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G = G (R), G reductive, split over R, P a Borel subgroup of G . X
real spherical G -variety i.e. P has an open orbit in X , with
invariant measure.

Simplifying hypothesis: P has a unique open P-orbit, Px0 in
X . Then if H stabilizer of x0 in G , X ≈ G/H.
Abstract Plancherel formula:

L2(X ) '
∫ ⊕
Ĝ
Hπ ⊗Mπdµ(π) (0.1)

where µ is a Borel measure on the unitary dual Ĝ of G ,
(π,Hπ) continuous unitary irreducible representation of G ,
Mπ finite dimensional space endowed with a scalar product and
contained in the space H−∞,Hπ,temp of tempered, in a suitable sense,
H-fixed distribution vectors of π.
Goal : Explicit this formula up to the the twisted discrete
spectrum of the boundary degenerations of X .
Strategy due to Sakellaridis and Venkatesh in the p-adic case:
introduce Bernstein maps (D., Knop, Kroetz, Schlichtkrull over R)
and then, with the help of an analog of their Discrete Series
Conjecture, introduce scattering operators and prove their unitarity.
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Ĝ
Hπ ⊗Mπdµ(π) (0.1)

where µ is a Borel measure on the unitary dual Ĝ of G ,
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With X and P comes a (nonunique) maximal split torus A in P,
A∅ := A/A ∩ H, S the finite set of simple spherical roots (some
rational characters of A∅).

For I ⊂ S , XI = G/HI , a boundary
degeneration of X where HI is some subgroup of G .
A0
I , the neutral component of the Lie group AI := ∩α∈IKerα, acts

on XI by right translation commuting to the action of G .
Z (g): center of the complex enveloping algebra of g.
The theory of the constant term (D., Kroetz, Souaifi): a map
f 7→ fI between Z (g)-finite tempered functions on X and XI .
It allows us to define a map:

j∗I ,π : H−∞,Hπ,temp → H
−∞,HI
π,temp , η 7→ ηI .

Note that A0
I acts on H−∞,HI

π,temp . One has the Plancherel formula
for XI from the one for X .

L2(XI ) '
∫ ⊕
Ĝ
Hπ ⊗MI ,πdµ(π), (0.2)

where for almost all π, MI ,π is the A0
I -span of j∗I ,π(Mπ).The scalar

product on MI ,π is obtained by some process of limit from Mπ.
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3 Maass-Selberg relations (D., Knop, Kroetz,
Schlichtkrull)

The Maass-Selberg relations: Let χ ∈ ˆ(A0
I ) and Mχ

I ,π be the
corresponding weight space of MI ,π.

Then for µ-almost all

π ∈ Ĝ , the restriction to Mχ
I ,π of the adjoint

jI ,π :Mχ
I ,π →M

χ
π of j∗I ,π is isometric.

aI = LieAI , λ ∈ ia∗I , L2(XI , λ): unitarily induced representation to
G of the character of HIA

0
I trivial on HI and whose differential on

A0
I is λ.

L2(XI , λ)td : discrete spectrum of L2(XI , λ). Twisted discrete series
or td : irreducible subrepresentations of L2(XI , λ).
One can define:

L2(XI )td :=

∫ ⊕
ia∗I

L2(XI , λ)tddλ.(measurability issue, see below)

(0.3)
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L2(XI , λ)tddλ.(measurability issue, see below)

(0.3)



4 Analog of the Discrete Series conjecture of Sakellaridis
and Venkatesh

From Krötz, Kuit, Opdam and Schlichtkrull, the real part of the
Harish–Chandra parameters of infinitesimal characters of twisted
discrete series are contained in a lattice.
Conjecture ( analog of the Discrete Series conjecture of
Sakellaridis and Venkatesh) For I ⊂ S and almost all λ ∈ ia∗I and
all td in L2(XI , λ)td , there exists a Harish-Chandra parameter
of the infinitesimal character of this td whose imaginary part
is λ.
The conjecture is true in many cases for I = S given by real
analogs of cases given by Sakellaridis-Venkatesh in the p-adic case.
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5 Invariant differential operators

D(X ): algebra of G -invariant differential operators on X .

Harish-Chandra homomorphism of Knop: an isomorphism
between D(X ) and S(a∅)

WX where WX is the group generated by
the reflections around elements of S ⊂ a∗∅.
Beuzart-Plessis has related this homomorphism to a one he
defined few years ago, which is given in terms of a
subquotient of the enveloping algebra of LieP. This is quite
important for us.
More generally D(XI ) is isomorphic to S(a∅)

WI where WI is
generated by the reflections corresponding to elements of I .
The autoadjoint part of D(XI ) acts by essentially selfadjoint
operators on L2(XI ) with common core the space of C∞-vectors of
this representation of G . This allows joint spectral
decomposition.
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6 Spectral projections, Bernstein morphisms
Together with the conjecture and the description of D(XI ) above,
this allows us to show that L2(XI )td is the image of the spectral
projection of D(XI ) attached to some part of its spectrum.

For this, we use a property of spectral projections of type I groups,
whose proof was given to me by Alain Connes. It says that, under
some hypothesis: the spectral projection for an Hilbert
integral of representations is the Hilbert integral of the
spectral projections.This ensures measurabily of L2(XI , λ)td in λ.
Bernstein morphisms are G -maps iI : L2(XI )→ L2(X ) given in
the Plancherel isomorphisms (0.1) and (0.2) by the following
Hilbert integrals of operators (D., Knop, Kroetz, Schlichtkrull):∫ ⊕

Ĝ
iI ,πdµ(π) :

∫ ⊕
Ĝ
Hπ ⊗MI ,πdµ(π)→

∫ ⊕
Ĝ
Hπ ⊗Mπdµ(π),

where iI ,π = IdHπ ⊗ jI ,π. Recall jI ,π :MI ,π →Mπ.
The Bernstein morphisms are abstract versions of wave packets of
Eisenstein integrals of Harish-Chandra: abstract because the maps
jI ,π :MI ,π →Mπ are not explicit.
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7 Scattering operators

In D., Knop, Kroetz, Schlichtkrull, it has been shown that:∑
I⊂S iI (L

2(XI )td) = L2(X ).
I , J ⊂ S . Define iI ,td : restriction of iI to L2(XI )td . Using spectral
projections for Z (g), and decomposition of L2(XI )td (resp.
L2(XJ)td) in D(XI ) (resp. D(XJ))-eigenspaces, using the properties
of the real part of the infinitesimal character of td and the
conjecture, one shows that:

The G -equivariant map i∗J,td ◦ iI ,td from L2(XI )td to

L2(XJ)td is non zero if and only if I and J are conjugated
by WX , which will be denoted by I ≈ J.

(0.4)

Again, using spectral projections but for A0
I and A0

J , it is relatively
easy to see that if I ≈ J, ∃ operators (scattering operators)
Sw :: L2(XI )td → L2(XJ)td , w in the set WI ,J of elements of WX

which conjugate aI to aJ , such that:

i∗J,td ◦ iI ,td =
∑

w∈WI ,J

Sw, (0.5)

and
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Swr(aI )f = r(awI )Swf ,w ∈WI ,J , f ∈ L2(XI )td , aI ∈ A0
I

where the r denote the right normalized, hence unitary, actions of
A0
I and A0

J .

Theorem: The scattering operators Sw are unitary.
We will try, if time allows, to give some ingredient of the proof,
after stating the main result, which follows from this unitarity, as
in the work of Sakellaridis and Venkatesh.
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9 Main Theorem
(i) If I , J,K ⊂ S , I ≈ J ≈ K :

iJ,td ◦ Sw = iI ,td ,w ∈WI ,J .

Sw ◦ Sw′ = Sww′ ,w ∈WJ,K ,w
′ ∈WI ,J .

i∗J,td ◦ iI ,td =
∑

w∈WI ,J

Sw.

(ii) Let c(I ) be equal to
∑

J≈I CardWI ,J . Then the map∑
I⊂S

i∗I ,td√
c(I )

: L2(X )→ ⊕I⊂SL
2(XI )td

is an isometric isomorphism onto the subspace of

(fI ) ∈ ⊕I⊂SL
2(XI )td

satysfying :
SwfI = fJ ,w ∈WI ,J .
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10 Main tools: Special coverings
Sakellaridis and Venkatesh were looking to restriction of functions
on X to neighborhoods of infinity in a smooth compactification of
X .

These neighborhoods were obtained by gluing open sets given
by the Local Structure Theorem of this compactification: the
gluing process does not work in the real case.
Instead we will use coverings of X by open sets built also from the
Local Structure Theorem and introduce approximate partitions by
a surgery on these coverings. One trims orbits in a smooth
compactification of X by open sets given by the local structure
theorem starting with the closed ones.
For simplicity one assume also that X has a wonderful
G -equivariant compactification X :
G -orbits in X in bijection with I ⊂ S : YI . Then the boundary
degeneration XI is the open G -orbit in the normal bundle of YI in
X .
One ends up with a covering of X by a finite family of open sets of
X , Ui = UI ,i,εI , I ⊂ S , i ∈ I, εI measures the proximity to the
boundary orbit YI .
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11 Main tools: Main inequality, Approximate partition
In particular, Ui is a subset of a translate of the open P-orbit
in X which identifies with the same translate of the open
P-orbit in each boundary degeneration of X . In particular the
constant terms of the restriction fi of f to Ui might be viewed as
functions on Ui.
fi might be viewed as a sum of alternate sums of constant
terms of fi. And there is an inequality, that we call Main
inequality for these alternate sums.

Then elementary analysis is used like the Plancherel formula for Rr .
At the end it is necessary to introduce Ui,p, i ∈ I, p ∈ N, such
that

∪∈IUi ⊂ ∪i∈IUi,p,

and when p tends to ∞ the Ui,p, i ∈ I becomes approximately
disjoint.This is to avoid overlaps when summing integrals over the
Ui.
This leads to the unitarity of scattering operators.
The Main Theorem follows easily.
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