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k is a field,

G is a smooth, reductive, linear algebraic group over k , and

G = G(k).

In this talk, k is a p-adic field (finite extension of Qp or FpLtM)

The machinery that is developed in S 2021 to handle the harmonic
analysis described here does not assume that G is connected (so “G
reductive” really means “G◦ reductive”), but so far we need connectedness
for applications
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analysis described here does not assume that G is connected ∗ (so “G
reductive” really means “G◦ reductive”), but so far we need connectedness
for applications

∗ Blame Jeff.
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Hales: p-adic harmonic analysis is not elementary

Specifically,

characters are not elementary and

Fourier transforms of nilpotent orbital integrals are not elementary

(among other things)

Maybe characters are no more non-elementary than Fourier transforms of
orbital integrals
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Harish-Chandra–Howe local character expansion:

Φπ(γ · exp(Y )) =
∑

O∈OH(0)

cO(π, γ)µ̂
H
O(Y ),

where H is the connected centraliser of γ, for Y near 0

“Near” made precise by

DeBacker for γ = 1: G>r , where r is the depth of π; and

Adler–Korman for general γ: depends also on the depths of
non-trivial root values of γ.

How elementary are the coefficients cO(π, γ)? Long-term project of
Gordon–Hales–S
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Murnaghan–Kirillov asymptotic expansion:

Φπ(exp(Y )) =
∑

O∈OG (Γπ)

cO(π)Ô
G
O(Y ),

where Γπ is a semisimple element of g∗ associated to π, for Y near 0

“Near” made precise by Kim–Murnaghan: G≥r , where r is the depth of π
(2003) ∗; or, with a different choice of Γπ, even G>r/2 (2006)

Theorem (S 2018)

Φπ(γ · exp(Y )) =
∑

O∈OH(Γπ)

cO(π, γ)Ô
G
O(Y )

for Y sufficiently close to 0, depending explicitly on the depth of π and the
singular depth of γ.

For example, Γπ = 0 generalises the Adler–Korman results on the local
character expansion

∗ Slightly larger than the domain of validity of the LCE.
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Theorem (S 2018)

Φπ(γ · exp(Y )) =
∑

O∈OH(Γπ)

cO(π, γ)Ô
G
O(Y )

for Y sufficiently close to 0, depending explicitly on the depth of π and the
singular depth of γ.

This is a pure existence result; it gives no information about how to
compute the cO’s

So we’ve turned the question from “compute Φπ(γ · exp(Y ))” to
“compute cO(π, γ)”
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What does it mean to compute an object in harmonic analysis, such as
Φπ(γ · exp(Y )) or cO(π, γ)?

We need:

a description or parameterisation of representations of G , and then
the formula will be written in terms of the parameters for π; and

a description or parameterisation of elements of G , and then the
formula will be written in terms of the parameters for γ
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Parameterising the elements of G is the easier of the two tasks

It’s always dangerous to attach names to frequently re-invented concepts

But I know about good elements (sometimes called ‘equi-valued’) from
Adler

An element γ of G is good if it is semisimple, and all of its non-trivial root
values lie at the same distance from 1

(I.e., it is the “most singular element nearby”)

While computing characters of their representations, Corwin studied
normal elements of division algebras: those elements γ such that all
monomials in the p-adic expansion of γ commute

This depends on a choice of uniformiser, and every element is normal with
respect to some uniformiser

Adler and I generalised this notion to general p-adic groups: in the
connected case, replace a commuting sum of monomials by a commuting
product of good elements
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Given γ =
∏

i≥0 γi , we put γ<r =
∏

0≤i<r γi , γ≥r , Y≥r = log(γ≥r ), . . .

The decomposition is not unique, but, for γ ∈ G ◦, the connected
centraliser

Cent
(<r)
G (γ)◦ := CentG(γi : 0 ≤ i < r)◦

is well defined for every r

S 2021 lifts the connectedness restrictions, and defines Cent
(<r)
G (γ) even

for γ ∈ G \ G ◦

This decomposition is needed for fine control over the terms appearing in
Frobenius-type formulæ for characters of compactly induced
representations, such as supercuspidals
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∗ See also the general discussion of quasisemisimple groups of automorphisms in
Adler–Lansky–S (in progress).
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How to parameterise representations? A common theme:

pretend to understand Abelian harmonic analysis (1-dimensional
representations)

describe higher- (even infinite-) dimensional representations of G in
terms of 1-dimensional representations of subgroups of G .

Examples:

theory of the highest weight: pass from integral λ ∈ t∗ to the
associated character e iλ◦log of T

Harish-Chandra’s parameterisation of discrete-series representations of
real, semisimple Lie groups in terms of pairs (T , ϕ)

Corwin–Howe’s parameterisation of representations of multiplicative
groups of p-adic division algebras and general linear groups in terms
of pairs (E×, ϕ)

Other results, such as Moy’s description of supercuspidal representations
of GSp4(k) and U(2, 1)(k), suggested a general phenomenon

Systematically investigated by Adler, and then further generalised by Yu
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Corwin–Howe dealt with admissible characters by factoring them into
generic characters

Yu takes the factorisation to be the basic object: a Yu datum is a triple
(G⃗, π−1, ϕ⃗)

Hakim–Murnaghan and Kaletha bring us back to the original perspective
by showing that a Yu datum can be replaced by just (G0, π−1

∏ℓ
j=0 ϕj)
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Yu’s parameterisation carries an implicit inductive structure: in the course
of constructing a positive-depth, supercuspidal representation π of G , we
construct a (usually) smaller-depth supercuspidal representation π′ of a
proper tame, twisted Levi subgroup G ′ of G

Theorem (S 2018)

Let r be the depth of π. Then the coefficients cO(π, γ<r ) of a depth-r
asymptotic expansion for Φπ near γ<r of G ′ can be computed explicitly in
terms of cO′(π′ g , γ<r ).

“Explicit” is allowed to involve some quite elaborate ingredients, a full
understanding of which requires a different linearisation of the Weil
representation from the one used by Yu (see Jessica’s talk)

This recipe is not suitable for induction, because the depth of π′ is
usually strictly less than the depth of π
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Plan of attack: Per Harish-Chandra, think simultaneously about Fourier
transforms of orbital integrals on the Lie algebra, and characters on the
group (as alluded to by Spencer yesterday)

1 Prove analogues of the character results of S 2018 for Fourier
transforms of orbital integrals

2 Inductively transfer the expansion of the character of π0 near γ0 to an
expansion of the character of π′ near γ0, in terms of Fourier
transforms of orbital integrals on CG ′(γ0)

◦, evaluated at Y>0

3 Expand each Fourier transform of an orbital integral on CG ′(γ0)
◦ near

Y<r in terms of Fourier transforms of orbital integrals on CG ′(γ<r )
◦,

evaluated at Y≥r

4 Combine to obtain an expansion of the character of π′ near γ<r in
terms of Fourier transforms of orbital integrals on CG ′(γ<r )

◦

5 Use S 2018 to expand the character of π near γ<r in terms of Fourier
transforms of orbital integrals on CG (γ<r )

◦

6 “Collapse” the expansion of the character of π near γ<r into an
expansion near γ0
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The tricky part is the “collapse” step 6, which requires a delicate
understanding of the relationship among the various expansions

Making this relationship precise is notationally awkward, but here goes:

Theorem (S 2018, as re-phrased in S 2021)

If

Φπ′ g (γ<r · exp(Y ′
≥r )) equals∑
O′∈OH′ ◦

g (U ′ ∗
g )

G̃G ′
g/H

′
g
(O′, γ<r )cO′(π′ g , γ<r )Ô

H′ ◦
g

O′ (Y ′
≥r ),

then

Φπ(γ<r · exp(Y≥r )) equals∑
g∈G ′\G/H◦

Γπ,g∈Lie∗(H)

∑
O′

G̃G/H(O′, γ<r )cO′(π′ g , γ<r )Ô
H◦
O′ (Y≥r ).
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Making this relationship precise is notationally awkward, but here goes:

Theorem (S 2021)

If

Ô
G0
g

ξg
(γ≤0 + Y 0

>0) equals∑
g0∈G0

g \G0
g /J

0 ◦
g

Γξ,gg0∈Lie
∗(J0g )

∑
O0∈OJ0 ◦g (Γξ,gg0 )

GG0
g /J

0
g
(O0, γ≤0)cO0(ξgg0 , γ≤0)Ô

J0 ◦g

O0 (Y 0
>0),

then

ÔG
ξ (γ≤0 + Y>0) equals∑

g∈G0\G/J◦

Γξ,g∈Lie∗(J)

∑
O0

GG/J(O0, γ≤0)cO0(ξg , γ≤0)Ô
J◦

O0(Y>0).
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ÔG
ξ (γ) =

∑
g∈G0\G/J◦

Γξ,g∈Lie∗(J)

∑
O0

GG/J(O0, γ≤0)cO0(ξg , γ≤0)Ô
J◦

O0(Y>0)

and

Φπ(γ) =
∑

g∈G ′\G/H◦

Γπ,g∈Lie∗(H)

∑
O′

G̃G/H(O′, γ<r )cO′(π′ g , γ<r )Ô
H◦
O′ (Y≥r ).

G is a Gauss sum; G̃ is essentially the same (upon using the exponential
map to move between Lie(G )>0 and G>0), but also has a contribution
from the modified Weil representation that Fintzen–Kaletha–S use in Yu’s
construction, which depends on the topologically semisimple part γ0 (see
Jessica’s talk)

This causes no problems, since, in the “re-expansion” step 3, we have
already passed to the topologically unipotent element γ>0 = exp(Y>0), for
which the two quantities agree
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Theorem (S 2021)

If

Φπg
0
(γ0 · exp(Y 0

>0)) equals∑
g0∈G0

g \G0
g /J

0 ◦
g

Γgg0∈Lie
∗(J0g )

∑
O0∈OJ0 ◦g (Γπ,gg0 )

G̃G0
g /J

0
g
(O0, γ0)cO0(πg

0 , γ0)Ô
J0 ◦g

O0 (Y 0
>0),

then

Φπ(γ0 · exp(Y>0)) equals∑
g∈G0\G/J◦

Γg∈Lie∗(J)

∑
O0

G̃G/J(O0, γ0)cO0(πg
0 , γ0)Ô

J◦

O0(Y>0).
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Our results on the Lie algebra may be viewed as completely reducing the
behaviour of Fourier transforms of orbital integrals to that of Fourier
transforms of nilpotent orbital integrals (subject to tameness conditions;
see Fintzen)

For example, they recover a version of the Shalika germ expansion with an
explicit domain of validity, centred at any semisimple element

If we are dealing with semisimple orbital integrals, then we may also
recover a quantitative version of a result of Waldspurger:

Corollary (Waldspurger 1995 and S 2021)

If γ≤0 ∈ Lie(G ) is regular semisimple, then

ÔG
ξ (γ≤0 + Y>0) equals

∑
g∈G0\G/J0

Γξ,g∈Lie∗(J)

GG/G0
g
(Γξ,g , γ≤0)Λξg (γ≤0 + Y>0).
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Our results on the group specialise to those of Kim–Murnaghan (when
γ = 1) and to (the DeBacker and Adler–Korman quantitative versions of)
the Harish-Chandra–Howe local character expansion (when Γπ = 0)

They completely reduce the computation of arbitrary supercuspidal
representations to those of depth-zero supercuspidal representations
(which the work of DeBacker–Tsai suggests is the really hard part . . . )

They specialise to a result of Kaletha, which I regard as the group
analogue of Waldspurger’s result on Fourier transforms of orbital integrals:

Corollary (Kaletha 2019 and S 2021)

If γ0 is regular semisimple, then

Φπ(γ0 · exp(Y )) equals
∑

g∈G0\G/J0

Γπ,g∈Lie∗(J)

G̃G/G0
g
(Γπ,g , γ)Φπ0(γ)ΛΓπ,g (Y ).
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