Regularized period of Eisenstein series for unitary groups.

Pierre-Henri Chaudouard

Institut de Mathématiques de Jussieu-Paris Rive Gauche Université de Paris

Bill Casselman's 80th birthday conference November 17 2021

Based on an ongoing joint work with Raphaël Beuzart-Plessis.

Notations

- E/F extension of number fields with [E : F] = 2
- n ≥ 1 an integer
- For any non-degenerate Hermitian space *h* over *E* of rank *n*, we have the following unitary groups:
 - $U'_h = U(h)$ (automorphism group of h);
 - $U_h = U(h) \times U(h \oplus^{\perp} N_{E/F})$ where $N_{E/F}$ is the norm on E.
 - Diagonal embedding $U_h' \hookrightarrow U_h$ given by $g \mapsto (g, \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}).$

Notations

- A ring of adèles of F and $|\cdot|_{\mathbb{A}}$ product of normalized local absolute values.
- We fix $P_0 = P'_0 \times P''_0$ a minimal parabolic subgroup of U_h .
- We fix K ⊂ U_h(A) a "good" maximal compact subgroup wrt P₀.
- Let P = P' × P" be a "standard" parabolic subgroup of U_h i.e. P₀ ⊂ P.
- Spaces of unramified characters: a^{*}_P = X^{*}_F(P) ⊗_ℤ ℝ and its dual a_P and its complexified a^{*}_{P,ℂ} = a^{*}_P ⊗_ℝ ℂ.
- Let H_P: U_h(A) → a_P be such that χ(H_P(pk)) = log |χ(p)|_A for all χ ∈ X^{*}_F(P), p ∈ P(A) and k ∈ K.
- We also have: $H_{P'}: U'_h(\mathbb{A}) \to \mathfrak{a}_{P'}.$
- Let τ̂_{P'} be the characterictic function of the open obtuse chamber ⁺a_{P'} ⊂ a_{P'} defined by the set of weights Â_{P'}.

Ichino-Yamana truncation operator

- It depends on a "truncation parameter" *T* namely a point in the positive Weyl chamber in a_{P₀}, far away from the walls.
- Denoted by Λ^T_{IY}, it transforms a smooth function φ on
 [U_h] = U_h(F) \U_h(A) with all its derivatives of uniform
 moderate growth into a rapidly decreasing one on [U'_h].
- For each $x \in [U'_h]$ we have

$$(\Lambda_{IY}^T \varphi)(x) = \sum_{P'} (-1)^{\dim(\mathfrak{a}_{P'})} \sum_{\delta \in P'(F) \setminus U'_h(F)} \hat{\tau}_{P'}(H_{P'}(\delta x) - T_{P'}) \varphi_{P'}(\delta x)$$

with $P'_0 \subset P' \subset U'_h$, $T \in \mathfrak{a}_{P'_0} \mapsto T_{P'} \in \mathfrak{a}_{P'}$ is the natural projection and

$$\varphi_{P'}(x) = \int_{[N_{P''}]} \varphi(nx) \, dn$$

where $N_{P''}$ is the unipotent radical of $P'' = \operatorname{stab}_{U(h \oplus N_{E/F})}(\mathcal{F})$ where \mathcal{F} is the isotropic flag in h s.t. $P' = \operatorname{stab}_{U'_h}(\mathcal{F})$.

Regularized periods of automorphic forms

- Let φ be an automorphic form on $[U_h]$
- We define

$$\mathcal{P}_h^T(\varphi) = \int_{[U_h']} (\Lambda_{IY}^T \varphi)(x) \, dx$$

The map T → P^T_h(φ) coincides with a polynomial exponential:

$$T\mapsto \sum_{\lambda} p_{\lambda}(T) \exp(\langle \lambda, T \rangle)$$

where λ belongs to a finite subset of $\mathfrak{a}^*_{P'_0,\mathbb{C}}$ and p_{λ} is a polynomial.

- Under some mild restrictions on the exponents of φ , the polynomial p_0 for $\lambda = 0$ is constant.
- Then, following Ichino-Yamana, we define

$$\mathcal{P}_h(\varphi) = p_0(T).$$

Properties of regularized periods

- $\varphi \mapsto \mathcal{P}_h(\varphi)$ is $U'_h(\mathbb{A})$ -invariant.
- We have

$$\mathcal{P}_h(\varphi) = \int_{[U_h']} \varphi(x) \, dx$$

if the RHS is convergent.

- Let φ be a cuspidal automorphic form on $[U_h]_P = A_M^{\infty} M(F) N(\mathbb{A}) \setminus U_h(\mathbb{A})$ with $P(\mathbb{A}) = A_M^{\infty} M(\mathbb{A})^1 N(\mathbb{A})$.
- For $\lambda \in \mathfrak{a}_{P,\mathbb{C}}^*$ we have the Eisenstein series

$$E(x, \varphi, \lambda) = \sum_{\delta \in P(F) \setminus U_h(F)} \exp(\lambda(H_P(\delta x)))\varphi(\delta x).$$

The map

$$\lambda \in \mathfrak{a}_{P,\mathbb{C}}^* \mapsto \mathcal{P}_h(E(\varphi,\lambda))$$

is well-defined outside some hyperplanes.

Some problems

Gan-Gross-Prasad (GGP) problem. Let P = MN ⊂ U_h be a parabolic subgroup. Consider a cuspidal subrepresentation σ of M and λ ∈ ia^{*}_P. Find a condition under which the linear form

$$\varphi \mapsto \mathcal{P}_h(E(\varphi,\lambda))$$

does not vanish identically on the automorphic realization of the induced space $\operatorname{Ind}_{P}^{G}(\sigma)$.

 Refinement: Ichino-Ikeda problem. Factorize |P_h(E(φ, λ))|² in terms of "natural" local analogues.

We shall give a solution to these two problems for representations σ whose base change to linear groups satisfy some specific conditions. This will give an extension of the original Gan-Gross-Prasad and Ichino-Ikeda conjectures (case $P = U_h$).

Regular Arthur parameter (RAP)

- We set $G_n = \operatorname{Res}_{E/F} GL_n(E)$.
- We shall consider Arthur parameters of the following shape: $\pi = \pi_1 \boxtimes \ldots \boxtimes \pi_r$ where
 - 1. π_k is a cuspidal representation of G_{n_k} where $n_1 + \ldots + n_r = n$.
 - 2. The representations π_k are two by two distinct.
 - 3. If $\pi_k = \pi_k^*$ then the Asai *L*-function $L(s, \pi_{i,k}, \operatorname{As}^{(-1)^{n+1}})$ has a pole at s = 1.
 - 4. If $\pi_k \neq \pi_k^*$, then $\pi_k = \pi_{k'}^*$ for some $k' \neq k$.
- π is discrete if all of its components are self-conjugate dual.
- Let π = π_n ⊠ π_{n+1} a product of Arthur parameters for G = G_n × G_{n+1}. We shall say that π is regular if no component of π_n can be identified to the contragredient of a component of π_{n+1}.
- We identify a RAP π of G to an automorphic representation $\Pi = \operatorname{Ind}_Q^G(\pi)$ for some parabolic subgroup $Q \subset G$.

Remark Discrete implies regular.

Weak base change

• Let $\Pi = \operatorname{Ind}_Q^G(\pi)$ be a RAP as above. Let

$$\mathfrak{a}_{\Pi}^{*} = \{\lambda \in \mathfrak{a}_{Q}^{*} = X^{*}(Q) \otimes \mathbb{R} \mid w\lambda = -\lambda\}$$

where $w \in W^G(M_Q)$ is the permutation that exchanges the components π_k and $\pi_{k'}$ if $\pi_k = \pi_{k'}^*$. We have $\mathfrak{a}_{\Pi}^* = 0$ iff Π is discrete.

- For $\lambda \in \mathfrak{a}_{\Pi,\mathbb{C}}^*$, we set $\Pi_{\lambda} = \operatorname{Ind}_Q^G(\pi \otimes \lambda)$.
- Let σ be a cuspidal subrepresentation of the Levi factor M_P of some parabolic subgroup P of U_h .

Definition We shall say that Π is a weak base change of $\Sigma = \operatorname{Ind}_{P}^{U_{h}}(\sigma)$ if for almost all places v of F split in E, the local component Π_{v} is the split base change of Σ_{v} .

- If it exists, the weak base change is unique (Ramakrishnan).
- If Π is weak base change of Σ , we have an isomorphism $\mathfrak{a}_{\Pi}^* \simeq \mathfrak{a}_P^*$ and we will not distinguish the two spaces.

Gan-Gross-Prasad conjecture

Theorem 1 Let Π be a regular Arthur parameter and $\lambda \in i\mathfrak{a}_{\Pi}^*$. The following assertions are equivalent:

- 1. $L(\frac{1}{2}, \Pi_{\lambda}) \neq 0$ (Rankin-Selberg *L*-function);
- 2. There exists a hermitian space *h* of rank *n*, a psg $P \subset U_h$ and a cuspidal representation σ of M_P such that the weak base of $\Sigma = \text{Ind}_P^{U_h}(\sigma)$ is Π and the linear form

$$\varphi \in \Sigma \mapsto \mathcal{P}_h(E(\varphi, \lambda))$$

does not vanish identically.

Remarks In 2, under our assumption on Π , we have for "positive" T

$$\mathcal{P}_h(E(\varphi,\lambda)) = \int_{[U'_h]} \Lambda_m^T E(x,\varphi,\lambda) dx$$

and so it is holomorphic on $i\mathfrak{a}_{\Pi}^* \simeq i\mathfrak{a}_P^*$.

Previous works towards this theorem

They concern the case Π discrete that is that is $P = U_h$ (original GGP conjecture).

- The case 2 ⇒ 1 has been obtained in the work of Ginzburg-Jiang-Rallis, Ichino-Yamana, Jiang-L. Zhang by different methods.
- Here the proof is based on a comparison of relative trace formulae (Jacquet-Rallis strategy).
- Important works in the similar vein first proved the theorem under some local hypotheses on Π that imply that Π is cuspidal (W. Zhang, Xue, Beuzart-Plessis).
- Then Beuzart-Plessis-Liu-Zhang-Zhu proved the theorem in the case Π cuspidal (with no local hypothesis).
- We get the case of non-cuspidal Π (so-called endoscopic) in our joint work with Beuzart-Plessis and Zydor.

A refinement. Notations.

- Let $P \subset U_h$ and σ as before.
- We assume that the weak base change of $\operatorname{Ind}_{P}^{U_{h}}(\sigma)$ is a regular Arthur parameter $\Pi = \operatorname{Ind}_{Q}^{G}(\pi)$.
- We identify $\mathfrak{a}_P^* \simeq \mathfrak{a}_{\Pi}^*$.
- For $\lambda \in \mathfrak{a}_{P,\mathbb{C}}^*$, let $\Sigma_{\lambda} = \operatorname{Ind}_{P}^{U_h}(\sigma \otimes \lambda)$ and $\Pi_{\lambda} = \operatorname{Ind}_{Q}^{G}(\pi \otimes \lambda)$.
- We assume that all the local components σ_v are tempered.
- We introduce Tamagawa measures dg on $U_h(\mathbb{A})$ and dh on $U'_h(\mathbb{A})$.
- We fix factorizations $dg = \prod_{v} dg_{v}$ and $dh = \prod_{v} dh_{v}$ such that for almost all places v

$$\operatorname{vol}(U_h(\mathcal{O}_v), dg_v) = 1 \quad \operatorname{vol}(U'_h(\mathcal{O}_v), dh_v) = 1.$$

where \mathcal{O}_{v} is the ring of integers of F_{v} , the completion of F at v.

Local periods

Let $\Pi_{\lambda} = \otimes'_{\nu} \Pi_{\lambda,\nu}$, $\Sigma_{\lambda} = \otimes'_{\nu} \Sigma_{\lambda,\nu}$ and $\eta = \otimes'_{\nu} \eta_{\nu}$ be the quadratic character attached to E/F. We define the ratio of local *L*-functions:

$$\mathcal{L}(s, \Sigma_{\lambda, \nu}) = \prod_{i=1}^{n+1} L(s+i-\frac{1}{2}, \eta_{\nu}^{i}) \frac{L(s, \Pi_{\lambda, \nu})}{L(s+1/2, \Sigma_{\lambda, \nu}, \mathrm{Ad})}$$

We fix an invariant inner product on σ_v which gives an invariant inner product $(\cdot, \cdot)_v$ on Σ_v . We define for a non-zero $\varphi_v \in \Sigma_v$ the local (normalized) period:

$$\mathcal{P}_{h,\nu}(\varphi_{\nu},\lambda) = \mathcal{L}(\frac{1}{2}, \Sigma_{\lambda,\nu})^{-1} \int_{U'_{h}(F_{\nu})} \frac{(\Sigma_{\lambda,\nu}(h_{\nu})\varphi_{\nu}, \varphi_{\nu})_{\nu}}{(\varphi_{\nu}, \varphi_{\nu})_{\nu}} dh_{\nu}$$

For $\lambda \in i\mathfrak{a}_{\mathcal{P}}^{*}$, the integral is convergent and $\mathcal{L}(s, \Sigma_{\lambda, \nu})$ has neither zero nor pole at $s = \frac{1}{2}$. For almost all ν and non-zero unramified vectors φ_{ν} , we have:

$$\mathcal{P}_{h,\nu}(\varphi_{\nu},\lambda)=1.$$

Factorization of periods

Theorem 2 Let $\varphi = \bigotimes_{v} \varphi_{v} \in \operatorname{Ind}_{P}^{U_{h}}(\sigma)$ be a non-zero decomposable vector. We have for all $\lambda \in i\mathfrak{a}_{P}^{*}$

$$\frac{|\mathcal{P}_h(E(\varphi,\lambda))|^2}{\|\varphi\|_{Pet}^2} = |S_{\Pi}|^{-1}\mathcal{L}^*(\frac{1}{2}, \Sigma_{\lambda}) \prod_{\nu} \mathcal{P}_{h,\nu}(\varphi_{\nu}, \lambda),$$

•
$$\mathcal{L}(s, \Sigma_{\lambda}) = \prod_{\nu} \mathcal{L}(s, \Sigma_{\lambda, \nu})$$
 for $\Re(s) \gg 0$.

•
$$\mathcal{L}^*(\frac{1}{2}, \Sigma_{\lambda}) = \lim_{s \to \frac{1}{2}} (s - \frac{1}{2})^{-\dim(\mathfrak{a}_P)} \mathcal{L}(s, \Sigma_{\lambda})$$

•
$$S_{\Pi} = (\mathbb{Z}/2\mathbb{Z})^{\dim(\mathfrak{a}_Q)-2\dim(\mathfrak{a}_P)}$$

The case $P = U_h$ has been successively proven by:

- Zhang, Beuzart-Plessis (Π cuspidal + some local hypothesis)
- Beuzart-Plessis-Liu-Zhang-Zhu (Π cuspidal)
- Beuzart-Plessis-C-Zydor for Π non cuspidal.

Applications to Bessel periods

- Let $n \ge 0$ and $r \ge 1$ be two integers.
- Let h and h_r be two non-degenerate hermitian spaces of resp. rk n and 2r + 1. We assume that

$$h_r = \operatorname{vect}(e_1, \dots, e_r) \oplus \operatorname{vect}(e_0) \oplus \operatorname{vect}(f_1, \dots, f_r)$$

where both vect (e_1, \ldots, e_r) and vect (f_1, \ldots, f_r) are maximal isotropic subspaces, with $h_r(e_i, f_j) = \delta_{i,j}$ and $h_r(e_0, e_0) \neq 0$.

Let B ⊂ U(h⊕[⊥] h_r) be the parabolic subgroup stabilizing the flag

$$\operatorname{vect}(e_1) \subset \operatorname{vect}(e_1, e_2) \subset \ldots \subset \operatorname{vect}(e_1, \ldots, e_r).$$

- Set $U'_h = U(h)$ and $U_h = U(h) \times U(h \oplus^{\perp} h_r)$.
- Diagonal embedding $U'_h \hookrightarrow U_h$.
- Let N_B be the unipotent radical of B. Then U'_h normalizes
 {1} × N_B ⊂ U_h. We set S_h = ({1} × N_B) ⋊ U'_h ⊂ U_h. This is
 the Bessel subgroup.

Bessel periods

- We fix an additive character $\psi: E \setminus \mathbb{A}_E \to \mathbb{C}^{\times}$.
- We get a character of N_B(A) invariant by U'_h(A)-conjugation by the formula for n ∈ N_B(A):

 $\psi(n) = \psi(h_r(ne_2, f_1) + h_r(ne_3, f_2) + \ldots + h_r(ne_r, f_{r-1}) + h_r(ne_0, f_r))$

- Thus this character extends to a character of $S_h(\mathbb{A})$ trivial on $U'_h(\mathbb{A})$ still denoted by ψ .
- Let σ be a cuspidal subrepresentation of U_h .
- The Bessel period is the linear form

$$arphi \in \sigma o \mathcal{B}_h(arphi) = \int_{[\mathcal{S}_h]} arphi(g) \psi(g) \, dg$$

where $[S_h] = S_h(F) \setminus S_h(\mathbb{A})$.

Remark If n = 0 then $U'_h = \{1\}$ and U_h is a quasi-split unitary group of odd rank. Then $S_h \subset U_h$ is a maximal unipotent subgroup and $\mathcal{B}_h(\varphi)$ is a Fourier-Whittaker coefficient of φ .

Gan-Gross-Prasad problem for Bessel periods

Problem. Find a condition on σ under which the Bessel period

$$arphi o \mathcal{B}_h(arphi) = \int_{[\mathcal{S}_h]} arphi(g) \psi(g) \, dg$$

does not vanish identically on σ .

We give an answer for representations whose weak base change to $G = \operatorname{Res}_{E/F}(GL_n(E) \times GL_{n+2r+1}(E))$ is a discrete Arthur parameter $\Pi = \operatorname{Ind}_Q^G(\pi_n \boxtimes \pi_{n+2r+1})$.

Theorem 3 Let Π be a discrete Arthur parameter of $G = G_n \times G_{n+2r+1}$. The following assertions are equivalent: 1. $L(\frac{1}{2}, \Pi) \neq 0$ (Rankin-Selberg *L*-function);

2. There exists a hermitian form h of rk n, a cuspidal representation σ of U_h such that its weak base to G is Π and the Bessel period

$$\varphi \in \sigma \mapsto \mathcal{B}_h(\varphi)$$

does not vanish identically.

Remarks

- If n = 0 the *L*-function is trivial and U_h is the quasi-split unitary group of rank 2r + 1. The theorem is proved by Ginzburg-Rallis-Soudry.
- $2 \Rightarrow 1$ is proved by D.Jiang-L.Zhang.
- In our approach, thm 3 is deduced from thm 1 for some Eisenstein series associated to a maximal parabolic subgroup.
- We expect to get the refinement à la Ichino-Ikeda conjectured by Liu.

Relative trace formula for $U_h = U(h) \times U(h \oplus^{\perp} N_{E/F})$.

This is roughly the following expansion in terms of cuspidal data χ

$$\int_{[U'_h]^2} \sum_{\gamma \in U_h(F)} f(x^{-1}\gamma y) \, dx dy" = \sum_{\chi} J_{\chi}(f)$$

where f is a test function on $U_h(\mathbb{A})$.

Theorem 4 Let χ be the class of a pair (P, σ) such that the weak base change of $\Sigma = \operatorname{Ind}_{P}^{U_h}(\sigma)$ is a regular Arthur parameter. Then

$$J^h_\chi(f) = \int_{i\mathfrak{a}_P^*} J_{P,\sigma}(\lambda,f) d\lambda$$

where we introduce the relative character

$$J_{P,\sigma}(\lambda,f) = \sum_{\varphi \in ONB \text{ of } \operatorname{Ind}_{P}^{U_{h}}(\sigma)} \mathcal{P}(E(\Sigma_{\lambda}(f)\varphi,\lambda))\overline{\mathcal{P}(E(\varphi,\lambda))}$$