Finite multiplicities beyond spherical pairs

Dmitry Gourevitch Weizmann Institute of Science, Israel http://www.wisdom.weizmann.ac.il/~dimagur Basic Functions, Orbital Integrals, and Beyond Endoscopy j.w. Avraham Aizenbud arXiv:2109.00204

BIRS, November 2021

- **G**: reductive group over \mathbb{R} , **X**:= algebraic **G**-manifold, $\mathfrak{g} := Lie(\mathbf{G})$, $\mathcal{N}(\mathfrak{g}^*)$:=nilpotent cone, $G := \mathbf{G}(\mathbb{R})$, $X := \mathbf{X}(\mathbb{R})$,
- S(X) := smooth functions on X, flat at infinity (Schwartz).
- X is called spherical if it has an open orbit of a Borel subgroup **B**⊂**G**.
- X is called real spherical if it has an open orbit of a minimal parabolic subgroup.
- Major Goal: study $L^2(X)$, $C^{\infty}(X)$, S(X) as rep-s of G.

Studied by Bernstein, Delorme, van den Ban, Schlichtkrull, Kroetz,

Kobayashi, Oshima, Knop, Beuzart-Plessis, Kuit, Wan,...

Theorem (Kobayashi-Oshima, 2013)

Let $\mathbf{X} = \mathbf{G}/\mathbf{H}$. Then

- **(**) **X** is spherical $\iff S(X)$ has bounded multiplicities.
- 0 X is real-spherical $\iff \mathcal{S}(X)$ has finite multiplicities.

 $m_{\sigma}(\mathcal{S}(X)) := \dim \operatorname{Hom}(\mathcal{S}(X), \sigma), \quad m_{\sigma}(\mathcal{S}(G/H)) = \dim(\sigma^{-\infty})^{H}$

Theorem (Casselman, 1978)

 $0 < m_{\sigma}(\mathcal{S}(G/U)) < \infty \quad \forall \sigma \in Irr(G), \text{ where } U = maximal \text{ unipotent.}$

Ξ -spherical spaces

 $\forall x \in \mathbf{X}$, have action map $\mathbf{G} \to \mathbf{X}$, thus $\mathfrak{g} \to T_x \mathbf{X}$, and $T_x^* \mathbf{X} \to \mathfrak{g}^*$. This gives the moment map $\mu : T^* \mathbf{X} \to \mathfrak{g}^*$. For $\mathbf{X} = \mathbf{G}/\mathbf{H} : T^* \mathbf{X} \cong \mathbf{G} \times_H \mathfrak{h}^{\perp}$ and $\mu(g, \alpha) = g \cdot \alpha$

Definition

• For a nilpotent orbit $0{\subset}\mathcal{N}(\mathfrak{g}^*),$ say X is 0-spherical if

 $\dim \mu^{-1}(\mathbf{O}) \leq \dim \mathbf{X} + \dim \mathbf{O}/2$

 For a G-invariant subset Ξ⊂N(g*), say X is Ξ-spherical if X is O-spherical ∀O⊂Ξ.

For $\mathbf{X} = \mathbf{G}/\mathbf{H}$, \mathbf{X} is \mathbf{O} -spherical $\iff \dim \mathbf{O} \cap \mathfrak{h}^{\perp} \leq \dim \mathbf{O}/2$. For parabolic $\mathbf{P} \subset \mathbf{G}$, $\mathbf{O}_{\mathbf{P}}$:=the unique orbit s.t. $\mathfrak{p}^{\perp} \cap \mathbf{O}_{\mathbf{P}}$ is dense in \mathfrak{p}^{\perp} .

Theorem 1 (Aizenbud - G. 2021)

X is $\overline{\mathbf{O}_{\mathbf{P}}}$ -spherical \iff **P** has finitely many orbits on **X**.

 $\forall x \in \mathbf{X}$, have action map $\mathbf{G} \to \mathbf{X}$, thus $\mathfrak{g} \to T_x \mathbf{X}$, and $T_x^* \mathbf{X} \to \mathfrak{g}^*$. This gives the moment map $\mu : T^* \mathbf{X} \to \mathfrak{g}^*$. For $\mathbf{X} = \mathbf{G}/\mathbf{H} : T^* \mathbf{X} \cong \mathbf{G} \times_H \mathfrak{h}^{\perp}$ and $\mu(g, \alpha) = g \cdot \alpha$ Definition

 \bullet For a nilpotent orbit $0{\subset}\mathcal{N}(\mathfrak{g}^*),$ say X is 0-spherical if

 $\dim \mu^{-1}(\mathbf{0}) \leq \dim \mathbf{X} + \dim \mathbf{0}/2$

 For a G-invariant subset Ξ⊂N(g*), say X is Ξ-spherical if X is O-spherical ∀O⊂Ξ.

For $\mathbf{X} = \mathbf{G}/\mathbf{H}$, \mathbf{X} is \mathbf{O} -spherical $\iff \dim \mathbf{O} \cap \mathfrak{h}^{\perp} \leq \dim \mathbf{O}/2$. For parabolic $\mathbf{P} \subset \mathbf{G}$, $\mathbf{O}_{\mathbf{P}}$:=the unique orbit s.t. $\mathfrak{p}^{\perp} \cap \mathbf{O}_{\mathbf{P}}$ is dense in \mathfrak{p}^{\perp} .

Theorem 1 (Aizenbud - G. 2021)

X is $\overline{\mathbf{O}_{\mathbf{P}}}$ -spherical \iff **P** has finitely many orbits on **X**.

Corollary (following Wen-Wei Li)

- X is $\mathcal{N}(\mathfrak{g}^*)\text{-spherical}\iff$ X is spherical
- X is $\{0\}$ -spherical \iff G has finitely many orbits on X.

Associated variety of the annihilator & the main theorem

- $\mathcal{U}_n(\mathfrak{g})$ PBW filtration on universal enveloping algebra.
- $\operatorname{gr} \mathcal{U}(\mathfrak{g}) \cong \mathcal{S}(\mathfrak{g}) \cong \operatorname{Pol}(\mathfrak{g}^*).$
- For an ideal $I \subset U(\mathfrak{g})$, $\mathcal{V}(I) :=$ zero set of symbols of I in \mathfrak{g}^* .
- For a g-module *M*, $\operatorname{Ann}(M) \subset \mathcal{U}(\mathfrak{g})$ annihilator, $\mathcal{V}(\operatorname{Ann}(M)) \subset \mathfrak{g}^*$
- $\mathcal{M}(G)$ the Casselman-Wallach category (abelian): finitely generated smooth admissible Fréchet representations of moderate growth .
- For $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$, $\mathcal{M}_{\Xi}(G) = \{\pi \in \mathcal{M}(G) \mid \mathcal{V}(Ann(\pi)) \subset \Xi\}$

Theorem 2 (Aizenbud - G. 2021)

Let $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$ closed **G**-invariant. Let **X** be Ξ -spherical **G**-manifold, and let $\sigma \in \mathcal{M}_{\Xi}(G)$. Then dim Hom $(\mathcal{S}(X), \sigma) < \infty$

Corollary

Let $\mathbf{H} \subset \mathbf{G}$ be reductive subgroup. Let $\mathbf{P} \subset \mathbf{G}$ and $\mathbf{Q} \subset \mathbf{H}$ be parabolic subgroups with $|\mathbf{P} \setminus \mathbf{G} / \mathbf{Q}| < \infty$. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H)$,

 $\dim \operatorname{Hom}_{H}(\pi|_{H},\tau) < \infty$

Corollary

- **()** Let $\mathbf{P} \subset \mathbf{G}$ be a parabolic subgroup s.t. \mathbf{G}/\mathbf{P} is a spherical **H**-variety. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$, $\pi|_{H}$ has finite multiplicities.
- **(a)** Let $\mathbf{Q} \subset \mathbf{H}$ be a parabolic subgroup that is spherical as a subgroup of **G**. Then for any $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{O}}}}(H)$, $\operatorname{ind}_{H}^{G} \tau$ has finite multiplicities.

For simple **G** and symmetric $\mathbf{H} \subset \mathbf{G}$, all $\mathbf{P} \subset \mathbf{G}$ satisfying (i), and all $\mathbf{Q} \subset \mathbf{H}$ satisfying (ii) are classified by He, Nishiyama, Ochiai, Oshima. For classical **G**, all **H**: Avdeev-Petukhov. They also have a strategy $\forall \mathbf{G}$.

Corollary

Let **H** be a reductive group, and **P**, **Q** \subset **H** be parabolic subgroups s.t. **H**/**P** × **H**/**Q** is a spherical **H**-variety, under the diagonal action. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(H)$, and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H)$, $\pi \otimes \tau$ has finite multiplicities.

All such triples $(\mathbf{H}, \mathbf{P}, \mathbf{Q})$ were classified by Stembridge. Example: $\mathbf{H} = \operatorname{GL}_n$, $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\min}}}(H)$, or classical \mathbf{H} and $\pi, \tau \in \mathcal{M}_{\overline{\mathbf{O}_{2^n}}}(H)$.

• Our results also extend to certain representations of non-reductive H.

Example (Generalized Shalika model)

Let $\mathbf{G} = \mathrm{GL}_{2n}$, $\mathbf{R} = \mathbf{LU} \subset \mathbf{G}$ with $\mathbf{L} = \mathrm{GL}_n \times \mathrm{GL}_n$ and $\mathbf{U} = \mathrm{Mat}_{n \times n}$, $\mathbf{M} = \Delta \mathrm{GL}_n \subset \mathbf{L}$, $\mathbf{H} := \mathbf{MU}$. Let $\mathfrak{m}^* \supset \mathbf{O}_{\min} := \text{minimal nilpotent orbit, and } \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\min}}}(M)$. Let ψ be a unitary character of H.

Then $\operatorname{ind}_{H}^{G}(\pi \otimes \psi)$ has finite multiplicities.

Similar case: $\mathbf{G} = O_{4n}$, $\mathbf{L} = \operatorname{GL}_{2n}$, $\mathbf{M} = \operatorname{Sp}_{2n}$, $\mathbf{O}_{\operatorname{ntm}} \subset \mathfrak{m}^*$.

Theorem (Tauchi)

Let $P \subset G$ be a parabolic subgroup. If all degenerate principal series representations of the form $\operatorname{Ind}_P^G \rho$, with dim $\rho < \infty$, have finite *H*-multiplicities, then *H* has finitely many orientable orbits on *G*/*P*.

Corollary

Let $P \subset G$ be a parabolic subgroup defined over \mathbb{R} . Suppose that for all but finitely many orbits of H on G/P, the set of real points is non-empty and orientable. Then the following are equivalent.

- **() H** is $\overline{\mathbf{O}_{\mathbf{P}}}$ -spherical.
- **(**) Every $\pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ has finite multiplicities in $\mathcal{S}(G/H)$.
- H has finitely many orbits on G / P.
- H has finitely many orbits on G/P.

The assumption of the corollary holds if H and G are complex reductive groups.

Corollary

Let $P \subset G$ be a parabolic subgroup defined over \mathbb{R} . Suppose that for all but finitely many orbits of H on G/P, the set of real points is non-empty and orientable. Then the following are equivalent.

- **(1) H** is $\overline{\mathbf{O}_{\mathbf{P}}}$ -spherical.
- **(**) Every $\pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ has finite multiplicities in $\mathcal{S}(G/H)$.
- H has finitely many orbits on G / P.
- H has finitely many orbits on G/P.

The assumption of the corollary holds if H and G are complex reductive groups. In general however, the finiteness of $|\mathbf{H} \setminus \mathbf{G} / \mathbf{P}|$ is not necessary, but the finiteness of $|H \setminus G / \mathbf{P}|$ is not sufficient for finite multiplicities. Branching multiplicities for degenerate principal series were computed in various cases by Frahm-Orsted-Oshima, and Kobayashi. Kobayashi: Conditions for bounded multiplicities in terms of distinction w.r. to symmetric $G' \subset G$.

Example (I. Karshon, related to Howe correspondance in type II)

 $\mathbf{G} := \operatorname{Sp}(V \otimes W \oplus V^* \otimes W^*), \ \mathbf{H} := \operatorname{GL}(V) \times \operatorname{GL}(W) \hookrightarrow G.$ Then $\mathbf{G}/\mathbf{B}_{\mathbf{H}}$ is $\overline{\mathbf{O}_{\min}}$ -spherical.

Example (D. Panyushev, strict inequality)

 $G := Sp_{2n}$, $P = LU \subset G$ - maximal parabolic subgroup with $U \cong$ Heisenberg group, $O := O_{\min}$. Then dim O = 2n, while dim $O \cap \mathfrak{p}^{\perp} = 1$. Thus dim $\mu_{G/P}^{-1}(O) < \dim G/P + \dim O/2$.

Theorem 3 (Aizenbud - G. 2021)

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let $\mathcal{S}^*(X \times Y)^{\Delta G, I}$ denote the space of ΔG -invariant tempered distributions on $X \times Y$ annihilated by I. Then

$$\dim \mathcal{S}^*(X \times Y)^{\Delta G, I} < \infty$$

Theorem 3 (Aizenbud - G. 2021)

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG -invariant tempered \mathcal{E} -valued distributions on $X \times Y$ annihilated by I. Then

 $\dim \mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I} < \infty$

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG -invariant tempered \mathcal{E} -valued distributions on $X \times Y$ annihilated by I. Then

 $\dim \mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I} < \infty$

Proof of Theorem 2.

 $\Xi \subset \mathcal{N}(\mathfrak{g}^*)$, **X** is Ξ -spherical, $\sigma \in \mathcal{M}_{\Xi}$. Need: dim $\operatorname{Hom}_G(\mathcal{S}(X), \sigma) < \infty$. Let \mathcal{E} be a bundle on Y := G/K s.t. $\sigma \hookrightarrow \mathcal{S}^*(Y, \mathcal{E})$. Let $I := \operatorname{Ann}(\sigma)$. Then $\mathcal{V}(I) \subset \Xi$, and

 $\operatorname{Hom}_{G}(\mathcal{S}(X), \sigma) \hookrightarrow \operatorname{Hom}_{G}(\mathcal{S}(X), \mathcal{S}^{*}(Y, \mathcal{E}))^{I} \hookrightarrow \mathcal{S}^{*}(X \times Y, \mathbb{C} \boxtimes \mathcal{E})^{\Delta G, I}$

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG -invariant tempered \mathcal{E} -valued distributions on $X \times Y$ annihilated by I. Then

 $\dim \mathcal{S}^*(X \times Y, \mathcal{E})^{\Delta G, I} < \infty$

- $D_{\mathbf{X}} :=$ sheaf of algebraic differential operators. Gr $D_{\mathbf{X}} \cong \mathcal{O}(\mathcal{T}^* \mathbf{X})$.
- For a fin.gen. sheaf M of $D_{\mathbf{X}}$ -modules, SingS(M) := Supp Gr $(M) \subset T^* \mathbf{X}$.
- Bernstein: if $M \neq 0$ then dim SingS $(M) \ge \dim X$.
- *M* is called holonomic if dim $SingS(M) = \dim X$.

Theorem (Bernstein-Kashiwara)

For any holonomic M, dim Hom_{D_X} $(M, S^*(X)) < \infty$.

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}(\mathfrak{g}^*)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$ -spherical \mathbf{G} -manifolds. Let $\mathcal{S}^*(X \times Y)^{\Delta G, I}$ denote the space of ΔG -invariant tempered distributions on $X \times Y$ annihilated by I. Then

 $\dim \mathcal{S}^*(X \times Y)^{\Delta G, I} < \infty$

- $D_{\mathbf{X}}$:=sheaf of algebraic differential operators. Gr $D_{\mathbf{X}} \cong \mathcal{O}(T^*\mathbf{X})$.
- For a f.gen. sheaf M of $D_{\mathbf{X}}$ -modules, SingS(M) := Supp Gr $(M) \subset T^* \mathbf{X}$.
- *M* is called holonomic if dim $SingS(M) = \dim X$.
- Bernstein-Kashiwara: \forall holonomic M, dim Hom_{D_X} $(M, S^*(X)) < \infty$.

Lemma

Let $\Xi{\subset}\mathcal{N}(\mathfrak{g}^*)$ and let X,Y be $\Xi{\text{-spherical}}~\textbf{G}{\text{-manifolds}}.$ Then

$$\dim \mu_{\mathbf{X}\times\mathbf{Y}}^{-1}((\Xi\times\Xi)\cap(\Delta\mathfrak{g})^{\perp})\leq \dim\mathbf{X}+\dim\mathbf{Y}$$

Proof of Theorem 3.

 $M := D_{\mathbf{X} \times \mathbf{Y}}$ -module with $\mathcal{S}^*(X \times Y)^{\Delta G, I} \hookrightarrow \operatorname{Hom}(M, \mathcal{S}^*(X, Y))$. By the lemma, M is holonomic.

Lemma

Let $\Xi{\subset}\mathcal{N}(\mathfrak{g}^*)$ and let X,Y be $\Xi{\text{-spherical }\textbf{G}{\text{-manifolds.}}}$ Then

$$\dim \mu_{\mathbf{X} \times \mathbf{Y}}^{-1}((\Xi \times \Xi) \cap (\Delta \mathfrak{g})^{\perp}) \leq \dim \mathbf{X} + \dim \mathbf{Y}$$

Proof.

 $\forall \text{ orbit } \mathbf{O} {\subset} \Xi \text{ we have }$

$$\dim \mu_{\mathbf{X} \times \mathbf{Y}}^{-1}((\mathbf{0} \times \mathbf{0}) \cap (\Delta \mathfrak{g})^{\perp}) = \dim \mu_{\mathbf{X}}^{-1}(\mathbf{0}) + \dim \mu_{\mathbf{Y}}^{-1}(\mathbf{0}) - \dim \mathbf{0} \le \dim \mathbf{X} + \dim \mathbf{0}/2 + \dim \mathbf{Y} + \dim \mathbf{0}/2 - \dim \mathbf{0} = \dim \mathbf{X} + \dim \mathbf{Y}$$

Open questions

- What's a geometric criterion for $\overline{\mathbf{O}}$ -sphericity for non- Richardson \mathbf{O} ?
- Can we bound $m_{\sigma}(\mathcal{S}(X))$? Have to use some invariant of σ .
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by S(X) → σ and S(X) → õ for V(Ann(σ))-spherical X are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical X they are.
- If **G**/**H** is $\mathcal{V}(Ann(\sigma))$ -spherical, is $\sigma^{HC}|_{\mathfrak{h}}$ finitely generated? Holds for real spherical *G*/*H* (Aizenbud-G.-Kroetz-Liu, Kroetz-Schlichtkrull).
- Conjecture: Theorem 2 holds over non-archimedean fields as well.

Happy Birthday, Bill!