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Lindenstrauss-Venkatesh (’05) : soft proof of the existence of spherical cusp forms e.g.
even Maass forms.

Set Γ = PGL2(Z) yH = G/K : upper half plane with G = PGL2(R),
K = PO2(R).

Then, C∞
c (K\G/K) acts on L2(Γ\H) (by right convolution) and we have :

L2(Γ\H) = L2
cusp⊕C1⊕

∫ ⊕
R

CE1/2+it dt.

For k ∈ C∞
c (K\G/K), R(k)E1/2+λ = k̂(λ)E1/2+λ where λ 7→ k̂(λ) is the

spherical transform of k.

Paley-Wiener thm (Helgason) : k 7→ k̂ induces C∞
c (K\G/K)' PWeven(C)

(where PWeven(C) := F C∞
c,even(R)).

On the other hand, Tp E1/2+λ = (pλ + p−λ)E1/2+λ.

Let Ulogp : C∞
c (K\G/K)→ C∞

c (K\G/K) st (Ulogp k)∧(λ) = (pλ + p−λ)k̂(λ).

Remark that Rp,k := Tp R(k)−R(Ulogp k) kills (L2
cusp)⊥.

“High in the cusp” R(k) & R(Ulogp k) commute with horizontal translations
whereas Tp doesn’t⇒We can arrange Rp,k 6= 0⇒ existence of even Maass
forms.



More generally, L & V construct “many” operators on L2(Γ\G(R)/K∞) with
cuspidal image (where : G/Q split adjoint, Γ⊂ G(Q) congruence subgroup,
K∞ ⊂ G(R) maxl compact) Weyl’s law.

However :

L & V operators always kill some interesting automorphic forms like Sym2
ϕ for ϕ a

form on GL2 ;

It only works for forms that are spherical at the Archimedean place.



Schwartz spaces
G/Q conn. reductive, A = R×∏

′
p Qp = R×Af , K = KS×∏p/∈S Kp ⊂ G(Af ) a

“level” with Kp hyperspecial for p /∈ S.

Archimedean Schwartz space :

S(G(R)) = {f ∈ C∞(G(R)) | ∀D : polyn. differential op., |D f | � 1}
= {f ∈ C∞(G(R)) | ∀X ∈U(g(R)), R > 0 : |RX f (g)| � ‖g‖−R}.

It is a space of “very rapidly decreasing” functions (together with all their
derivatives) analog to

S exp(R) = {f ∈ C∞(R) | ∀n > 0,R > 0, |f (n)(x)| � e−R|x |}.

The space S(G(R)) is an algebra under convolution ∗.
Global Schwartz space :

S(G(A))K = S(G(R))⊗
′⊗
p

Cc(Kp \G(Qp)/Kp)

that is the space of functions spanned by products f∞×∏p fp where
f∞ ∈ S(G(R)), fp ∈ Cc(Kp \G(Qp)/Kp) and f = 1Kp for a.a. p.



Multipliers

For p /∈ S, Hp = Cc(Kp \G(Qp)/Kp) (spherical Hecke algebra) acts on itself by
convolution.

Multipliers at ∞ : let

M ∞(G) = Endcont,S(G(R))−bimod (S(G(R)))

be the space of continuous bimodule endomorphisms of S(G(R)). It can be
identified with the space of “rapidly decreasing invariant distributions on G(R)”
acting on S(G(R)) by ∗.

S-multipliers : M S
(G) = M ∞(G)⊗

′⊗
p/∈S

Hp
∗y S(G(A)).



Quasi-cuspidal convolution operators
Let π = π∞⊗

⊗′
p πp be an irreducible admissible repn of G(A) st πK 6= 0.

For every p /∈ S, Hp acts on π
Kp
p by a character λp(π) (Satake parameter).

We say that π is S-CAP if there exists an Eisenstein series E on G(Q)\G(A)/K
such that λp(π) = λp(E) for all p /∈ S.

Theorem A (R.B.P., Y. Liu, W. Zhang, X. Zhu)

Assume that π is not S-CAP. Then, there exists µπ ∈M S
(G) such that for every

f ∈ S(G(A))K we have :
1 R(µπ ∗ f ) acts by zero on L2

cusp(G(Q)\G(A))⊥ ;
2 π(µπ ∗ f ) = π(f ).

Remarks :

If G = GLn, every cuspidal representation is not S-CAP (Jacquet-Shalika) ;

The proof is robust and allows for many variants (e.g. isolation of a cuspidal
datum).

This theorem has been applied in conjunction with Jacquet-Rallis trace formulas
to prove the Gan-Gross-Prasad conjecture for unitary groups (see Pierre-Henri’s
talk).



Spectral description : Spherical Hecke Algebras

For simplicity assume G split, fix a Borel B⊂ G and let A� B be the universal
Cartan, W = W(G,A) the Weyl group and Â = X∗(A)⊗C× the dual torus.

For every p, we identify Â' Âp with the gp of unramified chars of A(Qp) by
χ⊗ps 7→ |χ|sp.

Every unramified irred repn πp of G(Qp) (i.e. satisfying π
G(Zp)
p 6= 0) has a Satake

parameter λp(πp) ∈ Âp/W st πp appears as a subquotient of IG(Qp)

B(Qp)
(λp(πp))

(normalized induction).

Satake isomorphism :
Hp ' C[Âp]W ,µ 7→ µ̂

such that for every unramified irred repn πp and v ∈ π
G(Zp)
p , πp(µ)v = µ̂(λp(πp))v .



Infinitesimal multipliers

Similarly, for µ ∈M ∞(G) and π∞ : irred admissible repn of G(R) we have

π∞(µ) = µ̂(π∞) Id (Schur)

and µ is characterized by π∞ 7→ µ̂(π∞).

Harish-Chandra isomorphism :

Z(g)' C[Lie(A)∗C]W ' C[Lie(Â)]W

where Z(g) denotes the center of the enveloping algebra of g(C).

Every π∞ has an infinitesimal character λ∞(π∞) ∈ Z(g)∧ ' Lie(Â)/W.

We only look for multipliers µ ∈M ∞(G) such that µ̂ factorizes through
π∞ 7→ λ∞(π∞) (infinitesimal multipliers).



Tubular neighborhoods of the tempered spectrum
Ĝ(R)

temp
: set of all tempered irred. repns of G(R). Put

Inftemp = λ∞

(
Ĝ(R)

temp)
⊂ Lie(Â)/W .

Harish-Chandra : π∞ tempered iff ∃ B⊂ P⊂ G with P�M� AM, σ discrete
series of M(R) and λ ∈

√
−1Lie(AM)∗R ⊂ Lie(A)∗C = Lie(Â) st

π∞ ↪→ IG(R)
P(R) (σ⊗λ).

“Tubular neighborhood” (C > 0) : π∞ ∈ Ĝ(R)
temp

<C iff ∃ B⊂ P⊂ G, σ d.s. of M(R)
and λ ∈ Lie(AM)∗C st ‖ℜ(λ)‖< C and

π∞ ↪→ IG(R)
P(R) (σ⊗λ).

We set
Inftemp

<C = λ∞

(
Ĝ(R)

temp

<C

)
⊂ Lie(Â)/W .

Example : if G = SL2, Lie(Â)/W = C/{±1} and we have

Inftemp = i R/{±1}∪Z/{±1}, Inftemp
<C = VC/{±1}∪Z/{±1}

where VC is the vertical band |ℜ(z)|< C.



Construction of Archimedean multipliers
Theorem B (R.B.P., Y. Liu, W. Zhang, X. Zhu)

Let ν̂ : Lie(Â)→ C be holomorphic and such that

ν̂ is W-invariant ;

For every C > 0, ν̂ is bounded by a polynomial on Inftemp
<C .

Then, there exists µ ∈M ∞(G) such that µ̂(π∞) = ν̂(λ∞(π∞)) for every irred adm repn
π∞ of G(R). We denote the space of such multipliers by M inf

∞ (G)

Arthur’s multipliers : let K∞ ⊂ G(R) maxl compact subgroup then

C∞
c (G(R))(K∞) x M A

∞ = PW(Lie(Â))W := F E ′(Lie(A)R)W

where (K∞) means K∞-finite (on both sides) and F is the Fourier transform. Not
sufficient for our purpose (ess. b/c PW functions are bounded by an exponential).
Delorme’s multipliers :

S(G(R))(K∞) x M D
∞ = F S ′exp(Lie(A)R)W

is ± what we want (fns of poly growth vertical strips but no growth condition in the
real direction). However, need to show that the action of M inf

∞ extends by
continuity to S(G(R)) L2-argument (Plancherel formula)+translation by fin.
diml repns.



On the proof of Theorem A
First recall the statement :

Theorem A

Let π be a cuspidal repn of G(A) that is not S-CAP. Then, there exists µπ ∈M S
(G)

such that for every f ∈ S(G(A))K we have :
1 R(µπ ∗ f ) acts by zero on L2

cusp(G(Q)\G(A))⊥ ;
2 π(µπ ∗ f ) = π(f ).

Set XS = Lie(Â)/W︸ ︷︷ ︸
inf. chars.

×∏
p/∈S

Âp/W︸ ︷︷ ︸
Sat. param. at p

and λ
S(π) = (λ∞(π),(λp(π))p/∈S) ∈ XS.

We define similarly λS(E) for an Eisenstein series E on G(Q)\G(A)/K and we
set

XS
Eis =

{
λ

S(E) | E Eis. series
}
⊂ XS.

Note that M S,inf
(G) = M inf

∞ (G)
⊗′

p/∈S Hp can be seen as a space of functions on

XS by µ 7→ µ̂.

We are looking for µπ ∈M S,inf
(G) such that µ̂π vanishes on XS

Eis but not on λS(π).



Eisenstein series come in a countable number of families F = {E(ϕλ)}ϕ,λ where
B⊂ P ( G, P�M� AM , ϕ ∈ σ⊂ Acusp(M(Q)NP(A)\G(A)) and
λ ∈ Lie(AM)∗C ⊂ Lie(Â).

λS(F ) is then the image in XS of a coset for{
(λ,(pλ)p/∈S) | λ ∈ Lie(AM)∗C

}
⊂ Lie(Â)×∏

p/∈S
Âp.

Harish-Chandra finiteness : λ∞(π) /∈ λ∞(F ) for all except a finite number of F ’s.
Moreover, the λ∞(F ) are images of affine subspaces of Lie(Â) that are quite
“sparse”⇒ we can find µ∞ ∈M inf

∞ (G) st µ̂∞ vanishes on all of them except finitely
many and µ̂∞(λ∞(π)) 6= 0. (Here it is crucial to be able to choose µ̂∞ of arbitrary
growth in the real direction).

For the remaining F ’s, we can separate λS(π) from λS(F ) by using product of
W-translates of functions of the form

(λ∞,(λp)p/∈S) 7→ χ(
pλ∞

λp
)− cχ,p

where χ : Â→ C× is a character and cχ,p ∈ C.



Some open questions

Let G/R be a connected reductive group.

Is M inf
∞ (G) the space of all infinitesimal multipliers?

Are there other elements in M ∞(G) ? Besides infinitesimal multipliers we can also
act by the center of G(R) but e.g. when G = PGL2 we don’t have any multiplier
separating the principal series

IG(R)
B(R)(λ) and IG(R)

B(R)(sgn⊗λ)

when λ : R×+→ C× is in generic position.

What about a Paley-Wiener theorem for S(G(R)) ?



Thank you !


