Scattering and a Plancherel formula of spherical varieties of real split reductive groups

Patrick Delorme

Happy birthday Bill
$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
Simplifying hypothesis: P has a unique open P-orbit, $P x_{0}$ in X. Then if H stabilizer of x_{0} in $G, X \approx G / H$.
$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
Simplifying hypothesis: P has a unique open P-orbit, $P x_{0}$ in X. Then if H stabilizer of x_{0} in $G, X \approx G / H$. Abstract Plancherel formula:

$$
\begin{equation*}
L^{2}(X) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi) \tag{0.1}
\end{equation*}
$$

$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
Simplifying hypothesis: P has a unique open P-orbit, $P x_{0}$ in X. Then if H stabilizer of x_{0} in $G, X \approx G / H$. Abstract Plancherel formula:

$$
\begin{equation*}
L^{2}(X) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi) \tag{0.1}
\end{equation*}
$$

where μ is a Borel measure on the unitary dual \hat{G} of G,
$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
Simplifying hypothesis: P has a unique open P-orbit, $P x_{0}$ in X. Then if H stabilizer of x_{0} in $G, X \approx G / H$. Abstract Plancherel formula:

$$
\begin{equation*}
L^{2}(X) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi) \tag{0.1}
\end{equation*}
$$

where μ is a Borel measure on the unitary dual \hat{G} of G, $\left(\pi, \mathcal{H}_{\pi}\right)$ continuous unitary irreducible representation of G,
$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
Simplifying hypothesis: P has a unique open P-orbit, $P x_{0}$ in X. Then if H stabilizer of x_{0} in $G, X \approx G / H$. Abstract Plancherel formula:

$$
\begin{equation*}
L^{2}(X) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi) \tag{0.1}
\end{equation*}
$$

where μ is a Borel measure on the unitary dual \hat{G} of G, $\left(\pi, \mathcal{H}_{\pi}\right)$ continuous unitary irreducible representation of G, \mathcal{M}_{π} finite dimensional space endowed with a scalar product
$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
Simplifying hypothesis: P has a unique open P-orbit, $P x_{0}$ in X. Then if H stabilizer of x_{0} in $G, X \approx G / H$.
Abstract Plancherel formula:

$$
\begin{equation*}
L^{2}(X) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi) \tag{0.1}
\end{equation*}
$$

where μ is a Borel measure on the unitary dual \hat{G} of G, $\left(\pi, \mathcal{H}_{\pi}\right)$ continuous unitary irreducible representation of G, \mathcal{M}_{π} finite dimensional space endowed with a scalar product and contained in the space $\mathcal{H}_{\pi, \text { temp }}^{-\infty, H}$ of tempered, in a suitable sense, H-fixed distribution vectors of π.
$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
Simplifying hypothesis: P has a unique open P-orbit, $P x_{0}$ in X. Then if H stabilizer of x_{0} in $G, X \approx G / H$.
Abstract Plancherel formula:

$$
\begin{equation*}
L^{2}(X) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi) \tag{0.1}
\end{equation*}
$$

where μ is a Borel measure on the unitary dual \hat{G} of G, $\left(\pi, \mathcal{H}_{\pi}\right)$ continuous unitary irreducible representation of G, \mathcal{M}_{π} finite dimensional space endowed with a scalar product and contained in the space $\mathcal{H}_{\pi, \text { temp }}^{-\infty, H}$ of tempered, in a suitable sense, H-fixed distribution vectors of π.
Goal : Explicit this formula up to the the twisted discrete spectrum of the boundary degenerations of X.
$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
Simplifying hypothesis: P has a unique open P-orbit, $P x_{0}$ in X. Then if H stabilizer of x_{0} in $G, X \approx G / H$.
Abstract Plancherel formula:

$$
\begin{equation*}
L^{2}(X) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi) \tag{0.1}
\end{equation*}
$$

where μ is a Borel measure on the unitary dual \hat{G} of G, $\left(\pi, \mathcal{H}_{\pi}\right)$ continuous unitary irreducible representation of G, \mathcal{M}_{π} finite dimensional space endowed with a scalar product and contained in the space $\mathcal{H}_{\pi, \text { temp }}^{-\infty, H}$ of tempered, in a suitable sense, H-fixed distribution vectors of π.
Goal : Explicit this formula up to the the twisted discrete spectrum of the boundary degenerations of X.
Strategy due to Sakellaridis and Venkatesh in the p-adic case:
$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
Simplifying hypothesis: P has a unique open P-orbit, $P x_{0}$ in X. Then if H stabilizer of x_{0} in $G, X \approx G / H$.
Abstract Plancherel formula:

$$
\begin{equation*}
L^{2}(X) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi) \tag{0.1}
\end{equation*}
$$

where μ is a Borel measure on the unitary dual \hat{G} of G, $\left(\pi, \mathcal{H}_{\pi}\right)$ continuous unitary irreducible representation of G, \mathcal{M}_{π} finite dimensional space endowed with a scalar product and contained in the space $\mathcal{H}_{\pi, t e m p}^{-\infty, H}$ of tempered, in a suitable sense, H-fixed distribution vectors of π.
Goal : Explicit this formula up to the the twisted discrete spectrum of the boundary degenerations of X.
Strategy due to Sakellaridis and Venkatesh in the p-adic case: introduce Bernstein maps (D., Knop, Kroetz, Schlichtkrull over \mathbb{R})
$G=\underline{G}(\mathbb{R}), \underline{G}$ reductive, split over \mathbb{R}, P a Borel subgroup of $G . X$ real spherical G-variety i.e. P has an open orbit in X, with invariant measure.
Simplifying hypothesis: P has a unique open P-orbit, $P x_{0}$ in X. Then if H stabilizer of x_{0} in $G, X \approx G / H$.
Abstract Plancherel formula:

$$
\begin{equation*}
L^{2}(X) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi) \tag{0.1}
\end{equation*}
$$

where μ is a Borel measure on the unitary dual \hat{G} of G, $\left(\pi, \mathcal{H}_{\pi}\right)$ continuous unitary irreducible representation of G, \mathcal{M}_{π} finite dimensional space endowed with a scalar product and contained in the space $\mathcal{H}_{\pi, t e m p}^{-\infty, H}$ of tempered, in a suitable sense, H-fixed distribution vectors of π.
Goal : Explicit this formula up to the the twisted discrete spectrum of the boundary degenerations of X.
Strategy due to Sakellaridis and Venkatesh in the p-adic case: introduce Bernstein maps (D., Knop, Kroetz, Schlichtkrull over \mathbb{R}) and then, with the help of an analog of their Discrete Series Conjecture, introduce scattering operators and prove their unitarity.

With X and P comes a (nonunique) maximal split torus A in P, $A_{\emptyset}:=A / A \cap H, S$ the finite set of simple spherical roots (some rational characters of A_{\emptyset}).

With X and P comes a (nonunique) maximal split torus A in P, $A_{\emptyset}:=A / A \cap H, S$ the finite set of simple spherical roots (some rational characters of A_{\emptyset}). For $I \subset S, X_{I}=G / H_{I}$, a boundary degeneration of X where H_{l} is some subgroup of G.

With X and P comes a (nonunique) maximal split torus A in P, $A_{\emptyset}:=A / A \cap H, S$ the finite set of simple spherical roots (some rational characters of A_{\emptyset}). For $I \subset S, X_{I}=G / H_{I}$, a boundary degeneration of X where H_{l} is some subgroup of G. A_{l}^{0}, the neutral component of the Lie group $A_{I}:=\cap_{\alpha \in I} \operatorname{Ker} \alpha$, acts on X_{I} by right translation commuting to the action of G.

With X and P comes a (nonunique) maximal split torus A in P, $A_{\emptyset}:=A / A \cap H, S$ the finite set of simple spherical roots (some rational characters of A_{\emptyset}). For $I \subset S, X_{I}=G / H_{I}$, a boundary degeneration of X where H_{l} is some subgroup of G. A_{l}^{0}, the neutral component of the Lie group $A_{l}:=\cap_{\alpha \in I}$ Ker α, acts on X_{I} by right translation commuting to the action of G.
$Z(\mathfrak{g})$: center of the complex enveloping algebra of \mathfrak{g}. The theory of the constant term (D., Kroetz, Souaifi):

With X and P comes a (nonunique) maximal split torus A in P, $A_{\emptyset}:=A / A \cap H, S$ the finite set of simple spherical roots (some rational characters of A_{\emptyset}). For $I \subset S, X_{I}=G / H_{I}$, a boundary degeneration of X where H_{l} is some subgroup of G.
A_{l}^{0}, the neutral component of the Lie group $A_{l}:=\cap_{\alpha \in I}$ Ker α, acts on X_{I} by right translation commuting to the action of G.
$Z(\mathfrak{g})$: center of the complex enveloping algebra of \mathfrak{g}. The theory of the constant term (D., Kroetz, Souaifi): a map $f \mapsto f_{l}$ between $Z(\mathfrak{g})$-finite tempered functions on X and X_{l}.

With X and P comes a (nonunique) maximal split torus A in P, $A_{\emptyset}:=A / A \cap H, S$ the finite set of simple spherical roots (some rational characters of A_{\emptyset}). For $I \subset S, X_{I}=G / H_{I}$, a boundary degeneration of X where H_{l} is some subgroup of G.
A_{l}^{0}, the neutral component of the Lie group $A_{l}:=\cap_{\alpha \in I}$ Ker α, acts on X_{l} by right translation commuting to the action of G.
$Z(\mathfrak{g})$: center of the complex enveloping algebra of \mathfrak{g}.
The theory of the constant term (D., Kroetz, Souaifi): a map $f \mapsto f_{l}$ between $Z(\mathfrak{g})$-finite tempered functions on X and X_{l}.
It allows us to define a map:

$$
j_{l, \pi}^{*}: \mathcal{H}_{\pi, \text { temp }}^{-\infty, H} \rightarrow \mathcal{H}_{\pi, \text { temp }}^{-\infty, H_{l}}, \eta \mapsto \eta_{l}
$$

With X and P comes a (nonunique) maximal split torus A in P, $A_{\emptyset}:=A / A \cap H, S$ the finite set of simple spherical roots (some rational characters of A_{\emptyset}). For $I \subset S, X_{I}=G / H_{I}$, a boundary degeneration of X where H_{l} is some subgroup of G.
A_{l}^{0}, the neutral component of the Lie group $A_{l}:=\cap_{\alpha \in I}$ Ker α, acts on X_{l} by right translation commuting to the action of G.
$Z(\mathfrak{g})$: center of the complex enveloping algebra of \mathfrak{g}.
The theory of the constant term (D., Kroetz, Souaifi): a map $f \mapsto f_{l}$ between $Z(\mathfrak{g})$-finite tempered functions on X and X_{l}.
It allows us to define a map:

$$
j_{l, \pi}^{*}: \mathcal{H}_{\pi, \text { temp }}^{-\infty, H} \rightarrow \mathcal{H}_{\pi, \text { temp }}^{-\infty, H_{l}}, \eta \mapsto \eta_{l}
$$

Note that A_{l}^{0} acts on $\mathcal{H}_{\pi, \text { tem } \rho}^{-\infty, H_{1}}$.

With X and P comes a (nonunique) maximal split torus A in P, $A_{\emptyset}:=A / A \cap H, S$ the finite set of simple spherical roots (some rational characters of A_{\emptyset}). For $I \subset S, X_{I}=G / H_{I}$, a boundary degeneration of X where H_{l} is some subgroup of G.
A_{l}^{0}, the neutral component of the Lie group $A_{l}:=\cap_{\alpha \in I}$ Ker α, acts on X_{l} by right translation commuting to the action of G.
$Z(\mathfrak{g})$: center of the complex enveloping algebra of \mathfrak{g}.
The theory of the constant term (D., Kroetz, Souaifi): a map $f \mapsto f_{l}$ between $Z(\mathfrak{g})$-finite tempered functions on X and X_{l}.
It allows us to define a map:

$$
j_{l, \pi}^{*}: \mathcal{H}_{\pi, \text { temp }}^{-\infty, H} \rightarrow \mathcal{H}_{\pi, \text { temp }}^{-\infty, H_{I}}, \eta \mapsto \eta_{I} .
$$

Note that A_{ρ}^{0} acts on $\mathcal{H}_{\pi, \text { temp }}^{-\infty, H_{1}}$. One has the Plancherel formula for X_{l} from the one for X.

$$
\begin{equation*}
L^{2}\left(X_{l}\right) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{I, \pi} d \mu(\pi) \tag{0.2}
\end{equation*}
$$

With X and P comes a (nonunique) maximal split torus A in P, $A_{\emptyset}:=A / A \cap H, S$ the finite set of simple spherical roots (some rational characters of A_{\emptyset}). For $I \subset S, X_{I}=G / H_{I}$, a boundary degeneration of X where H_{l} is some subgroup of G.
A_{l}^{0}, the neutral component of the Lie group $A_{l}:=\cap_{\alpha \in I}$ Ker α, acts on X_{l} by right translation commuting to the action of G.
$Z(\mathfrak{g})$: center of the complex enveloping algebra of \mathfrak{g}.
The theory of the constant term (D., Kroetz, Souaifi): a map $f \mapsto f_{l}$ between $Z(\mathfrak{g})$-finite tempered functions on X and X_{l}.
It allows us to define a map:

$$
j_{l, \pi}^{*}: \mathcal{H}_{\pi, \text { temp }}^{-\infty, H} \rightarrow \mathcal{H}_{\pi, \text { temp }}^{-\infty, H_{I}}, \eta \mapsto \eta_{I} .
$$

Note that A_{l}^{0} acts on $\mathcal{H}_{\pi, \text { temp }}^{-\infty, H_{1}}$. One has the Plancherel formula for X_{I} from the one for X.

$$
\begin{equation*}
L^{2}\left(X_{I}\right) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{I, \pi} d \mu(\pi) \tag{0.2}
\end{equation*}
$$

where for almost all $\pi, \mathcal{M}_{I, \pi}$ is the A_{l}^{0}-span of $j_{l, \pi}^{*}\left(\mathcal{M}_{\pi}\right)$.

With X and P comes a (nonunique) maximal split torus A in P, $A_{\emptyset}:=A / A \cap H, S$ the finite set of simple spherical roots (some rational characters of A_{\emptyset}). For $I \subset S, X_{I}=G / H_{I}$, a boundary degeneration of X where H_{l} is some subgroup of G.
A_{l}^{0}, the neutral component of the Lie group $A_{I}:=\cap_{\alpha \in I}$ Ker α, acts on X_{I} by right translation commuting to the action of G.
$Z(\mathfrak{g})$: center of the complex enveloping algebra of \mathfrak{g}.
The theory of the constant term (D., Kroetz, Souaifi): a map $f \mapsto f_{l}$ between $Z(\mathfrak{g})$-finite tempered functions on X and X_{l}.
It allows us to define a map:

$$
j_{l, \pi}^{*}: \mathcal{H}_{\pi, \text { temp }}^{-\infty, H} \rightarrow \mathcal{H}_{\pi, \text { temp }}^{-\infty, H_{I}}, \eta \mapsto \eta_{I} .
$$

Note that A_{l}^{0} acts on $\mathcal{H}_{\pi, \text { temp }}^{-\infty, H_{1}}$. One has the Plancherel formula for X_{I} from the one for X.

$$
\begin{equation*}
L^{2}\left(X_{I}\right) \simeq \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{I, \pi} d \mu(\pi) \tag{0.2}
\end{equation*}
$$

where for almost all $\pi, \mathcal{M}_{l, \pi}$ is the A_{1}^{0}-span of $j_{l, \pi}^{*}\left(\mathcal{M}_{\pi}\right)$. The scalar product on $\mathcal{M}_{I, \pi}$ is obtained by some process of limit from \mathcal{M}_{π}.

3 Maass-Selberg relations (D., Knop, Kroetz,

 Schlichtkrull)The Maass-Selberg relations: Let $\chi \in\left(\hat{A}_{l}^{0}\right)$ and $\mathcal{M}_{l, \pi}^{\chi}$ be the corresponding weight space of $\mathcal{M}_{I, \pi}$.

3 Maass-Selberg relations (D., Knop, Kroetz, Schlichtkrull)

The Maass-Selberg relations: Let $\chi \in\left(\hat{A}_{l}^{0}\right)$ and $\mathcal{M}_{l, \pi}^{\chi}$ be the corresponding weight space of $\mathcal{M}_{I, \pi}$. Then for μ-almost all $\pi \in \hat{G}$, the restriction to $\mathcal{M}_{l, \pi}^{\chi}$ of the adjoint $j_{I, \pi}: \mathcal{M}_{I, \pi}^{\chi} \rightarrow \mathcal{M}_{\pi}^{\chi}$ of $j_{l, \pi}^{*}$ is isometric.

3 Maass-Selberg relations (D., Knop, Kroetz, Schlichtkrull)

The Maass-Selberg relations: Let $\chi \in\left(\hat{A}_{l}^{0}\right)$ and $\mathcal{M}_{l, \pi}^{\chi}$ be the corresponding weight space of $\mathcal{M}_{I, \pi}$. Then for μ-almost all $\pi \in \hat{G}$, the restriction to $\mathcal{M}_{l, \pi}^{\chi}$ of the adjoint $j_{l, \pi}: \mathcal{M}_{l, \pi}^{\chi} \rightarrow \mathcal{M}_{\pi}^{\chi}$ of $j_{I, \pi}^{*}$ is isometric.
$\mathfrak{a}_{l}=\operatorname{Lie} A_{l}, \lambda \in i \mathfrak{a}_{l}^{*}, L^{2}\left(X_{l}, \lambda\right)$: unitarily induced representation to G of the character of $H_{l} A_{l}^{0}$ trivial on H_{l} and whose differential on A_{l}^{0} is λ.

3 Maass-Selberg relations (D., Knop, Kroetz,

Schlichtkrull)

The Maass-Selberg relations: Let $\chi \in\left(\hat{A}_{l}^{0}\right)$ and $\mathcal{M}_{l, \pi}^{\chi}$ be the corresponding weight space of $\mathcal{M}_{I, \pi}$. Then for μ-almost all $\pi \in \hat{G}$, the restriction to $\mathcal{M}_{l, \pi}^{\chi}$ of the adjoint $j_{l, \pi}: \mathcal{M}_{l, \pi}^{\chi} \rightarrow \mathcal{M}_{\pi}^{\chi}$ of $j_{l, \pi}^{*}$ is isometric.
$\mathfrak{a}_{l}=\operatorname{Lie} A_{l}, \lambda \in i \mathfrak{a}_{l}^{*}, L^{2}\left(X_{l}, \lambda\right)$: unitarily induced representation to G of the character of $H_{l} A_{l}^{0}$ trivial on H_{l} and whose differential on A_{ρ}^{0} is λ.
$L^{2}\left(X_{I}, \lambda\right)_{t d}$: discrete spectrum of $L^{2}\left(X_{I}, \lambda\right)$. Twisted discrete series or $t d$: irreducible subrepresentations of $L^{2}\left(X_{I}, \lambda\right)$.

3 Maass-Selberg relations (D., Knop, Kroetz,

Schlichtkrull)

The Maass-Selberg relations: Let $\chi \in\left(\hat{A}_{l}^{0}\right)$ and $\mathcal{M}_{l, \pi}^{\chi}$ be the corresponding weight space of $\mathcal{M}_{I, \pi}$. Then for μ-almost all $\pi \in \hat{G}$, the restriction to $\mathcal{M}_{l, \pi}^{\chi}$ of the adjoint $j_{l, \pi}: \mathcal{M}_{l, \pi}^{\chi} \rightarrow \mathcal{M}_{\pi}^{\chi}$ of $j_{l, \pi}^{*}$ is isometric.
$\mathfrak{a}_{l}=\operatorname{Lie} A_{l}, \lambda \in i \mathfrak{a}_{l}^{*}, L^{2}\left(X_{l}, \lambda\right)$: unitarily induced representation to G of the character of $H_{l} A_{l}^{0}$ trivial on H_{l} and whose differential on A_{ρ}^{0} is λ.
$L^{2}\left(X_{I}, \lambda\right)_{t d}$: discrete spectrum of $L^{2}\left(X_{I}, \lambda\right)$. Twisted discrete series or $t d$: irreducible subrepresentations of $L^{2}\left(X_{I}, \lambda\right)$.
One can define:

$$
\begin{equation*}
L^{2}\left(X_{l}\right)_{t d}:=\int_{i \mathfrak{a}_{l}^{*}}^{\oplus} L^{2}\left(X_{l}, \lambda\right)_{t d} d \lambda .(\text { measurability issue, see below) } \tag{0.3}
\end{equation*}
$$

4 Analog of the Discrete Series conjecture of Sakellaridis and Venkatesh

4 Analog of the Discrete Series conjecture of Sakellaridis and Venkatesh

From Krötz, Kuit, Opdam and Schlichtkrull, the real part of the Harish-Chandra parameters of infinitesimal characters of twisted discrete series are contained in a lattice.

4 Analog of the Discrete Series conjecture of Sakellaridis and Venkatesh

From Krötz, Kuit, Opdam and Schlichtkrull, the real part of the Harish-Chandra parameters of infinitesimal characters of twisted discrete series are contained in a lattice.
Conjecture (analog of the Discrete Series conjecture of Sakellaridis and Venkatesh)

4 Analog of the Discrete Series conjecture of Sakellaridis and Venkatesh

From Krötz, Kuit, Opdam and Schlichtkrull, the real part of the Harish-Chandra parameters of infinitesimal characters of twisted discrete series are contained in a lattice.
Conjecture (analog of the Discrete Series conjecture of Sakellaridis and Venkatesh) For $I \subset S$ and almost all $\lambda \in i \mathfrak{a}_{l}^{*}$ and all $t d$ in $L^{2}\left(X_{l}, \lambda\right)_{t d}$, there exists a Harish-Chandra parameter of the infinitesimal character of this $t d$ whose imaginary part is λ.

4 Analog of the Discrete Series conjecture of Sakellaridis and Venkatesh

From Krötz, Kuit, Opdam and Schlichtkrull, the real part of the Harish-Chandra parameters of infinitesimal characters of twisted discrete series are contained in a lattice.
Conjecture (analog of the Discrete Series conjecture of Sakellaridis and Venkatesh) For $I \subset S$ and almost all $\lambda \in i \mathfrak{a}_{l}^{*}$ and all $t d$ in $L^{2}\left(X_{l}, \lambda\right)_{t d}$, there exists a Harish-Chandra parameter of the infinitesimal character of this $t d$ whose imaginary part is λ.
The conjecture is true in many cases for $I=S$ given by real analogs of cases given by Sakellaridis-Venkatesh in the p-adic case.

5 Invariant differential operators

$\mathbb{D}(X)$: algebra of G-invariant differential operators on X.

5 Invariant differential operators

$\mathbb{D}(X)$: algebra of G-invariant differential operators on X. Harish-Chandra homomorphism of Knop: an isomorphism between $\mathbb{D}(X)$ and $S\left(\mathfrak{a}_{\emptyset}\right)^{W_{X}}$ where W_{X} is the group generated by the reflections around elements of $S \subset \mathfrak{a}_{\emptyset}^{*}$.

5 Invariant differential operators

$\mathbb{D}(X)$: algebra of G-invariant differential operators on X. Harish-Chandra homomorphism of Knop: an isomorphism between $\mathbb{D}(X)$ and $S\left(\mathfrak{a}_{\emptyset}\right)^{W_{X}}$ where W_{X} is the group generated by the reflections around elements of $S \subset \mathfrak{a}_{\emptyset}^{*}$.
Beuzart-Plessis has related this homomorphism to a one he defined few years ago, which is given in terms of a subquotient of the enveloping algebra of LieP . This is quite important for us.

5 Invariant differential operators

$\mathbb{D}(X)$: algebra of G-invariant differential operators on X.
Harish-Chandra homomorphism of Knop: an isomorphism between $\mathbb{D}(X)$ and $S\left(\mathfrak{a}_{\emptyset}\right)^{W_{X}}$ where W_{X} is the group generated by the reflections around elements of $S \subset \mathfrak{a}_{\emptyset}^{*}$.
Beuzart-Plessis has related this homomorphism to a one he defined few years ago, which is given in terms of a subquotient of the enveloping algebra of LieP . This is quite important for us.
More generally $\mathbb{D}\left(X_{l}\right)$ is isomorphic to $S\left(\mathfrak{a}_{\emptyset}\right)^{W_{l}}$ where W_{l} is generated by the reflections corresponding to elements of I.

5 Invariant differential operators

$\mathbb{D}(X)$: algebra of G-invariant differential operators on X.
Harish-Chandra homomorphism of Knop: an isomorphism between $\mathbb{D}(X)$ and $S\left(\mathfrak{a}_{\emptyset}\right)^{W_{X}}$ where W_{X} is the group generated by the reflections around elements of $S \subset \mathfrak{a}_{\emptyset}^{*}$.
Beuzart-Plessis has related this homomorphism to a one he defined few years ago, which is given in terms of a subquotient of the enveloping algebra of $\mathrm{Lie} P$. This is quite important for us.
More generally $\mathbb{D}\left(X_{l}\right)$ is isomorphic to $S\left(\mathfrak{a}_{\emptyset}\right)^{W_{l}}$ where W_{l} is generated by the reflections corresponding to elements of I. The autoadjoint part of $\mathbb{D}\left(X_{l}\right)$ acts by essentially selfadjoint operators on $L^{2}\left(X_{l}\right)$ with common core the space of C^{∞}-vectors of this representation of G.

5 Invariant differential operators

$\mathbb{D}(X)$: algebra of G-invariant differential operators on X.
Harish-Chandra homomorphism of Knop: an isomorphism between $\mathbb{D}(X)$ and $S\left(\mathfrak{a}_{\emptyset}\right)^{W_{X}}$ where W_{X} is the group generated by the reflections around elements of $S \subset \mathfrak{a}_{\emptyset}^{*}$.
Beuzart-Plessis has related this homomorphism to a one he defined few years ago, which is given in terms of a subquotient of the enveloping algebra of $\mathrm{Lie} P$. This is quite important for us.
More generally $\mathbb{D}\left(X_{l}\right)$ is isomorphic to $S\left(\mathfrak{a}_{\emptyset}\right)^{W_{l}}$ where W_{l} is generated by the reflections corresponding to elements of I.
The autoadjoint part of $\mathbb{D}\left(X_{I}\right)$ acts by essentially selfadjoint operators on $L^{2}\left(X_{l}\right)$ with common core the space of C^{∞}-vectors of this representation of G. This allows joint spectral decomposition.

6 Spectral projections, Bernstein morphisms

Together with the conjecture and the description of $\mathbb{D}\left(X_{l}\right)$ above, this allows us to show that $L^{2}\left(X_{l}\right)_{t d}$ is the image of the spectral projection of $\mathbb{D}\left(X_{l}\right)$ attached to some part of its spectrum.

6 Spectral projections, Bernstein morphisms

Together with the conjecture and the description of $\mathbb{D}\left(X_{l}\right)$ above, this allows us to show that $L^{2}\left(X_{l}\right)_{t d}$ is the image of the spectral projection of $\mathbb{D}\left(X_{l}\right)$ attached to some part of its spectrum. For this, we use a property of spectral projections of type I groups, whose proof was given to me by Alain Connes. It says that, under some hypothesis:

6 Spectral projections, Bernstein morphisms

Together with the conjecture and the description of $\mathbb{D}\left(X_{l}\right)$ above, this allows us to show that $L^{2}\left(X_{l}\right)_{t d}$ is the image of the spectral projection of $\mathbb{D}\left(X_{l}\right)$ attached to some part of its spectrum. For this, we use a property of spectral projections of type I groups, whose proof was given to me by Alain Connes. It says that, under some hypothesis: the spectral projection for an Hilbert integral of representations is the Hilbert integral of the spectral projections.

6 Spectral projections, Bernstein morphisms

Together with the conjecture and the description of $\mathbb{D}\left(X_{l}\right)$ above, this allows us to show that $L^{2}\left(X_{l}\right)_{t d}$ is the image of the spectral projection of $\mathbb{D}\left(X_{l}\right)$ attached to some part of its spectrum. For this, we use a property of spectral projections of type I groups, whose proof was given to me by Alain Connes. It says that, under some hypothesis: the spectral projection for an Hilbert integral of representations is the Hilbert integral of the spectral projections. This ensures measurabily of $L^{2}\left(X_{I}, \lambda\right)_{t d}$ in λ.

6 Spectral projections, Bernstein morphisms

Together with the conjecture and the description of $\mathbb{D}\left(X_{l}\right)$ above, this allows us to show that $L^{2}\left(X_{l}\right)_{t d}$ is the image of the spectral projection of $\mathbb{D}\left(X_{l}\right)$ attached to some part of its spectrum. For this, we use a property of spectral projections of type I groups, whose proof was given to me by Alain Connes. It says that, under some hypothesis: the spectral projection for an Hilbert integral of representations is the Hilbert integral of the spectral projections. This ensures measurabily of $L^{2}\left(X_{I}, \lambda\right)_{t d}$ in λ. Bernstein morphisms are G-maps $i_{l}: L^{2}\left(X_{l}\right) \rightarrow L^{2}(X)$ given in the Plancherel isomorphisms (0.1) and (0.2) by the following Hilbert integrals of operators (D., Knop, Kroetz, Schlichtkrull):

6 Spectral projections, Bernstein morphisms

Together with the conjecture and the description of $\mathbb{D}\left(X_{l}\right)$ above, this allows us to show that $L^{2}\left(X_{l}\right)_{t d}$ is the image of the spectral projection of $\mathbb{D}\left(X_{l}\right)$ attached to some part of its spectrum. For this, we use a property of spectral projections of type I groups, whose proof was given to me by Alain Connes. It says that, under some hypothesis: the spectral projection for an Hilbert integral of representations is the Hilbert integral of the spectral projections. This ensures measurabily of $L^{2}\left(X_{I}, \lambda\right)_{t d}$ in λ. Bernstein morphisms are G-maps $i_{l}: L^{2}\left(X_{l}\right) \rightarrow L^{2}(X)$ given in the Plancherel isomorphisms (0.1) and (0.2) by the following Hilbert integrals of operators (D., Knop, Kroetz, Schlichtkrull):

$$
\int_{\hat{G}}^{\oplus} i_{I, \pi} d \mu(\pi): \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{I, \pi} d \mu(\pi) \rightarrow \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi)
$$

where $i_{I, \pi}=I d_{\mathcal{H}_{\pi}} \otimes j_{I, \pi}$. Recall $j_{I, \pi}: \mathcal{M}_{I, \pi} \rightarrow \mathcal{M}_{\pi}$.

6 Spectral projections, Bernstein morphisms

Together with the conjecture and the description of $\mathbb{D}\left(X_{l}\right)$ above, this allows us to show that $L^{2}\left(X_{l}\right)_{t d}$ is the image of the spectral projection of $\mathbb{D}\left(X_{l}\right)$ attached to some part of its spectrum. For this, we use a property of spectral projections of type I groups, whose proof was given to me by Alain Connes. It says that, under some hypothesis: the spectral projection for an Hilbert integral of representations is the Hilbert integral of the spectral projections. This ensures measurabily of $L^{2}\left(X_{I}, \lambda\right)_{t d}$ in λ. Bernstein morphisms are G-maps $i_{l}: L^{2}\left(X_{l}\right) \rightarrow L^{2}(X)$ given in the Plancherel isomorphisms (0.1) and (0.2) by the following Hilbert integrals of operators (D., Knop, Kroetz, Schlichtkrull):

$$
\int_{\hat{G}}^{\oplus} i_{I, \pi} d \mu(\pi): \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{I, \pi} d \mu(\pi) \rightarrow \int_{\hat{G}}^{\oplus} \mathcal{H}_{\pi} \otimes \mathcal{M}_{\pi} d \mu(\pi)
$$

where $i_{I, \pi}=I d_{\mathcal{H}_{\pi}} \otimes j_{I, \pi}$. Recall $j_{I, \pi}: \mathcal{M}_{I, \pi} \rightarrow \mathcal{M}_{\pi}$.
The Bernstein morphisms are abstract versions of wave packets of Eisenstein integrals of Harish-Chandra: abstract because the maps $j_{I, \pi}: \mathcal{M}_{I, \pi} \rightarrow \mathcal{M}_{\pi}$ are not explicit.

7 Scattering operators

7 Scattering operators

In D., Knop, Kroetz, Schlichtkrull, it has been shown that: $\sum_{l \subset S} i_{l}\left(L^{2}\left(X_{l}\right)_{t d}\right)=L^{2}(X)$.

7 Scattering operators

In D., Knop, Kroetz, Schlichtkrull, it has been shown that: $\sum_{l \subset S} i_{l}\left(L^{2}\left(X_{l}\right)_{t d}\right)=L^{2}(X)$.
$I, J \subset S$. Define $i_{I, t d}$: restriction of i_{I} to $L^{2}\left(X_{I}\right)_{t d}$.

7 Scattering operators

In D., Knop, Kroetz, Schlichtkrull, it has been shown that:
$\sum_{l \subset S} i_{l}\left(L^{2}\left(X_{l}\right)_{t d}\right)=L^{2}(X)$.
$I, J \subset S$. Define $i_{l, t d}$: restriction of i_{l} to $L^{2}\left(X_{I}\right)_{t d}$. Using spectral projections for $Z(\mathfrak{g})$, and decomposition of $L^{2}\left(X_{l}\right)_{t d}$ (resp. $\left.L^{2}\left(X_{J}\right)_{t d}\right)$ in $\mathbb{D}\left(X_{l}\right)$ (resp. $\mathbb{D}\left(X_{J}\right)$)-eigenspaces, using the properties of the real part of the infinitesimal character of $t d$ and the conjecture, one shows that:

7 Scattering operators

In D., Knop, Kroetz, Schlichtkrull, it has been shown that:
$\sum_{l \subset S} i_{l}\left(L^{2}\left(X_{l}\right)_{t d}\right)=L^{2}(X)$.
$I, J \subset S$. Define $i_{I, t d}$: restriction of i_{I} to $L^{2}\left(X_{I}\right)_{t d}$. Using spectral projections for $Z(\mathfrak{g})$, and decomposition of $L^{2}\left(X_{l}\right)_{t d}$ (resp.
$\left.L^{2}\left(X_{J}\right)_{t d}\right)$ in $\mathbb{D}\left(X_{I}\right)$ (resp. $\mathbb{D}\left(X_{J}\right)$)-eigenspaces, using the properties of the real part of the infinitesimal character of $t d$ and the conjecture, one shows that:

The G-equivariant map $i_{J, t d}^{*} \circ i_{l, t d}$ from $L^{2}\left(X_{l}\right)_{t d}$ to $L^{2}\left(X_{J}\right)_{t d}$ is non zero if and only if I and J are conjugated by W_{X}, which will be denoted by $I \approx J$.

7 Scattering operators

In D., Knop, Kroetz, Schlichtkrull, it has been shown that:
$\sum_{l \subset S} i_{l}\left(L^{2}\left(X_{l}\right)_{t d}\right)=L^{2}(X)$.
$I, J \subset S$. Define $i_{I, t d}$: restriction of i_{I} to $L^{2}\left(X_{I}\right)_{t d}$. Using spectral projections for $Z(\mathfrak{g})$, and decomposition of $L^{2}\left(X_{l}\right)_{t d}$ (resp.
$\left.L^{2}\left(X_{J}\right)_{t d}\right)$ in $\mathbb{D}\left(X_{I}\right)$ (resp. $\mathbb{D}\left(X_{J}\right)$)-eigenspaces, using the properties of the real part of the infinitesimal character of $t d$ and the conjecture, one shows that:

The G-equivariant map $i_{J, t d}^{*} \circ i_{l, t d}$ from $L^{2}\left(X_{l}\right)_{t d}$ to $L^{2}\left(X_{J}\right)_{t d}$ is non zero if and only if I and J are conjugated by W_{X}, which will be denoted by $I \approx J$.
Again, using spectral projections but for A_{j}^{0} and A_{j}^{0}, it is relatively easy to see that if $I \approx J, \exists$ operators (scattering operators) $S_{\mathfrak{w}}:: L^{2}\left(X_{I}\right)_{t d} \rightarrow L^{2}\left(X_{J}\right)_{t d}, \mathfrak{w}$ in the set $W_{l, J}$ of elements of W_{X} which conjugate \mathfrak{a}_{l} to \mathfrak{a}_{J}, such that:

7 Scattering operators

In D., Knop, Kroetz, Schlichtkrull, it has been shown that:
$\sum_{l \subset S} i_{l}\left(L^{2}\left(X_{l}\right)_{t d}\right)=L^{2}(X)$.
$I, J \subset S$. Define $i_{I, t d}$: restriction of i_{I} to $L^{2}\left(X_{I}\right)_{t d}$. Using spectral projections for $Z(\mathfrak{g})$, and decomposition of $L^{2}\left(X_{l}\right)_{t d}$ (resp.
$\left.L^{2}\left(X_{J}\right)_{t d}\right)$ in $\mathbb{D}\left(X_{I}\right)$ (resp. $\mathbb{D}\left(X_{J}\right)$)-eigenspaces, using the properties of the real part of the infinitesimal character of $t d$ and the conjecture, one shows that:

The G-equivariant map $i_{J, t d}^{*} \circ i_{l, t d}$ from $L^{2}\left(X_{l}\right)_{t d}$ to $L^{2}\left(X_{J}\right)_{t d}$ is non zero if and only if I and J are conjugated by W_{X}, which will be denoted by $I \approx J$.
Again, using spectral projections but for A_{j}^{0} and A_{j}^{0}, it is relatively easy to see that if $I \approx J, \exists$ operators (scattering operators) $S_{\mathfrak{w}}:: L^{2}\left(X_{l}\right)_{t d} \rightarrow L^{2}\left(X_{J}\right)_{t d}, \mathfrak{w}$ in the set $W_{l, J}$ of elements of W_{X} which conjugate \mathfrak{a}_{l} to \mathfrak{a}_{J}, such that:

$$
\begin{equation*}
i_{J, t d}^{*} \circ i_{l, t d}=\sum_{\mathfrak{w} \in W_{l, J}} S_{\mathfrak{w}} \tag{0.5}
\end{equation*}
$$

$$
S_{\mathfrak{w}} r\left(a_{l}\right) f=r\left(a_{l}^{\mathfrak{w}}\right) S_{\mathfrak{w}} f, \mathfrak{w} \in W_{l, J}, f \in L^{2}\left(X_{l}\right)_{t d}, a_{l} \in A_{l}^{0}
$$

where the r denote the right normalized, hence unitary, actions of A_{l}^{0} and A_{j}^{0}.

$$
S_{\mathfrak{w}} r\left(a_{l}\right) f=r\left(a_{l}^{\mathfrak{w}}\right) S_{\mathfrak{w}} f, \mathfrak{w} \in W_{l, J}, f \in L^{2}\left(X_{l}\right)_{t d}, a_{l} \in A_{l}^{0}
$$

where the r denote the right normalized, hence unitary, actions of A_{l}^{0} and A_{j}^{0}.
Theorem: The scattering operators $S_{\mathfrak{w}}$ are unitary.

$$
S_{\mathfrak{w}} r\left(a_{l}\right) f=r\left(a_{l}^{\mathfrak{w}}\right) S_{\mathfrak{w}} f, \mathfrak{w} \in W_{l, J}, f \in L^{2}\left(X_{l}\right)_{t d}, a_{l} \in A_{l}^{0}
$$

where the r denote the right normalized, hence unitary, actions of A_{l}^{0} and A_{j}^{0}.
Theorem: The scattering operators $S_{\mathfrak{w}}$ are unitary.
We will try, if time allows, to give some ingredient of the proof, after stating the main result, which follows from this unitarity, as in the work of Sakellaridis and Venkatesh.

9 Main Theorem

(i) If $I, J, K \subset S, I \approx J \approx K$:

$$
i_{J, t d} \circ S_{\mathfrak{w}}=i_{l, t d}, \mathfrak{w} \in W_{l, J} .
$$

9 Main Theorem

(i) If $I, J, K \subset S, I \approx J \approx K$:

$$
i_{J, t d} \circ S_{\mathfrak{w}}=i_{l, t d}, \mathfrak{w} \in W_{l, J}
$$

$S_{\mathfrak{w}} \circ S_{\mathfrak{w}}=S_{\mathfrak{w w}^{\prime}}, \mathfrak{w} \in W_{J, K}, \mathfrak{w}^{\prime} \in W_{I, J}$.

9 Main Theorem

(i) If $I, J, K \subset S, I \approx J \approx K$:

$$
i_{J, t d} \circ S_{\mathfrak{w}}=i_{l, t d}, \mathfrak{w} \in W_{l, J}
$$

$S_{\mathfrak{w}} \circ S_{\mathfrak{w}^{\prime}}=S_{\mathfrak{w} \mathfrak{w}^{\prime}}, \mathfrak{w} \in W_{J, K}, \mathfrak{w}^{\prime} \in W_{l, J}$.

$$
i_{J, t d}^{*} \circ i_{l, t d}=\sum_{\mathfrak{w} \in W_{l, J}} S_{\mathfrak{w}}
$$

9 Main Theorem

(i) If $I, J, K \subset S, I \approx J \approx K$:

$$
i_{J, t d} \circ S_{\mathfrak{w}}=i_{l, t d}, \mathfrak{w} \in W_{l, J} .
$$

$$
S_{\mathfrak{w}} \circ S_{\mathfrak{w}}=S_{\mathfrak{w} \mathfrak{w}^{\prime}}, \mathfrak{w} \in W_{J, K}, \mathfrak{w}^{\prime} \in W_{I, J}
$$

$$
i_{J, t d}^{*} \circ i_{l, t d}=\sum_{\mathfrak{w} \in W_{l, J}} S_{\mathfrak{w}} .
$$

(ii) Let $c(I)$ be equal to $\sum_{J \approx I} \operatorname{Card}_{I, J}$. Then the map

$$
\sum_{I \subset S} \frac{i_{l, t d}^{*}}{\sqrt{c(I)}}: L^{2}(X) \rightarrow \oplus I \subset S L^{2}\left(X_{l}\right)_{t d}
$$

9 Main Theorem

(i) If $I, J, K \subset S, I \approx J \approx K$:

$$
i_{J, t d} \circ S_{\mathfrak{w}}=i_{l, t d}, \mathfrak{w} \in W_{l, J} .
$$

$$
S_{\mathfrak{w}} \circ S_{\mathfrak{w}^{\prime}}=S_{\mathfrak{w w}}, \mathfrak{w} \in W_{J, K}, \mathfrak{w}^{\prime} \in W_{l, J} .
$$

$$
i_{J, t d}^{*} \circ i_{l, t d}=\sum_{\mathfrak{w} \in W_{l, J}} S_{\mathfrak{w}}
$$

(ii) Let $c(I)$ be equal to $\sum_{J \approx I} C a r d W_{l, J}$. Then the map

$$
\sum_{I \subset S} \frac{i_{l, t d}^{*}}{\sqrt{c(I)}}: L^{2}(X) \rightarrow \oplus \not \subset \subseteq L^{2}\left(X_{l}\right)_{t d}
$$

is an isometric isomorphism onto the subspace of

$$
\left(f_{l}\right) \in \oplus \not \subset S L^{2}\left(X_{l}\right)_{t d}
$$

satysfying :

$$
S_{\mathfrak{w}} f_{l}=f_{J}, \mathfrak{w} \in W_{l, J}
$$

10 Main tools: Special coverings

Sakellaridis and Venkatesh were looking to restriction of functions on X to neighborhoods of infinity in a smooth compactification of X.

10 Main tools: Special coverings

Sakellaridis and Venkatesh were looking to restriction of functions on X to neighborhoods of infinity in a smooth compactification of X. These neighborhoods were obtained by gluing open sets given by the Local Structure Theorem of this compactification: the gluing process does not work in the real case.

10 Main tools: Special coverings

Sakellaridis and Venkatesh were looking to restriction of functions on X to neighborhoods of infinity in a smooth compactification of X. These neighborhoods were obtained by gluing open sets given by the Local Structure Theorem of this compactification: the gluing process does not work in the real case. Instead we will use coverings of X by open sets built also from the Local Structure Theorem and introduce approximate partitions by a surgery on these coverings.

10 Main tools: Special coverings

Sakellaridis and Venkatesh were looking to restriction of functions on X to neighborhoods of infinity in a smooth compactification of X. These neighborhoods were obtained by gluing open sets given by the Local Structure Theorem of this compactification: the gluing process does not work in the real case. Instead we will use coverings of X by open sets built also from the Local Structure Theorem and introduce approximate partitions by a surgery on these coverings. One trims orbits in a smooth compactification of X by open sets given by the local structure theorem starting with the closed ones.
For simplicity one assume also that X has a wonderful G-equivariant compactification \bar{X} :

10 Main tools: Special coverings

Sakellaridis and Venkatesh were looking to restriction of functions on X to neighborhoods of infinity in a smooth compactification of X. These neighborhoods were obtained by gluing open sets given by the Local Structure Theorem of this compactification: the gluing process does not work in the real case. Instead we will use coverings of X by open sets built also from the Local Structure Theorem and introduce approximate partitions by a surgery on these coverings. One trims orbits in a smooth compactification of X by open sets given by the local structure theorem starting with the closed ones.
For simplicity one assume also that X has a wonderful G-equivariant compactification \bar{X} :
G-orbits in \bar{X} in bijection with $I \subset S: Y_{I}$.

10 Main tools: Special coverings

Sakellaridis and Venkatesh were looking to restriction of functions on X to neighborhoods of infinity in a smooth compactification of X. These neighborhoods were obtained by gluing open sets given by the Local Structure Theorem of this compactification: the gluing process does not work in the real case. Instead we will use coverings of X by open sets built also from the Local Structure Theorem and introduce approximate partitions by a surgery on these coverings. One trims orbits in a smooth compactification of X by open sets given by the local structure theorem starting with the closed ones.
For simplicity one assume also that X has a wonderful G-equivariant compactification \bar{X} :
G-orbits in \bar{X} in bijection with $I \subset S: Y_{I}$. Then the boundary degeneration X_{I} is the open G-orbit in the normal bundle of Y_{I} in \bar{X}.

10 Main tools: Special coverings

Sakellaridis and Venkatesh were looking to restriction of functions on X to neighborhoods of infinity in a smooth compactification of X. These neighborhoods were obtained by gluing open sets given by the Local Structure Theorem of this compactification: the gluing process does not work in the real case. Instead we will use coverings of X by open sets built also from the Local Structure Theorem and introduce approximate partitions by a surgery on these coverings. One trims orbits in a smooth compactification of X by open sets given by the local structure theorem starting with the closed ones.
For simplicity one assume also that X has a wonderful G-equivariant compactification \bar{X} :
G-orbits in \bar{X} in bijection with $I \subset S: Y_{I}$. Then the boundary degeneration X_{I} is the open G-orbit in the normal bundle of Y_{I} in \bar{X}.
One ends up with a covering of X by a finite family of open sets of $X, U_{\mathfrak{i}}=U_{I, \mathfrak{i}, \varepsilon_{l}}, I \subset S, \mathfrak{i} \in \mathfrak{I}, \varepsilon_{l}$ measures the proximity to the boundary orbit Y_{1}.

11 Main tools: Main inequality, Approximate partition

In particular, U_{i} is a subset of a translate of the open P-orbit in X which identifies with the same translate of the open P-orbit in each boundary degeneration of X. In particular the constant terms of the restriction f_{i} of f to U_{i} might be viewed as functions on U_{i}.
f_{i} might be viewed as a sum of alternate sums of constant terms of f_{i}. And there is an inequality, that we call Main inequality for these alternate sums.

11 Main tools: Main inequality, Approximate partition

In particular, U_{i} is a subset of a translate of the open P-orbit in X which identifies with the same translate of the open P-orbit in each boundary degeneration of X. In particular the constant terms of the restriction f_{i} of f to U_{i} might be viewed as functions on U_{i}.
f_{i} might be viewed as a sum of alternate sums of constant terms of f_{i}. And there is an inequality, that we call Main inequality for these alternate sums.
Then elementary analysis is used like the Plancherel formula for \mathbb{R}^{r}.

11 Main tools: Main inequality, Approximate partition

 In particular, U_{i} is a subset of a translate of the open P-orbit in X which identifies with the same translate of the open P-orbit in each boundary degeneration of X. In particular the constant terms of the restriction f_{i} of f to U_{i} might be viewed as functions on U_{i}.f_{i} might be viewed as a sum of alternate sums of constant terms of f_{i}. And there is an inequality, that we call Main inequality for these alternate sums.
Then elementary analysis is used like the Plancherel formula for \mathbb{R}^{r}. At the end it is necessary to introduce $U_{\mathrm{i}, p}, \mathfrak{i} \in \mathfrak{I}, p \in \mathbb{N}$, such that

$$
\cup_{\in \mathfrak{I}} U_{i} \subset \cup_{i \in \mathcal{I}} U_{i, p},
$$

11 Main tools: Main inequality, Approximate partition

 In particular, U_{i} is a subset of a translate of the open P-orbit in X which identifies with the same translate of the open P-orbit in each boundary degeneration of X. In particular the constant terms of the restriction f_{i} of f to U_{i} might be viewed as functions on U_{i}.f_{i} might be viewed as a sum of alternate sums of constant terms of f_{i}. And there is an inequality, that we call Main inequality for these alternate sums.
Then elementary analysis is used like the Plancherel formula for \mathbb{R}^{r}. At the end it is necessary to introduce $U_{\mathrm{i}, p}, \mathfrak{i} \in \mathfrak{I}, p \in \mathbb{N}$, such that

$$
\cup_{\in \mathfrak{I}} U_{i} \subset \cup_{i \in \mathcal{I}} U_{i, p},
$$

and when p tends to ∞ the $U_{i, p}, \mathfrak{i} \in \mathfrak{I}$ becomes approximately disjoint.

11 Main tools: Main inequality, Approximate partition

 In particular, U_{i} is a subset of a translate of the open P-orbit in X which identifies with the same translate of the open P-orbit in each boundary degeneration of X. In particular the constant terms of the restriction f_{i} of f to U_{i} might be viewed as functions on U_{i}.f_{i} might be viewed as a sum of alternate sums of constant terms of f_{i}. And there is an inequality, that we call Main inequality for these alternate sums.
Then elementary analysis is used like the Plancherel formula for \mathbb{R}^{r}. At the end it is necessary to introduce $U_{\mathrm{i}, p}, \mathfrak{i} \in \mathfrak{I}, p \in \mathbb{N}$, such that

$$
\cup_{\in \mathfrak{J}} U_{i} \subset \cup_{i \in \mathcal{I}} U_{i, p},
$$

and when p tends to ∞ the $U_{i, p}, \mathfrak{i} \in \mathfrak{I}$ becomes approximately disjoint. This is to avoid overlaps when summing integrals over the U_{i}.

11 Main tools: Main inequality, Approximate partition

 In particular, U_{i} is a subset of a translate of the open P-orbit in X which identifies with the same translate of the open P-orbit in each boundary degeneration of X. In particular the constant terms of the restriction f_{i} of f to U_{i} might be viewed as functions on U_{i}.f_{i} might be viewed as a sum of alternate sums of constant terms of f_{i}. And there is an inequality, that we call Main inequality for these alternate sums.
Then elementary analysis is used like the Plancherel formula for \mathbb{R}^{r}. At the end it is necessary to introduce $U_{i, p}, \mathfrak{i} \in \mathfrak{I}, p \in \mathbb{N}$, such that

$$
\cup_{\in \mathcal{I}} U_{i} \subset \cup_{i \in \mathcal{I}} U_{i, p},
$$

and when p tends to ∞ the $U_{i, p}, \mathfrak{i} \in \mathfrak{I}$ becomes approximately disjoint. This is to avoid overlaps when summing integrals over the U_{i}.
This leads to the unitarity of scattering operators.
The Main Theorem follows easily.

