\widehat{A})/\mathsf{W}}_{\mathsf{inf.\ chars.}} \times \prod_{\substack{\rho \notin \mathcal{S}}} \underbrace{\widehat{A}_{\rho}/\mathsf{W}}_{\mathsf{Sat.\ param.\ at\ \rho}} \text{ and } \lambda^{\mathcal{S}}(\pi) = (\lambda_{\infty}(\pi), (\lambda_{\rho}(\pi))_{\rho \notin \mathsf{S}}) \in \mathfrak{X}^{\mathcal{S}}.$$

• We define similarly $\lambda^S(E)$ for an Eisenstein series E on $G(\mathbb{Q})\backslash G(\mathbb{A})/{\cal K}$ and we set

$$\mathfrak{X}^{\mathcal{S}}_{\mathsf{Eis}} = \big\{ \lambda^{S}(E) \, | \, E \, \, \mathsf{Eis. \, series} \big\} \subset \mathfrak{X}^{\mathcal{S}}.$$

- Note that $\mathcal{M}^{S,\inf}(G) = \mathcal{M}^{\inf}_{\infty}(G) \bigotimes_{\rho \notin S}' \mathcal{H}_{\rho}$ can be seen as a space of functions on \mathfrak{X}^{S} by $\mu \mapsto \widehat{\mu}$.
- We are looking for $\mu_{\pi} \in \mathcal{M}^{S, inf}(G)$ such that $\widehat{\mu}_{\pi}$ vanishes on $\mathfrak{X}^{S}_{\mathsf{Eis}}$ but not on $\lambda^{S}(\pi)$.

- Eisenstein series come in a countable number of families $\mathcal{F} = \{E(\phi_{\lambda})\}_{\phi,\lambda}$ where $B \subset P \subsetneq G, P \twoheadrightarrow M \twoheadrightarrow A_{M}, \phi \in \sigma \subset \mathcal{A}_{\mathsf{cusp}}(M(\mathbb{Q})N_{P}(\mathbb{A})\backslash G(\mathbb{A}))$ and $\lambda \in \mathsf{Lie}(A_{M})^{*}_{\mathbb{C}} \subset \mathsf{Lie}(\widehat{A}).$
- $\lambda^{S}(\mathcal{F})$ is then the image in \mathfrak{X}^{S} of a coset for

$$\left\{(\lambda,(\rho^{\lambda})_{\rho\notin S})\,|\,\lambda\in\mathsf{Lie}(A_M)^*_{\mathbb{C}}\right\}\subset\mathsf{Lie}(\widehat{A})\times\prod_{\rho\notin S}\widehat{A}_{\rho}.$$

- Harish-Chandra finiteness : $\lambda_{\infty}(\pi) \notin \lambda_{\infty}(\mathcal{F})$ for all except a finite number of \mathcal{F} 's. Moreover, the $\lambda_{\infty}(\mathcal{F})$ are images of affine subspaces of $\text{Lie}(\widehat{A})$ that are quite "sparse" \Rightarrow we can find $\mu_{\infty} \in \mathcal{M}^{\text{inf}}_{\infty}(G)$ st $\widehat{\mu}_{\infty}$ vanishes on all of them except finitely many and $\widehat{\mu}_{\infty}(\lambda_{\infty}(\pi)) \neq 0$. (Here it is crucial to be able to choose $\widehat{\mu}_{\infty}$ of arbitrary growth in the real direction).
- For the remaining \mathcal{F} 's, we can separate $\lambda^{S}(\pi)$ from $\lambda^{S}(\mathcal{F})$ by using product of W-translates of functions of the form

$$(\lambda_{\infty},(\lambda_{
ho})_{
ho
otin S})\mapsto \chi(rac{
ho^{\lambda_{\infty}}}{\lambda_{
ho}})-c_{\chi,
ho}$$

where $\chi : \widehat{A} \to \mathbb{C}^{\times}$ is a character and $c_{\chi,\rho} \in \mathbb{C}$.

Some open questions

Let G/\mathbb{R} be a connected reductive group.

- Is $\mathcal{M}^{inf}_{\infty}(G)$ the space of all infinitesimal multipliers?
- Are there other elements in $\mathcal{M}_{\infty}(G)$? Besides infinitesimal multipliers we can also act by the center of $G(\mathbb{R})$ but e.g. when $G = PGL_2$ we don't have any multiplier separating the principal series

$$I^{G(\mathbb{R})}_{B(\mathbb{R})}(\lambda)$$
 and $I^{G(\mathbb{R})}_{B(\mathbb{R})}(\operatorname{sgn}\otimes\lambda)$

when $\lambda:\mathbb{R}_+^\times\to\mathbb{C}^\times$ is in generic position.

• What about a Paley-Wiener theorem for $\mathcal{S}(G(\mathbb{R}))$?

Thank you!