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In my talk I describe the ideas behind the proof of
analytic continuation of Eisenstein series by myself and E.
Lapid (see arxiv 1911.02342).

The proof is based on some general properties of auto-
morphic forms that are of independent interest.

I will discuss these properties and some extensions of
these properties.
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One of my goals is to explain that analytic continuation
of Eisenstein series is ”easy”.

By this I mean that it does not require the spectral
theory – neither the spectral theory of the automorphic
space Γ\G nor the spectral theory of self-joint operators.
All it requires from Functional analysis is some version of
Fredholm theory. In particular, we can work with Banach
spaces instead of Hilbert ones.

On the other hand, the knowledge of this analytic con-
tinuation is very helpful in description of the spectral de-
composition for the automorphic space.

Another goal is to formulate some general properties
of automorphic forms that are used in the proof. I think
they will have many applications.

We will see that these properties are simply slightly
stronger versions of the properties formulated and used in
the original Langlands’ paper.
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1. Set up.

G – locally compact group, usually unimodular, Γ ⊂ G
– a discrete subgroup.

We consider the automorphic space X = Γ\G.. This
space has a natural action of the group G, so we can
study the corresponding representation (Π, G, F (X)) of
the group G, where F (X) is some space of functions on
X (this will be called the automorphic representation).

Fix a global field k and denote by A = Ak its Adele
ring. Fix a reductive algebraic group G defined over the
field k and consider the automorphic pair (G,Γ), where

G = G(A) and Γ = G(k).

Let X = XG denote the automorphic space XG =
Γ\G. We are interested in the study of the representation
(Π, G, F (X)) where F (X) denotes the space of functions
of moderate growth on X
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We fix a good maximal compact subgroup K ⊂ G.
Then we can decompose our space F (X) with respect to
the action of K.

So we will fix some irreducible representation σ of K
and study the space F (X)σ ⊂ F (X)

This space is not G-invariant, but we can reconstruct
representation of G using Hecke algebra. Namely, consider
the Hecke algebra H(G) of smooth compactly supported
measures on G. It acts on the space F (X).

Now consider the subalgebra Hσ ⊂ H(G) that pre-
serves K-type σ. It will act on the space F (X)σ.
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Our main object of study is the subspace of automor-
phic functions A(X)σ ⊂ F (X). Many equivalent defini-
tions of automorphic functions.

(*) f is automorphic if the space Hσ(f ) is finite di-
mensional

In fact for properties we are interested in we can assume
that σ is the trivial representation.

So for simplicity you can assume this to be the case.
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2. Parabolic subgroups.

We fix a minimal parabolic subgroup P0 ⊂ G and its
Levi decomposition P = M0 · U0. We assume that the
subgroups K and M0 are in a good position.

There is a finite number of subgroups P that contain
P0. They are called standard parabolic.

Every standard parabolic subgroup P has the standard
Levi decomposition P = MU , where M ⊃ M0. We call
this Levi subgroup M = MP the standard Levi subgroup.

We denote by ZP the center of the group MP .
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2.1. Root system. Let L = Hom(M0, Gm) be the lat-
tice of characters of the group M0. We consider the real
vector space a = R ⊗ L – the Cartan space of the group
G.

In a standard way the dual space a∗ contains the root
system Σ = ΣG of the group G with respect to M0.

All standard parabolic subgroups and the Weyl group
W = Norm(M0/M0) are described in terms of this root
system.

2.2. Geometric description of the space a∗. For
any reductive group H over k let us denote a∗(H) the
group of continuous morphisms λ : H(A) → R∗+ trivial
on the subgroup H(k). This is a vector space over R .

It is easy to see that a∗(M0) coincides with the dual
Cartan space a∗ described above.

If P is a standard parabolic subgroup, then it is easy to
see that a∗(MP ) = a∗(ZP ) is in a standard way a subspace
(end even a direct summand) of the space a∗(M0) = a∗.
We denote this subspace by a∗P .
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3. Constant term operators.

Let P be a standard parabolic subgroup. We denote
by XP the corresponding automorphic space

XP = ΓP · UP\G
We consider the space F (XP ) of functions of moder-

ate growth and decompose it into components F (XP )σ.
As before we define the subspace A(XP )σ of automorphic
functions on XP .

We have the constant term operator
C = CP

G : F (X)→ F (XP ) defined by integration over
the group ΓU\U via the left action

A function f ∈ F (X) is called cuspidal if C(f ) = 0.
The subspace of cuspidal functions we denote by F (X)c.

We denote byA(X)c the space of cuspidal automorphic
functions.

One of important results by Langlands is that cuspi-
dal automorphic forms rapidly decrease (modulo center of
G). This implies that there is the canonical ”orthogonal”
projection cusp : A(X)→ A(X)c.
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4. Cuspidal characters, cuspidal
components and cuspidal exponents.

Fix a standard parabolic P . In a similar way we can
define the space A(XP )c of cuspidal automorphic func-
tions on the space XP and the cuspidal projection cusp :
A(XP )→ A(XP )c.

We have the canonical action of the center ZP on the
space XP on the left. Hence it acts on the space A(XP )c.

In fact. it is natural to modify this action by a character
ρP of the groupM . We will mostly work with this modified
action.

Given an automorphic function f on XP we consider
its cuspidal part cusp(f ) and decompose it with respect
to characters χ of Z = ZP .

The characters that appear in this decomposition we
call cuspidal characters of f ; corresponding automorphic
forms fχ we call cuspidal components of f .

Given a cuspidal character χ we consider its absolute
value as a positive valued character of Z, i.e a point e of
the vector space a∗(Z) = a∗(M) = a∗P ⊂ a∗. We call such
a point a cuspidal exponent of f .
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These constrictions allow us to define important invari-
ants for an automorphic form f on X .

Namely, for every standard parabolic subgroup P we
can consider its constant term as an automorphic form on
XP and then define cuspidal characters, components and
exponents for this form.

4.1. Leading exponents. One of important results by
Langlands was that any non-zero automorphic form on X
has some cuspidal exponents e(f ) ∈ a∗.

We claim that a stronger statement is correct.
Proposition.
Let f be a nonzero automorphic form on X . Then it

has an exponent e(f ) ∈ a∗ such that e(f ) + ρ lies in the
Weyl chamber.

Exponents of this type we will call leading expo-
nents.
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5. Eisenstein series.

The constant term operator
C = CP

G : F (X)→ F (XP ) has a formal adjoint oper-
ator E = EG

P : F (XP )→ F (X).
It is given by the summation over ΓP\Γ via the left

action. We call it the Eisenstein operator.

Since this is an infinite sum it does not always abso-
lutely converge. When it converges it commutes with the
action of G.

Given an automorphic form φ on the space XP we
would like to try to define the automorphic form f = E(φ)
on X .

The standard regularization procedure is as follows.

We include our form φ into a family of forms φ(s) holo-
morphically depending on some parameter s ∈ S, where
S is a connected complex manifold.

We check that for some area of parameters s the func-
tion f (s) = E(φ(s)) is well defined and holomorphic in
s.

We try to show that the family f (s) has meromorphic
extension to all the manifold S.
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5.1. Continuation Principle. We propose a slightly
different regularization procedure.

Namely we would like to characterize the forms f (s)
by some properties – some system of equations Ξs that
holomorphically depends on a parameter s.

Then we show that this system

(i) Has a solution f (s) in some area Se ⊂ S
(ii) In some area Su it has no more than one solution.

Then we invoke a very general

Continuation Principle. Under conditions (i) and
(ii) for almost every parameter s the system Ξs has a
unique solution f (s).

These solutions extend to a meromorphic function s 7→
f (s) on the whole manifold S.

This is a principle, not a theorem. However, I believe
that it holds in most natural situations. Of course we have
to develop tools to show that it does hold in our case.
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6. The system of equations that we use.

Our variety S is a complexification of the space a∗P .
Every point s ∈ S defines a character χs : P → C∗.

We extend this to a right K-invariant function χs on
the space XP .

Now we consider the family of automorphic forms φ(s) =
χs · φ on the space XP and are trying to characterize the
function f (s) = E(φ(s)).

For every s we write the system of equations Ξs as
follows

(i) f (s) is an automorphic form satisfying the same
equations that are satisfied by the form φ(s).

(ii) All cuspidal characters of f (s) lie on W -orbits of
cuspidal characters of φ(s)

(iii) For every cuspidal characters wχ corresponding to
the unit w = e the cuspidal component f (s)χ equals to the
cuspidal component φ(s)χ of the automorphic form φ(s).
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7. Explanation of the proofs.

Now we have to check 3 different statements.

1. When Re(s) is very dominant the system Ξs has a
solution defined by absolutely convergent Eisenstein oper-
ator E.

2. When Re(s) is very dominant the system Ξs has
nor more than one solution.

3. The Continuation Principle holds for this system.

Explanation. 1. When Re(s) is very dominant the
Eisenstein operator is defined by an absolutely convergent
series.

The direct computation using Bruhat decomposition
proves item 1. In fact, this is very similar to the proof of
Geometric Lemma in local theory.

2. When Re(s) is very dominant all leading exponents
will correspond to w = e.

Hence the item 2. follows from the fact that an auto-
morphic form is completely described by its leading cusp-
idal exponents.
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8. How to check the continuation principle.

Suppose we have a system of equations of the following
type.

We have a complex topological vector space V , and a
family Wκ of topological vector spaces Wκ.

Suppose for every index κ we are are given a holo-
morphic family of morphisms νκ(s) : V → Wκ and a
holomorphic family of vectors wκ(s) ∈ Wκ.

Then we can define a system of equations Ξs for a
vector v = v(s) ∈ V by requiring that for every index
κ we have

νκ(s)(v) = w(s).

We say that the system is of finite type if there exists a
holomorphic family of subspaces L(s) ⊂ V that contains
all the solutions of the system Ξs.

We say that the system is of locally finite type if for
every point s it is of a finite type in some neighborhood of
s.

Proposition. Suppose we have a system Ξs of locally
finite type .Then it satisfies the Continuation Principle.
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8.1. Why our system is of locally finite type.
Langlands has shown that if we fix a K-type and an in-
finitesimal character then the corresponding space is finite
dimensional.

In fact he constructed a finite-dimensional subspace L
that contains all the automorphic forms of this type.

By following these arguments more carefully we show
that the subspace L can be chosen to holomorphically de-
pend on the parameters (locally).

This means that the system defining automorphic forms
is of locally finite type.
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