

Mathematics Colloquium

Friday, Nov 41973

Speaker: Bill Casselman, University of British Columbia
Title: Deligne's Theory of Differential Equations
Location: Barus \& Holly 157
Time: 4:30 pm
Coffee and cookies at 4pm in Howell House

We are in a forest whose trees will not fall with a few timid hatchet blows. We have to take up the double-bitted axe and the cross-cut saw, and hope that our muscles are equal to them.

Ordinary points mod pof hyperbolic 3-manifolds

Mark Goresky
and Yung Sheng Tai

Pacific J. Math 303 no. 1 (2019), 165-215
Pacific J. Math 303 no. 1 (2019), 217-241
$G=\operatorname{GSp}_{2 \mathrm{n}}$

$$
X=G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{f} K_{\infty}
$$

Complex points of a Shimura variety that parametrizes principally polarized abelian varieties with level structure.
$d<0$ square free, $E=\mathbb{Q}[\sqrt{d}]$ quadratic imaginary, $H=\operatorname{Res}_{E / \mathbb{Q}} \mathrm{GL}_{2}$

$$
Y=H(\mathbb{Q}) \backslash H(\mathbb{A}) / K_{f}^{H} K_{\infty}^{H} \sim \coprod_{j} \Gamma_{j} \backslash \mathcal{H}_{3}
$$

$\Gamma_{j} \sim \mathrm{SL}_{2}\left(\mathcal{O}_{\mathrm{d}}\right), 3$ dimensional hyperbolic manifold,

Given $d<0$ there exists an involution τ_{d} on $G=\operatorname{GSp}_{2 \mathrm{n}}$:

τ_{d} acts on	
$\mathrm{Sp}_{4}(\mathbb{R})$	fixed points
$\mathrm{Sp}_{4}(\mathbb{Q})$	$\mathrm{SL}_{2}(\mathbb{C})$
$\mathrm{Sp}_{4}(\mathbb{Z})$	$\mathrm{SL}_{2}(\mathrm{E})$
$\mathrm{H}_{2}\left(\mathcal{O}_{\mathrm{d}}\right)$	
$G(\mathbb{Q}) \backslash G(\mathbb{A}) / K$	\mathcal{H}_{3}

Which abelian varieties lie over $X^{\tau_{d}}$?

Proposition

The space $X^{\tau_{d}}=\coprod_{i} Y_{i}$ is a coarse moduli space for principally polarized abelian surfaces (A, ω) with level structure and anti-holomorphic multiplication by \mathcal{O}_{d}.
This means:
\sqrt{d} acts anti-holomorphically on A and $\omega(\sqrt{d} x, \sqrt{d} y)=d \omega(x, y)$

A similar story for real structures

There exists an involution τ_{0} on $G=\operatorname{GSp}_{2 \mathrm{n}}$:

τ_{0} acts on	fixed points
$\mathrm{Sp}_{2 \mathrm{n}}(\mathbb{R})$	$\mathrm{GL}_{\mathrm{n}}(\mathbb{R})$
$\mathrm{Sp}_{2 \mathrm{n}}(\mathbb{Q})$	$\mathrm{GL}_{\mathrm{n}}(\mathbb{Q})$
$\mathrm{Sp}_{2 \mathrm{n}}(\mathbb{Z})$	$\mathrm{GL}_{\mathrm{n}}(\mathbb{Z})$
H_{n}	\mathcal{P}_{n}
$G(\mathbb{Q}) \backslash G(\mathbb{A}) / K$	$\coprod_{i} \mathrm{GL}_{\mathrm{n}}(\mathbb{Q}) \backslash \mathrm{GL}_{\mathrm{n}}(\mathbb{A}) / \mathrm{K}_{\mathrm{f}} \mathrm{K}_{\infty}$

Which abelian varieties lie over $X^{\tau_{0}}$?

Proposition

The space $X^{\tau_{0}}=\coprod_{i} Z_{i}$ is a coarse moduli space for principally polarized abelian varieties (A, ω) with anti-holomorphic involution (that is, real abelian varieties).

$$
A=\mathbb{C}^{n} / L \xrightarrow{\tau} \mathbb{C}^{n} / L \quad \text { complex anti-linear }
$$

Reduction $\bmod p$

$$
X=G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{f} K_{\infty}
$$

has good reduction \bar{X} at various primes, which parametrizes principally polarized abelian varieties over \mathbb{F}_{q}.
Kottwitz: sum with $\alpha\left(\gamma_{0} ; \gamma, \delta\right)=1$,

$$
\sum_{\gamma_{0} \in G(\mathbb{Q})} \sum_{\gamma \in G\left(\mathbb{A}_{f}^{p}\right)} \sum_{\delta \in G\left(W_{p}\right)} \operatorname{vol}(* *) \mathrm{c}\left(\gamma_{0} ; \gamma, \delta\right) \mathrm{O}_{\gamma}\left(\mathrm{f}^{\mathrm{p}}\right) \mathrm{TO}_{\delta}\left(\phi_{\mathrm{p}}\right)
$$

What happens to the subset $Y=X^{\tau_{d}}$ when we reduce $\bmod \mathrm{p}$?
Does \bar{Y} parametrize abelian varieties over \mathbb{F}_{q} with anti-holomorphic multiplication?

What is anti-holomorphic?

Suppose A is simple, has complex multiplication, say, by $\mathcal{O} \subset L$ and good reduction \bar{A} over \mathbb{F}_{q}.
The Frobenius Fr_{q} has a lift to an element $\pi \in L \subset \operatorname{End}_{\mathbb{Q}}(A)$
The lift $\pi \in L$ is a Weil q-number:
$\pi \bar{\pi}=q$ for every embedding of $\mathbb{Q}[\pi] \rightarrow \mathbb{C}$.
But $\bar{\pi}=q \pi^{-1}$ is a lift of the Vershiebung on \bar{A}.
Therefore, complex conjugation on \bar{A}, if it is to make sense, should switch the Frobenius and the Vershiebung.

This appears to be nonsense because every morphism will preserve the Frobenius. So we ask:

Q1: Does there exist a "natural" enlargement of the category of abelian varieties over \mathbb{F}_{q} in which there are new morphisms, including morphisms that exchange the Frobenius with the Vershiebung?

Q2: If so, does there exist a "moduli scheme" of Abelian varieties over \mathbb{F}_{q} with complex conjugation? with anti-holomorphic multiplication?

For ordinary abelian varieties there is a good answer to Q1.

Recall: A / \mathbb{F}_{q} is ordinary, $\operatorname{dim}=n$, iff $A[p] \cong(\mathbb{Z} /(p))^{n}$
\Longleftrightarrow characteristic polynomial is an ordinary Weil q-polynomial, (middle coefficient is not divisible by p.)

Theorem of Deligne: There is an equivalence of categories:
$\left\{\right.$ ordinary abelian varieites $/ \mathbb{F}_{q}$, rank $\left.\left.n\right)\right\} \rightarrow\{$ Deligne modules $(T, F)\}$

$$
A \mapsto\left(T_{A}, F_{A}\right)
$$

$T_{A}=$ free abelian group of dimension $2 n$
$F_{A}: T_{A} \rightarrow T_{A}$ char. poly. is an ordinary Weil q-polynomial, there exists $V_{A}: T_{A} \rightarrow T_{A}$ with $F_{A} V_{A}=V_{A} F_{A}=q l$.
[E. Howe]: A polarization $A \rightarrow A^{\vee}$ of corresponds to a rationally nondegenerate symplectic form $\omega: T_{A} \times T_{A} \rightarrow \mathbb{Z}$ with
$\omega\left(T_{A} x, y\right)=\omega\left(x, V_{A} y\right)$ and $R(x, y)=\omega(x, \iota y)$ is symmetric and positive definite.
($\iota=$ totally positive imaginary element of $\mathbb{Q}\left[F_{A}\right]$.)

A morphism $(T, F) \rightarrow\left(T^{\prime} F^{\prime}\right)$ of Deligne modules take F to F^{\prime} but we may consider more general morphisms $T \rightarrow T^{\prime}$.

Definition

Let us say that a real structure on a polarized Deligne module (T, F, ω) is an involution $\tau: T \rightarrow T$ so that

$$
\tau F \tau^{-1}=V, \quad \omega(\tau x, \tau y)=-\omega(x, y)
$$

and anti-holomorphic multiplication is $\mathcal{O}_{d} \rightarrow \operatorname{End}(T)$ such that

$$
\sqrt{d} \circ F=V \circ \sqrt{d}, \quad \omega(\sqrt{d} x, \sqrt{d} y)=d \omega(x, y) .
$$

Proposition

A real structure τ on (T, F, ω) induces involutions τ_{ℓ} on the Tate modules and an involution τ_{p} on the Dieudonné module (that switch F and V).

Theorem

There are finitely many isomorphism classes of: rank $2 n$ principally polarized Deligne modules (T, F, ω, τ)
with real structure, and principal level N structure ($N \geq 3$).
The number is given by a Kottwitz-like formula. replacing $\mathrm{Sp}_{2 \mathrm{n}}$ with GL_{n}.

There are finitely many isomomrphism classes of principally polarized Deligne modules of rank 4, with level N structure and anti-holomorphic multiplication by \mathcal{O}_{d}.
The number is given by a Kottwitz-like formula
replacing $\mathrm{GSp}_{2 \mathrm{n}}$ with $\operatorname{Res}_{E / \mathbb{Q}} G L_{2}$.

Isogeny classes (Honda-Tate)

\mathbb{Q} isogeny classes of abelian varities $/ \mathbb{F}_{q}$
$\leftrightarrow \overline{\mathbb{Q}}$ isogeny classes of polarized abelian varieties $/ \mathbb{F}_{q}$
$\leftrightarrow \overline{\mathbb{Q}}$-conjugacy classes $\gamma_{0} \in \operatorname{GSp}_{2 \mathrm{n}}(\mathbb{Q})$,
semisimple, real elliptic, whose characteristic polynomial is a
Weil q-polynomial. (First sum in K. formula)
$\overline{\mathbb{Q}}$ isogeny classes of "real" polarized Deligne modules
$\leftrightarrow \mathbb{Q}$-conjugacy classes $A \in \mathrm{GL}_{\mathrm{n}}(\mathbb{Q})$
real elliptic semisimple elements whose characteristic polynomial is ordinary and totally real:

$$
b(x)=x^{n}+\cdots+b_{1} x+b_{0}=\prod\left(x-\beta_{i}\right) \in \mathbb{Z}[x]
$$

- ordinary $\left(\Leftrightarrow p \nmid b_{0}\right)$
- totally real ($\Leftrightarrow \beta_{i}$ is totally real)
- $\left|\beta_{i}\right|<\sqrt{q}$.
(In $\mathrm{GL}_{\mathrm{n}}, \mathbb{Q}$-conjugacy $=\overline{\mathbb{Q}}$-conjugacy)

The rest of the formula is also interesting
In the case of anti-holomorphic multiplication, there is
a restriction on the characteristic polynomial of Frobenius.
Is this total nonsense?
Or do these constructions extend to all abelian varieties over \mathbb{F}_{q} ? Presumably a real structure on A / \mathbb{F}_{q} is a collection

$$
\left\{\tau_{\ell}, \tau_{p}\right\}
$$

of involutions of the Tate and Dieudonné modules which exchange Frobenius and Vershiebung with some compatibility condition, perhaps a Kottwitz-like invariant vanishes?

The End?

