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The basic residue lemma

Let V be an oriented Euclidean vector space of dimension
n, with complexification VC.

Let A be a finite arrangement of affine hyperplanes H ⊂ V ,
with complexification AC.
Let P(VC) denote the space of Paley-Wiener functions on
VC, that is ϕ ∈ P(VC) iff ϕ is entire and and ∃ R > 0, and
for every N ∈ N, ∃CN > 0 such that for all z ∈ VC we have
|ϕ(z)| ≤ CN(1 + ‖z‖)−NeR‖Re(z)‖.
We denote by P(VC)R the space of functions ϕ
holomorphic on {z ∈ VC | Re(z) < R}, and such that for
every N ∈ N, ∃CN > 0 such that |ϕ(z)| ≤ CN(1 + ‖z‖)−N
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Let ω be a rational (n,0)-form on VC whose singular locus
and zero locus is contained in AC.

Let b ∈ V\ ∪H∈A H and let Xω,b : P(VC)→ C be the linear
functional on P(VC) defined by

Xω,b(ϕ) :=

∫
Re(z)=b

ϕ(z)ω(z).

Such linear functionals Xω,b (or slight variations thereof)
often arise in harmonic analysis on reductive groups, in the
study of “residual contributions” to the spectrum. Our first
goal is a basic decomposition theorem for Xω,b in terms of
tempered distributions with certain support conditions.
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For H ∈ A, let nH ∈ Z denote the order of ω along
HC = H + iVH . For L ∈ L(A), the intersection semilattice of
A, we define

nL =
∑

H∈A:L⊂H

nH .

We call an affine subspace L ⊂ V ω-residual if

(1)
L =

⋂
H∈A:L⊂H and nH<0

H

(intersection of the pole hyperplanes containing L).
(2) We have oL := −nL − codim(L) ≥ 0.

Examples:

(1) V itself is a residual subspace.
(2) If H ∈ A with nH < 0 then H is residual (oH = −nH − 1 ≥ 0).
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If L ∈ L(A) is residual, then we define VL ⊂ V as the linear
subspace underlying the affine subspace L ⊂ V , and
V L = (VL)⊥ (the subspace spanned by the lines orthogonal
to the hyperplanes of poles H ∈ A such that L ⊂ H).

We define cL = V L ∩ L, the center of L (the point in L with
the shortest distance to 0 ∈ V ). Let C ⊂ V be the (finite)
set of centers of the ω-residual subspaces.
Ltemp := cL + iVL ⊂ cL + iV ⊂ VC, the tempered form of L.

Proposition[Heckman, O.]
There exists a unique collection of tempered distributions
X b

c ∈ S ′(c + iV ) with c ∈ C such that

(a) Supp(X b
c ) ⊂

⋃
L residual :cL=c Ltemp.

(b) For all ϕ ∈ P(VC) we have: Xω,b(ϕ) =
∑

c∈C X b
c (ϕ|c+iV ).
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Observe that ϕ|c+iV ∈ S(c + iV ), hence the expression
X b

c (ϕ|c+iV ) is meaningful.

Example: Let V = R and ω = dx
x−c with c ∈ R.

If c 6= 0 then X b
c = sign(c)2πiδc if c separates b and 0, and

X b
c = 0 otherwise. Moreover X b

0 = (x − c)−1|iR.
If c = 0 and ±b > 0 then X b

0 = Pf(x−1|iR)± πiδ0.
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A case of interest

Now let Ĝ ⊃ B̂ ⊃ T̂ be a connected reductive group over
C, with Borel subgroup B̂ and maximal torus T̂ . Let V ⊂ ĝ
be the real span of the cocharacter lattice of T̂ . Let Σ∨ be
the root system of Ĝ.

Define a rational function on V by c(λ) =
∏
α∈Σ∨+

α∨(λ)+1
α∨(λ) .

Consider the following functionals: For ϕ ∈ P(VC) and b
deep in the Weyl chamber, define:

X b(ϕ) =

∫
λ∈b+iV

ϕ(λ)ωX (λ) := (2πi)−n
∫
λ∈b+iV

ϕ(λ)
dλ

c(−λ)

and

Y b(ϕ) =

∫
λ∈b+iV

ϕ(λ)ωY (λ) := (2πi)−n
∫
λ∈b+iV

ϕ(λ)
dλ

c(λ)c(−λ)
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Define a rational function on V by c(λ) =
∏
α∈Σ∨+

α∨(λ)+1
α∨(λ) .

Consider the following functionals: For ϕ ∈ P(VC) and b
deep in the Weyl chamber, define:

X b(ϕ) =

∫
λ∈b+iV

ϕ(λ)ωX (λ) := (2πi)−n
∫
λ∈b+iV

ϕ(λ)
dλ

c(−λ)

and

Y b(ϕ) =

∫
λ∈b+iV

ϕ(λ)ωY (λ) := (2πi)−n
∫
λ∈b+iV

ϕ(λ)
dλ

c(λ)c(−λ)



Residue distributions A relevant case study Normalized unramified spherical Eisenstein series Completeness

Symmetrization and the distributions X and Y

Observe the following identity of rational functions:∑
w∈W

1
c(−wλ) = |W |

c(λ)c(−λ) . This identity and geometric
considerations (using the ambient space VC!) yield:

Theorem (“hidden” symmetry of the X-distribution)

Let f ∈ P(VC). For every c ∈ V+ and w ∈W we have

X b
wc(f |wc+iV ) = Y b

c ((Awc(f ) ◦ w)|c+iV )

where Awc(f ) ∈ P(VC) is defined by (for λ ∈ V reg
C ):

Awc(f )(λ) = 1
|Wwc |

∑
u∈Wwc

c(uλ)f (uλ) (the symmetrization
operator).

Moreover, X b is symmetric in the sense that for all
f ∈ P(VC) we have (with A(f ) := A0(f )): X b(f ) = X b(A(f )).
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Positivity and regularity of Y b

Y b is much better behaved than X b:

Theorem[Simplicity of Y -poles]

For all L ⊂ V , affine subspace, let oY
L = −nY

L − codim(L) with
nY

L the pole order of ωY along L. Then oY
L ≤ 0. In particular, L is

ωY -residual iff oY
L = 0 (we say: “order 0”), or equivalently:

|{α ∈ Σ | α∨|L = 1}| = |{α ∈ Σ | α∨|L = 0}|+ codim(L)

Theorem[Heckman, O.]

Let CY ⊂ V denote the set of centers of ωY -residual subspaces
(a finite W -invariant set). For all c ∈ CY , Y b

c is a sum over the
ωY -residual L such that cL = c of nonnegative smooth
measures dν ′L supported by Ltemp (explicitly known).
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The support theorem

Algebraic description of the support of the Yc :

Theorem

For all c ∈ CY
+ = CY ∩ V+, there exists w ∈W such that

Y b
wc 6= 0. In this case, the weight w(c) is in the

“anti-Casselman” cone, i.e. the dual chamber of V+.

Support Theorem of Y b in terms of nilpotent orbits

We have c ∈ CY
+ iff there exists a nilpotent orbit O ⊂ g∨ such

that c = λO, where λO is half the weighted Dynkin diagram of
O. Hence there is a canonical bijection between W\CY and the
set of nilpotent orbits of g∨.
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Interpretation: Bose gas with attractive delta potential
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Bose gas with attractive delta potential

The 1-dimensional Bose gas with attractive delta-function
potential is completely integrable. Its joint eigenfunctions
are {EYS(λ; x) | λ ∈W\VC}, with for λ ∈ V reg

C and x ∈ a−:

EYS(λ; x) := A0(e(·,x))(λ) =
1
|W |

∑
w∈W

c(wλ)ew(λ,x) (1)

and extended W -invariantly to x ∈ a. It is W -invariant and
holomorphic in λ, of moderate growth in vertical strips.

Wave packet operator θYS : PR(VC)→ L2(V ,dx)W is given
by PR(VC) 3 f → θYS

f with θYS
f (x) := X b(f .EYS(·; x)).
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The inner product of wave packets

We define an anti-linear involution f → f− on PR(VC) by
f−(λ) = f (λ).

Given f ∈ PR(VC) define (another symmetrization
operator):

RYS
f (λ) :=

∑
w∈W

c(−wλ)f−(−wλ)

Inner product (f ,g ∈ PR(VC), R > 0 sufficiently large):

〈θYS
f , θYS

g 〉 = X b(g.RYS
f )

=
∑

L ωY−residual

∫
Ltemp

A(f )(λ)A(g)(λ)dνYS
L (λ)

where the collection {dνYS
L } consists of smooth positive

measures, and is W -equivariant (and explicitly known).
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We will apply our knowledge of these residue distributions
to handle residues of unramified spherical Eisenstein
series.

This residual spectrum has of course been studied deeply
in the work of Jacquet, Langlands, Moeglin, Waldspurger,
Kim, and more recently S. Miller.
This is joint work in progress with M. De Martino and V.
Heiermann (see our preprint arXiv:1512.08566).
There was unfortunately a gap in arXiv:1512.08566. We
think that we have fixed the gap in the proof, but the proof
now involves some case by case verifications for the
exceptional cases, for which we need to use Maple. Let me
describe our current approach and where we are.
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Unramified spherical Eisenstein series

Let G be split connected reductive over a number field F . Let
K ⊂ G(A) be maximal compact, and B = TU an F -Borel
subgroup. In view of the Iwasawa decomposition
G(A) = B(A)K we have a left B(F ) and right K invariant map
mB : G(A)→ T (A)1\T (A) ' X∗(T )⊗ R+. Put a∗C = X ∗(T )⊗ C.
For λ ∈ a∗C and g ∈ G(A) one defines:

E(λ,g) =
∑

γ∈B(F )\G(F )

mB(γg)λ+ρ,

the Borel Eisenstein series.
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Unramified spherical Eisenstein series: Basic facts

Theorem[Langlands]

Absolutely convergent if Re(λ− ρ) > 0, ∈ A(G(F )\G(A))K .

Has meromorphic continuation to a∗C as function of λ.
Put Λ for the completed Dedekind zeta function of F , and
ρ(s) = s(s − 1)Λ(s) (entire, zeroes in critical strip). For
λ ∈ a∗C we put r(λ) =

∏
α∈Σ+

ρ(α∨(λ)) and

c(λ) =
∏
α∈Σ+

α∨(λ)+1
α∨(λ) . Then for all w ∈W we have:

E(wλ,g) =
c(wλ)r(wλ)

c(λ)r(λ)
E(λ,g)

E(λ, ·) is an H(G(A)//K )-eigenform with eigenvalue χλ.
For f ∈ P(a∗C)R (R >> 0), the Pseudo-Eisenstein series
θf :=

∫
Re(λ)=b>>0 f (λ)E(λ, ·)dλ ∈ L2(G(F )\G(A))K .
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Normalized unramified spherical Eisenstein series

Definition
Define the normalized Eisenstein series by E0(λ,g) :=

1
|W |A0(r(·)E(−·,g))(−λ) = 1

|W |c(−λ)r(−λ)E(λ,g). Then E0

extends to a holomorphic, W -invariant function of λ ∈ a∗C,
of moderate growth in vertical strips.

The normalized pseudo Eisenstein series for f ∈ PR(VC):
θ0

f (g) :=
∫

Re(λ)=b>>0 f (λ)E0(λ,g) dλ
c(−λ) = X b(f .E0(·; g)).

Fix R >> 0. We define L2(G(F )\G(A))K
[T ,1] (or simply

L2,K
[T ,1]) as the closure in L2(G(F )\G(A))K of the span of the

pseudo-Eisenstein series {θf | f ∈ PR(a∗C)}.
We define L2,K

[T ,1],0 ⊂ L2,K
[T ,1] as the closure in

L2(G(F )\G(A))K of the span of {θ0
f | f ∈ PR(a∗C)}.
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Basic challenges

Problem
Give the spectral decomposition of the unitary representation
L2,K

[T ,1] of the abelian ∗-algebra H(G(A)//K ).

We split this in two parts:

Partial problems

Give the spectral decomposition of the unitary
representation L2,K

[T ,1],0 of H(G(A)//K ).

Show that L2,K
[T ,1] = L2,K

[T ,1],0.
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Residues of unramified Eisenstein series

Theorem[Langlands]

For f ,g ∈ PR(a∗C) (R >> 0) one has the inner product formula

(θf , θg) := X b(gRf )

with Rf (λ) :=
∑

w∈W c(−wλ) r(λ)
r(wλ) f−(−wλ), and f−(λ) := f (λ).

Observe: Since Rf is meromorphic in general, it is now not
clear that we can express (θf , θg) in the local distributions
X b

c (gRf ) as in the Yang System case. Rather we are forced to
express X b

c (gRf ) as a sum of integrals of “iterated residues”.
Similarly, the “hidden symmetry” of X b is not at all clear.
Therefore we first consider the simple situation of the
normalized Eisenstein series.
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Spectral decomposition of L2,K
[T ,1],0

Theorem[Langlands formula for normalized Eisenstein series]

For f ,g ∈ PR(a∗C) (R >> 0) one has the inner product formula

(θ0
f , θ

0
g) := X b(gRYS

f )

with RYS
f (λ) :=

∑
w∈W c(−wλ)f−(−wλ) and f−(λ) := f (λ) as

before. So θYS
f → θ0

f defines an isometry L2(V ,dx)W → L2,K
[T ,1],0

with the Yang system.
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Unramified anti-tempered global Arthur parameters

Let CF denote the Idèle class group of F . Define:

APsu
[T ,1] := {ψ : CF × SL2(C)→ G∨ |(a) ψ|CF is bounded.

(b) ψ|CF factors through ‖ · ‖.
(c) ψ|SL2(C) is algebraic. }

Remark

Let AP
su
[T ,1] be the set of equivalence classes in APsu

[T ,1]. Given
ψ ∈ APsu

[T ,1] we can choose ψ′ ∈ APsu
[T ,1] with ψ′ ∼ ψ such that:

For all ξ ∈ CF , ψ′(ξ) = ‖ξ‖ν
′
∈ T∨ for a (unique) ν ′ ∈ ia∗,

For all a ∈ C×, ψ′(
(

a 0
0 a−1

)
) ∈ T∨.
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Arthur parameters and residual spaces

Proposition[De Martino, Heiermann, O.]
Define

D : AP
su
[T ,1] →W\a∗C

ψ → ν ′ + dψ′(
(

1/2 0
0 −1/2

)
)

where ψ′ ∼ ψ and ν ′ are as above. Then D defines a bijection
between AP

su
[T ,1] and

Ξ := W\WSupp(X b) = W\
⋃

L residual(L
temp) ⊂W\a∗C.
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Theorem[De Martino, Heiermann, O.]

The Hilbert subspace L2,K
[T ,1],0 ⊂ L2,K

[T ,1] is isomorphic to the space
L2(Ξ, µ0) for an explicitly known positive measure µ0 on Ξ,
smooth on each component of Ξ.

Corollary[De Martino, Heiermann, O.]

For any distinguished nilpotent orbit O of g∨, the normalized
Eisenstein series E0(λO, ·) is a nonzero element in L2,K

[T ,1],0, with
explicit L2-norm.

Corollary[De Martino, Heiermann, O.]

The correponding local representations πν,λO of G(Fν) are
unitarizable at all local places ν of F .
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Theorem* (Pending certification for some lines in E8-spectrum):

L2,K
[T ,1] = L2,K

[T ,1],0.

Discussion and Approach

We first rewrite (θf , θg)T := X b(gRf )T as a sum of integrals
over the pole spaces L of X b (only those!) of iterated
residues of the kernel, with their base points arbitrarily
close to the centers cL of L. As in Langlands’s analysis, we
truncate integrals to |Im(λ)|2 ≤ T + |Re(λ)|2 for some
T >> 0.
Next we prove AWc -symmetry of sum of the contributions at
each center c by comparison with X b(gRYS

f ) = (θ0
f , θ

0
g).

Together this implies the result provided all kernels are
holomorphic where we move contours, except for the
“algebraic” poles of X b. (Admissibility, discussed later).
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Moeglin’s idea to use induction

Moving the contours for X b(gRf ) admissibly directly is too
hard. Whatever we tried, “computer says no”.

An idea of Moeglin in the classical case: Take an
appropriate proper Levi subgroup G′ ⊂ G, and assume by
induction that the inner product of pseudo Eisenstein
series for G′ is given by the “Yang System” spectral
measure for G′, supported on the G′ residual pole spaces.
This gives already partially symmetrized (over W ′, the
Weyl group of G′) kernels in X b, which behave less wild
than the kernels of X b.
Restricting to G split: We reduce to simple types. The pairs
(G′∨,G∨) we considered are: (Xn−1,Xn) for X of classical
type, and (D5,E6), (E6,E7), (E7,E8), (C3,F4) and (A1,G2).
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Rewriting X b(gRf ): The initial integrals

By induction: (θf , θg)T = X b(g.Rf )T as a sum of integrals of the
form:

(θf , θg)T =T
∑

L′∈L′+

∫
(pL,∞+iVL)≤T

A′0(g.Rf )ωL(λ)

where ωL is the residue along L of the W ′-symmetrized form ω
of ωX :

ω :=
dλ

c′(λ)c(−λ)

and where L′+ denotes a set of representatives of the set L′ of
residual pole spaces for G′∨ which are in standard position (so
L′+ is in bijection with the set of nilpotent orbits of g′∨); finally,
pL,∞ = cL + itw′ ∈ L with w′ the unique fundamental coweight
orthogonal to Σ′∨, and t >> 0.
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The initial contour shifts

The factor of the kernel in front of ωL has a nice form:

|W ′|A′0(ψ.Rφ)(λ)

=

(∑
u∈W ′

c′(uλ)
r(uλ)

r(λ)
ψ(uλ)

)(∑
w∈W

c(−wλ)
r(λ)

r(wλ)
φ(−wλ)

)
=: Σ′(ψ)Σ(φ)

We first move in each initial integral the base point pL,∞ to a
point bL close to cL along a generic curve, and then make a
symmetrization for the full Weyl group WcL with AcL at cL.

Theorem
A′0(ψ.Rφ)(λ) holomorphic in a neighbourhood σL := [pL,∞, cL].
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The cascade of contour shifts

Same for residues along ωL-pole spaces M ⊂ L of
codimension 1 in L such that σL ∩M 6= ∅. Put
iM,σL := σL ∩M (initial point).

If M is subresidual (i.e. there exists a residual subspace N
such that M temp ⊂ N temp) move base point iM,σM of residue
integral over iM,σL + iVM to cM along σM = [iM,σL , cM ].
If M is not subresidual, move iM,σL along σM = [iM,σL , fM ] to
a (well chosen) fM ∈ M such that at a prior stage we had a
residue integral over u(fM + iVM) for some u ∈W ′.
This stops in finitely many steps. The cascade C is a
collection of pairs (σ,M) with M a ω-pole space and σ ⊂ M
a segment, representing the set of W ′-orbits of such pairs
encountered in such algorithm.
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ω-pole spaces L with oωL = 0 (“simple poles”)

Let M be an ω-pole space, and σ ⊂ M such that ∃u ∈W ′ such
that u(σ,M) ∈ C (we say: M appears in C). For a base point
b ∈ σ we have a residue integral of the form∫

(b+iVM )≤T

ResM(Σ′(ψ)Σ(φ)ω)

in which the kernel is a residue datum of order oωM .

If oωM = 0 then this simplifies to∫
(b+iVM )≤T

((Σ′(ψ)Σ(φ))|M)ωM

In general a cascade contains several levels (up to 5 for
(E7,E8) (2 for classical cases), and pole space of higher order
(up to order 3 for (E7,E8)).
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Admissible cascades

Definition
A cascade C is called admissible if there exist subsets
Adm(L) ⊂ L for all L ∈ C such that:

Adm(L) is a nonempty closed convex set.
Σ(λ)Σ′(λ)|L is holomorphic on Adm(L) + iVL.
For all initial pole spaces L ∈ L+ we have pL,∞ ∈ Adm(L).
If L ∈ C is residual then cL ∈ Adm(L).
If (σ, L) ∈ C and M ⊂ L is an ω-pole with σ ∩M 6= ∅ then
Adm(L) ∩M ⊂ Adm(M).
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Moving to the center

Theorem*
There exists an admissible cascade C (pending certification
that cL ∈ Adm(L) for a W -orbit of residual lines for E8) such that
we can move, for each pole space L ∈ C, all base points to a
single point bL ∈ Adm(L) - which is close to cL if L is
subresidual - without creating new residues.

Such movement of a base point in a segment σ ⊂ L is not
guaranteed by σ ⊂ Adm(L) if oωL > 0. Fortunately, we found a C
such that all poles L with oωL > 0 are met in cL with only 3
exceptions for E8, two of which are easy to deal with. For the
remaining case (one residual line L of type E7(a4)) it turns out
that the potential strip of critical poles is disjoint from the strip
around Ltemp containing the spherical complementary series).
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Comparison with X b(θ) for θ ∈ PR(VC)

We can now write the contribution of each pole space in C as a
single residue integral. Comparison with the case X b(θ) for
θ ∈ PR(VC) (using the same contour shifts in C) is quite
powerful now:

The contribution of a non-subresidual pole space L
cancels.
The sum of the contributions at a residual center c have
additional symmetry for the operator AWc .

Theorem*

(θφ,qT (θψ))

=
∑

L∈W\L

|W |
∫

Ltemp
≤T

A0(r(·)ψ)(λ)A0(r(·)φ)(λ)
dνL(λ)

r(−λ)r(λ)
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Happy birthday, Bill!
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