Regularized period of Eisenstein series for unitary groups.

Pierre-Henri Chaudouard
Institut de Mathématiques de Jussieu-Paris Rive Gauche Université de Paris
Bill Casselman's 80th birthday conference November 172021

Based on an ongoing joint work with Raphaël Beuzart-Plessis.

Notations

- E / F extension of number fields with $[E: F]=2$
- $n \geqslant 1$ an integer
- For any non-degenerate Hermitian space h over E of rank n, we have the following unitary groups:
- $U_{h}^{\prime}=U(h)$ (automorphism group of h);
- $U_{h}=U(h) \times U\left(h \oplus^{\perp} N_{E / F}\right)$ where $N_{E / F}$ is the norm on E.
- Diagonal embedding $U_{h}^{\prime} \hookrightarrow U_{h}$ given by $g \mapsto\left(g,\left(\begin{array}{ll}g & 0 \\ 0 & 1\end{array}\right)\right.$.

Notations

- \mathbb{A} ring of adèles of F and $|\cdot|_{\mathbb{A}}$ product of normalized local absolute values.
- We fix $P_{0}=P_{0}^{\prime} \times P_{0}^{\prime \prime}$ a minimal parabolic subgroup of U_{h}.
- We fix $K \subset U_{h}(\mathbb{A})$ a "good" maximal compact subgroup wrt P_{0}.
- Let $P=P^{\prime} \times P^{\prime \prime}$ be a "standard" parabolic subgroup of U_{h} i.e. $P_{0} \subset P$.
- Spaces of unramified characters: $\mathfrak{a}_{P}^{*}=X_{F}^{*}(P) \otimes_{\mathbb{Z}} \mathbb{R}$ and its dual \mathfrak{a}_{P} and its complexified $\mathfrak{a}_{P, \mathbb{C}}^{*}=\mathfrak{a}_{P}^{*} \otimes_{\mathbb{R}} \mathbb{C}$.
- Let $H_{P}: U_{h}(\mathbb{A}) \rightarrow \mathfrak{a}_{P}$ be such that $\chi\left(H_{P}(p k)\right)=\log |\chi(p)|_{\mathbb{A}}$ for all $\chi \in X_{F}^{*}(P), p \in P(\mathbb{A})$ and $k \in K$.
- We also have: $H_{P^{\prime}}: U_{h}^{\prime}(\mathbb{A}) \rightarrow \mathfrak{a}_{P^{\prime}}$.
- Let $\hat{\tau}_{P^{\prime}}$ be the characterictic function of the open obtuse chamber ${ }^{+} \mathfrak{a}_{P^{\prime}} \subset \mathfrak{a}_{P^{\prime}}$ defined by the set of weights $\hat{\Delta}_{P^{\prime}}$.

Ichino-Yamana truncation operator

- It depends on a "truncation parameter" T namely a point in the positive Weyl chamber in $\mathfrak{a}_{P_{0}^{\prime}}$, far away from the walls.
- Denoted by $\Lambda_{/ Y}^{T}$, it transforms a smooth function φ on $\left[U_{h}\right]=U_{h}(F) \backslash U_{h}(\mathbb{A})$ with all its derivatives of uniform moderate growth into a rapidly decreasing one on [U_{h}^{\prime}].
- For each $x \in\left[U_{h}^{\prime}\right]$ we have

$$
\left(\Lambda_{I Y}^{T} \varphi\right)(x)=\sum_{P^{\prime}}(-1)^{\operatorname{dim}\left(\mathfrak{a}_{P^{\prime}}\right)} \sum_{\delta \in P^{\prime}(F) \backslash U_{h}^{\prime}(F)} \hat{\tau}_{P^{\prime}}\left(H_{P^{\prime}}(\delta x)-T_{P^{\prime}}\right) \varphi_{P^{\prime}}(\delta x)
$$

with $P_{0}^{\prime} \subset P^{\prime} \subset U_{h}^{\prime}, T \in \mathfrak{a}_{P_{0}^{\prime}} \mapsto T_{P^{\prime}} \in \mathfrak{a}_{P^{\prime}}$ is the natural projection and

$$
\varphi_{P^{\prime}}(x)=\int_{\left[N_{P^{\prime \prime}}\right]} \varphi(n x) d n
$$

where $N_{P^{\prime \prime}}$ is the unipotent radical of $P^{\prime \prime}=\operatorname{stab}_{U\left(h \oplus N_{E / F}\right)}(\mathcal{F})$ where \mathcal{F} is the isotropic flag in h s.t. $P^{\prime}=\operatorname{stab}_{U_{h}^{\prime}}(\mathcal{F})$.

Regularized periods of automorphic forms

- Let φ be an automorphic form on $\left[U_{h}\right]$
- We define

$$
\mathcal{P}_{h}^{T}(\varphi)=\int_{\left[U_{h}^{\prime}\right]}\left(\Lambda_{I Y}^{T} \varphi\right)(x) d x
$$

- The map $T \mapsto \mathcal{P}_{h}^{T}(\varphi)$ coincides with a polynomial exponential:

$$
T \mapsto \sum_{\lambda} p_{\lambda}(T) \exp (\langle\lambda, T\rangle)
$$

where λ belongs to a finite subset of $\mathfrak{a}_{P_{0}^{\prime}, \mathbb{C}}^{*}$ and p_{λ} is a polynomial.

- Under some mild restrictions on the exponents of φ, the polynomial p_{0} for $\lambda=0$ is constant.
- Then, following Ichino-Yamana, we define

$$
\mathcal{P}_{h}(\varphi)=p_{0}(T)
$$

Properties of regularized periods

- $\varphi \mapsto \mathcal{P}_{h}(\varphi)$ is $U_{h}^{\prime}(\mathbb{A})$-invariant.
- We have

$$
\mathcal{P}_{h}(\varphi)=\int_{\left[U_{h}^{\prime}\right]} \varphi(x) d x
$$

if the RHS is convergent.

- Let φ be a cuspidal automorphic form on $\left[U_{h}\right]_{P}=A_{M}^{\infty} M(F) N(\mathbb{A}) \backslash U_{h}(\mathbb{A})$ with $P(\mathbb{A})=A_{M}^{\infty} M(\mathbb{A})^{1} N(\mathbb{A})$.
- For $\lambda \in \mathfrak{a}_{P, \mathbb{C}}^{*}$ we have the Eisenstein series

$$
E(x, \varphi, \lambda)=\sum_{\delta \in P(F) \backslash U_{h}(F)} \exp \left(\lambda\left(H_{P}(\delta x)\right)\right) \varphi(\delta x) .
$$

- The map

$$
\lambda \in \mathfrak{a}_{P, \mathbb{C}}^{*} \mapsto \mathcal{P}_{h}(E(\varphi, \lambda))
$$

is well-defined outside some hyperplanes.

Some problems

- Gan-Gross-Prasad (GGP) problem. Let $P=M N \subset U_{h}$ be a parabolic subgroup. Consider a cuspidal subrepresentation σ of M and $\lambda \in i \mathfrak{a}_{P}^{*}$. Find a condition under which the linear form

$$
\varphi \mapsto \mathcal{P}_{h}(E(\varphi, \lambda))
$$

does not vanish identically on the automorphic realization of the induced space $\operatorname{Ind}_{P}^{G}(\sigma)$.

- Refinement: Ichino-Ikeda problem. Factorize $\left|\mathcal{P}_{h}(E(\varphi, \lambda))\right|^{2}$ in terms of "natural" local analogues.

We shall give a solution to these two problems for representations σ whose base change to linear groups satisfy some specific conditions. This will give an extension of the original Gan-Gross-Prasad and Ichino-Ikeda conjectures (case $P=U_{h}$).

Regular Arthur parameter (RAP)

- We set $G_{n}=\operatorname{Res}_{E / F} G L_{n}(E)$.
- We shall consider Arthur parameters of the following shape: $\pi=\pi_{1} \boxtimes \ldots \boxtimes \pi_{r}$ where

1. π_{k} is a cuspidal representation of $G_{n_{k}}$ where $n_{1}+\ldots+n_{r}=n$.
2. The representations π_{k} are two by two distinct.
3. If $\pi_{k}=\pi_{k}^{*}$ then the Asai L-function $L\left(s, \pi_{i, k}, \mathrm{As}^{(-1)^{n+1}}\right)$ has a pole at $s=1$.
4. If $\pi_{k} \neq \pi_{k}^{*}$, then $\pi_{k}=\pi_{k^{\prime}}^{*}$ for some $k^{\prime} \neq k$.

- π is discrete if all of its components are self-conjugate dual.
- Let $\pi=\pi_{n} \boxtimes \pi_{n+1}$ a product of Arthur parameters for $G=G_{n} \times G_{n+1}$. We shall say that π is regular if no component of π_{n} can be identified to the contragredient of a component of π_{n+1}.
- We identify a RAP π of G to an automorphic representation $\Pi=\operatorname{Ind}_{Q}^{G}(\pi)$ for some parabolic subgroup $Q \subset G$.

Remark Discrete implies regular.

Weak base change

- Let $\Pi=\operatorname{Ind}_{Q}^{G}(\pi)$ be a RAP as above. Let

$$
\mathfrak{a}_{\square}^{*}=\left\{\lambda \in \mathfrak{a}_{Q}^{*}=X^{*}(Q) \otimes \mathbb{R} \mid w \lambda=-\lambda\right\}
$$

where $w \in W^{G}\left(M_{Q}\right)$ is the permutation that exchanges the components π_{k} and $\pi_{k^{\prime}}$ if $\pi_{k}=\pi_{k^{\prime}}^{*}$. We have $\mathfrak{a}_{\Pi}^{*}=0$ iff Π is discrete.

- For $\lambda \in \mathfrak{a}_{\Pi, \mathbb{C}}^{*}$, we set $\Pi_{\lambda}=\operatorname{Ind}_{Q}^{G}(\pi \otimes \lambda)$.
- Let σ be a cuspidal subrepresentation of the Levi factor M_{P} of some parabolic subgroup P of U_{h}.

Definition We shall say that Π is a weak base change of $\Sigma=\operatorname{Ind}_{P}^{U_{h}}(\sigma)$ if for almost all places v of F split in E, the local component Π_{v} is the split base change of Σ_{v}.

- If it exists, the weak base change is unique (Ramakrishnan).
- If Π is weak base change of Σ, we have an isomorphism $\mathfrak{a}_{\square}^{*} \simeq \mathfrak{a}_{P}^{*}$ and we will not distinguish the two spaces.

Gan-Gross-Prasad conjecture

Theorem 1 Let Π be a regular Arthur parameter and $\lambda \in i \mathfrak{a}_{\square}^{*}$. The following assertions are equivalent:

1. $L\left(\frac{1}{2}, \Pi_{\lambda}\right) \neq 0$ (Rankin-Selberg L-function);
2. There exists a hermitian space h of rank n, a psg $P \subset U_{h}$ and a cuspidal representation σ of M_{P} such that the weak base of $\Sigma=\operatorname{Ind}_{P}^{U_{h}}(\sigma)$ is Π and the linear form

$$
\varphi \in \Sigma \mapsto \mathcal{P}_{h}(E(\varphi, \lambda))
$$

does not vanish identically.
Remarks In 2, under our assumption on Π, we have for "positive" T

$$
\mathcal{P}_{h}(E(\varphi, \lambda))=\int_{\left[U_{h}^{\prime}\right]} \Lambda_{m}^{T} E(x, \varphi, \lambda) d x
$$

and so it is holomorphic on $i \mathfrak{a}_{\square}^{*} \simeq i \mathfrak{a}_{\rho}^{*}$.

Previous works towards this theorem

They concern the case Π discrete that is that is $P=U_{h}$ (original GGP conjecture).

- The case $2 \Rightarrow 1$ has been obtained in the work of Ginzburg-Jiang-Rallis, Ichino-Yamana, Jiang-L. Zhang by different methods.
- Here the proof is based on a comparison of relative trace formulae (Jacquet-Rallis strategy).
- Important works in the similar vein first proved the theorem under some local hypotheses on Π that imply that Π is cuspidal (W. Zhang, Xue, Beuzart-Plessis).
- Then Beuzart-Plessis-Liu-Zhang-Zhu proved the theorem in the case Π cuspidal (with no local hypothesis).
- We get the case of non-cuspidal Π (so-called endoscopic) in our joint work with Beuzart-Plessis and Zydor.

A refinement. Notations.

- Let $P \subset U_{h}$ and σ as before.
- We assume that the weak base change of $\operatorname{Ind}_{P}^{U_{h}}(\sigma)$ is a regular Arthur parameter $\Pi=\operatorname{Ind}_{Q}^{G}(\pi)$.
- We identify $\mathfrak{a}_{P}^{*} \simeq \mathfrak{a}_{\square}^{*}$.
- For $\lambda \in \mathfrak{a}_{P, \mathbb{C}}^{*}$, let $\Sigma_{\lambda}=\operatorname{Ind}_{P}^{U_{h}}(\sigma \otimes \lambda)$ and $\Pi_{\lambda}=\operatorname{Ind}_{Q}^{G}(\pi \otimes \lambda)$.
- We assume that all the local components σ_{v} are tempered.
- We introduce Tamagawa measures $d g$ on $U_{h}(\mathbb{A})$ and $d h$ on $U_{h}^{\prime}(\mathbb{A})$.
- We fix factorizations $d g=\prod_{v} d g_{v}$ and $d h=\prod_{v} d h_{v}$ such that for almost all places v

$$
\operatorname{vol}\left(U_{h}\left(\mathcal{O}_{v}\right), d g_{v}\right)=1 \quad \operatorname{vol}\left(U_{h}^{\prime}\left(\mathcal{O}_{v}\right), d h_{v}\right)=1
$$

where \mathcal{O}_{v} is the ring of integers of F_{v}, the completion of F at v.

Local periods

Let $\Pi_{\lambda}=\otimes_{v}^{\prime} \Pi_{\lambda, v}, \Sigma_{\lambda}=\otimes_{v}^{\prime} \Sigma_{\lambda, v}$ and $\eta=\otimes_{v}^{\prime} \eta_{v}$ be the quadratic character attached to E / F. We define the ratio of local L-functions:

$$
\mathcal{L}\left(s, \Sigma_{\lambda, v}\right)=\prod_{i=1}^{n+1} L\left(s+i-\frac{1}{2}, \eta_{v}^{i}\right) \frac{L\left(s, \Pi_{\lambda, v}\right)}{L\left(s+1 / 2, \Sigma_{\lambda, v}, \mathrm{Ad}\right)}
$$

We fix an invariant inner product on σ_{v} which gives an invariant inner product $(\cdot, \cdot)_{v}$ on Σ_{v}. We define for a non-zero $\varphi_{v} \in \Sigma_{v}$ the local (normalized) period:

$$
\mathcal{P}_{h, v}\left(\varphi_{v}, \lambda\right)=\mathcal{L}\left(\frac{1}{2}, \Sigma_{\lambda, v}\right)^{-1} \int_{U_{h}^{\prime}\left(F_{v}\right)} \frac{\left(\Sigma_{\lambda, v}\left(h_{v}\right) \varphi_{v}, \varphi_{v}\right)_{v}}{\left(\varphi_{v}, \varphi_{v}\right)_{v}} d h_{v}
$$

For $\lambda \in i \mathfrak{a}_{P}^{*}$, the integral is convergent and $\mathcal{L}\left(s, \Sigma_{\lambda, v}\right)$ has neither zero nor pole at $s=\frac{1}{2}$.
For almost all v and non-zero unramified vectors φ_{v}, we have:

$$
\mathcal{P}_{h, v}\left(\varphi_{v}, \lambda\right)=1
$$

Factorization of periods

Theorem 2 Let $\varphi=\otimes_{v} \varphi_{v} \in \operatorname{Ind}_{P}^{U_{h}}(\sigma)$ be a non-zero decomposable vector. We have for all $\lambda \in i \mathfrak{a}_{P}^{*}$

$$
\frac{\left|\mathcal{P}_{h}(E(\varphi, \lambda))\right|^{2}}{\|\varphi\|_{\text {Pet }}^{2}}=\left|S_{\Pi}\right|^{-1} \mathcal{L}^{*}\left(\frac{1}{2}, \Sigma_{\lambda}\right) \prod_{v} \mathcal{P}_{h, v}\left(\varphi_{v}, \lambda\right)
$$

- $\mathcal{L}\left(s, \Sigma_{\lambda}\right)=\prod_{v} \mathcal{L}\left(s, \Sigma_{\lambda, v}\right)$ for $\Re(s) \gg 0$.
- $\mathcal{L}^{*}\left(\frac{1}{2}, \Sigma_{\lambda}\right)=\lim _{s \rightarrow \frac{1}{2}}\left(s-\frac{1}{2}\right)^{-\operatorname{dim}\left(\mathfrak{a}_{P}\right)} \mathcal{L}\left(s, \Sigma_{\lambda}\right)$
- $\|\cdot\|_{\text {Pet }}$ is the Petersson norm.
- $S_{\Pi}=(\mathbb{Z} / 2 \mathbb{Z})^{\operatorname{dim}\left(\mathfrak{a}_{Q}\right)-2 \operatorname{dim}\left(\mathfrak{a}_{P}\right)}$

The case $P=U_{h}$ has been successively proven by:

- Zhang, Beuzart-Plessis (Π cuspidal + some local hypothesis)
- Beuzart-Plessis-Liu-Zhang-Zhu (П cuspidal)
- Beuzart-Plessis-C-Zydor for Π non cuspidal.

Applications to Bessel periods

- Let $n \geqslant 0$ and $r \geqslant 1$ be two integers.
- Let h and h_{r} be two non-degenerate hermitian spaces of resp. rk n and $2 r+1$. We assume that

$$
h_{r}=\operatorname{vect}\left(e_{1}, \ldots, e_{r}\right) \oplus \operatorname{vect}\left(e_{0}\right) \oplus \operatorname{vect}\left(f_{1}, \ldots, f_{r}\right)
$$

where both vect $\left(e_{1}, \ldots, e_{r}\right)$ and $\operatorname{vect}\left(f_{1}, \ldots, f_{r}\right)$ are maximal isotropic subspaces, with $h_{r}\left(e_{i}, f_{j}\right)=\delta_{i, j}$ and $h_{r}\left(e_{0}, e_{0}\right) \neq 0$.

- Let $B \subset U\left(h \oplus^{\perp} h_{r}\right)$ be the parabolic subgroup stabilizing the flag

$$
\operatorname{vect}\left(e_{1}\right) \subset \operatorname{vect}\left(e_{1}, e_{2}\right) \subset \ldots \subset \operatorname{vect}\left(e_{1}, \ldots, e_{r}\right)
$$

- Set $U_{h}^{\prime}=U(h)$ and $U_{h}=U(h) \times U\left(h \oplus^{\perp} h_{r}\right)$.
- Diagonal embedding $U_{h}^{\prime} \hookrightarrow U_{h}$.
- Let N_{B} be the unipotent radical of B. Then U_{h}^{\prime} normalizes $\{1\} \times N_{B} \subset U_{h}$. We set $S_{h}=\left(\{1\} \times N_{B}\right) \rtimes U_{h}^{\prime} \subset U_{h}$. This is the Bessel subgroup.

Bessel periods

- We fix an additive character $\psi: E \backslash \mathbb{A}_{E} \rightarrow \mathbb{C}^{\times}$.
- We get a character of $N_{B}(\mathbb{A})$ invariant by $U_{h}^{\prime}(\mathbb{A})$-conjugation by the formula for $n \in N_{B}(\mathbb{A})$:

$$
\psi(n)=\psi\left(h_{r}\left(n e_{2}, f_{1}\right)+h_{r}\left(n e_{3}, f_{2}\right)+\ldots+h_{r}\left(n e_{r}, f_{r-1}\right)+h_{r}\left(n e_{0}, f_{r}\right)\right)
$$

- Thus this character extends to a character of $S_{h}(\mathbb{A})$ trivial on $U_{h}^{\prime}(\mathbb{A})$ still denoted by ψ.
- Let σ be a cuspidal subrepresentation of U_{h}.
- The Bessel period is the linear form

$$
\varphi \in \sigma \rightarrow \mathcal{B}_{h}(\varphi)=\int_{\left[S_{h}\right]} \varphi(g) \psi(g) d g
$$

where $\left[S_{h}\right]=S_{h}(F) \backslash S_{h}(\mathbb{A})$.
Remark If $n=0$ then $U_{h}^{\prime}=\{1\}$ and U_{h} is a quasi-split unitary group of odd rank. Then $S_{h} \subset U_{h}$ is a maximal unipotent subgroup and $\mathcal{B}_{h}(\varphi)$ is a Fourier-Whittaker coefficient of φ.

Gan-Gross-Prasad problem for Bessel periods

Problem. Find a condition on σ under which the Bessel period

$$
\varphi \rightarrow \mathcal{B}_{h}(\varphi)=\int_{\left[S_{h}\right]} \varphi(g) \psi(g) d g
$$

does not vanish identically on σ.
We give an answer for representations whose weak base change to $G=\operatorname{Res}_{E / F}\left(G L_{n}(E) \times G L_{n+2 r+1}(E)\right)$ is a discrete Arthur parameter $\Pi=\operatorname{Ind}_{Q}^{G}\left(\pi_{n} \boxtimes \pi_{n+2 r+1}\right)$.

Theorem 3 Let Π be a discrete Arthur parameter of

$G=G_{n} \times G_{n+2 r+1}$. The following assertions are equivalent:

1. $L\left(\frac{1}{2}, \Pi\right) \neq 0$ (Rankin-Selberg L-function);
2. There exists a hermitian form h of $r k n$, a cuspidal representation σ of U_{h} such that its weak base to G is Π and the Bessel period

$$
\varphi \in \sigma \mapsto \mathcal{B}_{h}(\varphi)
$$

does not vanish identically.

Remarks

- If $n=0$ the L-function is trivial and U_{h} is the quasi-split unitary group of rank $2 r+1$. The theorem is proved by Ginzburg-Rallis-Soudry.
- $2 \Rightarrow 1$ is proved by D.Jiang-L.Zhang.
- In our approach, thm 3 is deduced from thm 1 for some Eisenstein series associated to a maximal parabolic subgroup.
- We expect to get the refinement à la Ichino-lkeda conjectured by Liu.

Relative trace formula for $U_{h}=U(h) \times U\left(h \oplus^{\perp} N_{E / F}\right)$.

This is roughly the following expansion in terms of cuspidal data χ

$$
" \int_{\left[U_{h}^{\prime}\right]^{2}} \sum_{\gamma \in U_{h}(F)} f\left(x^{-1} \gamma y\right) d x d y^{\prime \prime}=\sum_{\chi} J_{\chi}(f)
$$

where f is a test function on $U_{h}(\mathbb{A})$.
Theorem 4 Let χ be the class of a pair (P, σ) such that the weak base change of $\Sigma=\operatorname{Ind}_{P}^{U_{h}}(\sigma)$ is a regular Arthur parameter. Then

$$
J_{\chi}^{h}(f)=\int_{i \mathfrak{a}_{P}^{*}} J_{P, \sigma}(\lambda, f) d \lambda
$$

where we introduce the relative character

$$
J_{P, \sigma}(\lambda, f)=\sum_{\varphi \in O N B \text { of } \operatorname{Ind}_{P}^{U_{h}}(\sigma)} \mathcal{P}\left(E\left(\Sigma_{\lambda}(f) \varphi, \lambda\right)\right) \overline{\mathcal{P}(E(\varphi, \lambda))}
$$

