On indecomposable and logarithmic modules for affine vertex algebras

Dražen Adamović University of Zagreb, Croatia

Banff, November 1, 2021

Znanstveni centar izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri

Projekt KK.01.1.1.01.0004

Projekt je sufinancirala Europska unija iz Europskog fonda za regionalni razvoj. Sadržaj ovog seminara isključiva je odgovornost Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu te ne predstavlja nužno stalalište Europske unije.

Logarithmic modules for VOAs

- Let $(V, Y, \mathbf{1}, \omega)$ be a VOA. $Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1}$.
- Let (M, Y_M) be any weak V-module.
- Let $Y_M(\omega, z) = \sum_{n \in \mathbb{Z}} L(n)z^{-n-2}$.
- Then M is a module for the Virasoro algebra.
- (M, Y_M) is called logarithmic if it admits a decomposition

$$M = \coprod_{h \in \mathbb{C}} M_h, M_h = \{ v \in M, \ (L(0) - h)^m v = 0 \ \text{ for some } \ m \}.$$

M has nilpotent rank m if

$$(L(0) - L(0)_{sem s})^m = 0, (L(0) - L(0)_{sem s})^{m-1} \neq 0.$$

Logarithmic modules for VOAs

- Recent interest in logarithmic modules for C₂-cofinite, non-rational VOAs of triplet type (works D. A, A. Milas, T. Abe, Arike, Nagatomo, Wood, Tsuchiya, Gannon, Creutzig, Ridout and physicists in framework of LCFT)
- Important connection with projective modules for quantum groups (several future talks at the conference).
- Logarithmic modules are related to twisted modules for non semi-simple VOA automorphism (Y.Z. Huang)
- Existence of log. modules are/were usually longstanding conjectures
- Methods: Zhu's algebra theory modular invariance approach, Kazhdan-Lusztig corredpondence, explicit lattice realization

A general method for construction of log-modules

• Let $v \in V$ be an even vector such that:

$$[v_n, v_m] = 0 \quad \forall n, m \in \mathbb{Z}, \tag{1}$$

$$L(n)v = \delta_{n,0}v \quad \forall \ n \in \mathbb{Z}_{\geq 0}. \tag{2}$$

Define

$$\Delta(v,z) = z^{v_0} \exp\left(\sum_{n=1}^{\infty} \frac{v_n}{-n} (-z)^{-n}\right). \tag{3}$$

A general method for construction of log-modules

Theorem (D.A, A.M, 2009)

Assume that V is a VOA and that $v \in V$ is an even vector which satisfies conditions (1) and (2). Let \overline{V} be the vertex subalgebra of V such that $\overline{V} \subseteq Ker_V v_0$.

Assume that (M, Y_M) is a weak V-module. Define the pair $(\widetilde{M}, \widetilde{Y}_{\widetilde{M}})$ such that

$$\widetilde{M} = M$$
 as a vector space,

$$\widetilde{Y}_{\widetilde{M}}(a,z) = Y_{M}(\Delta(v,x)a,z) \quad \textit{for } a \in \overline{V}.$$

Then $(\widetilde{M}, \widetilde{Y}_{\widetilde{M}})$ is a weak \overline{V} -module.

Assume that L(0) acts semisimply on M. Then $(\widetilde{M}, \widetilde{Y}_{\widetilde{M}})$ is logarithmic \overline{V} -module if and only if v_0 does not act semisimply on M.

Applications

- Let U be a VOA, M U-module, $V = U \oplus M$ extended VOA.
- $S: U \rightarrow M$ a screening operator,
- $\overline{V} = \text{Ker}(S: U \to M)$ important VOA.
- Log \overline{V} -modules can be constructed using previous theorem.

So far applied on

- Triplet vertex (super)algebras W(p), SW(p)
- Logarithmic extensions of minimal models W(p, p')
- Affine VOA $L_k(\mathfrak{sl}_2)$
- We shall discuss new applications.

Affine VOAs

- g simple Lie (super)algebra over C.
- $\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] + \mathbb{C}K$ the affine Kac–Moody Lie algebra.
- $V^k(\mathfrak{g})$ universal affine VOA of level k (k is not critical).
- As $\hat{\mathfrak{g}}$ -module $V^k(\mathfrak{g}) = U(\hat{\mathfrak{g}}) \otimes_{U(\hat{\mathfrak{g}}_{>0} + \mathbb{C}K)} \mathbb{C}.1.$
- $L_k(\mathfrak{g})$ simple quotient of $V^k(\mathfrak{g})$
- ullet ω_{sug} Sugawara Virasoro vector in $V_k(\mathfrak{g})$ of central charge

$$c(sug) = \frac{k \operatorname{sdim}\mathfrak{g}}{k + h^{\vee}}.$$

The category KL_k

- Let KL^k be the subcategory of \mathcal{O}_k consisting of modules M on which \mathfrak{g} -acts locally finite
 - = the category of ordinary modules for $V^k(\mathfrak{g})$ when \mathfrak{g} is a simple Lie algebra
- Category KL_k : $L_k(\mathfrak{g})$ -modules which are in KL^k .
- For \mathfrak{g} Lie superalgebra, we introduce KL_k^{fin} , subcategory of KL_k consists of weight modules.
- Semi-simplicity of KL_k and KL_k^{fin} (D.A-Kac-Moseneder-Papi-Perse)
- Investigate the fusion rules and associated fusion algebras for modules from KL_k . Tensor category of KL_k modules (Creutzig-Yang).

Semi-simplicity of KL_k

We prove the following results on complete reducibility result in KL_k

Theorem (AKMPP, 2018)

Assume that \mathfrak{g} is a simple Lie algebra and $k \in \mathbb{C} \setminus \mathbb{Z}_{\geq 0}$. Then KL_k is a semi-simple category in the following cases:

- k is a collapsing level.
- $W_k(\mathfrak{g}, \theta)$ is a rational vertex operator algebra.

Theorem (AMP, 2021)

Assume that $\mathfrak g$ is a simple Lie superalgebra and $k \in \mathbb C \setminus \mathbb Z_{\geq 0}$. Then KL_k^{fin} is a semi-simple category in the following cases:

- k is a collapsing level.
- $W_k(\mathfrak{g}, \theta)$ is a rational vertex operator superalgebra.

Ex: KL_k^{fin} is not semi-simple category for $\mathfrak{g} = \mathfrak{sl}(n|1)$ and $k \in \mathbb{Z}_{\geq 1}$.

New approach: Realization as an inverse of QHR

- For f nilpotent element in \mathfrak{g} and $k \in \mathbb{C}$ one associate the universal affine W-algebra $W^k(\mathfrak{g},f)$ as $H_f(V^k(\mathfrak{g}))$ where H_f is quantum Hamiltonian reduction function
- (studied in vertex algebra setting by Kac, Wakimoto, Frenkel, Arakawa,+ new work by Creutzig, Genra, ...)
- $W_k(\mathfrak{g}, f)$ simple quotient of $W^k(\mathfrak{g}, f)$.
- Inverse of QHR means embedding of type

$$L_k(\mathfrak{g}) \hookrightarrow W_k(\mathfrak{g}, f) \otimes \mathcal{F}$$

where ${\mathcal F}$ is a free field algebra

 Recent results by D.A, Ridout, Kawasetsu, Creutzig, Genra, Fechily for algebras of low rank.

Vertex algebra $\Pi(0)$

- Consider lattice $L = \mathbb{Z}c + \mathbb{Z}d$, $\langle c, c \rangle = \langle d, d \rangle = 0$, $\langle c, d \rangle = 2$,
- Associated lattice vertex algebra $V_L = M(1) \otimes \mathbb{C}[L]$, where M(1) is Heisenberg vertex algebra with generators c(z) i d(z); $\mathbb{C}[L]$ group algebra associated to L.
- $\Pi(0) = M(1) \otimes \mathbb{C}[\mathbb{Z}c] \subset V_L$.
- $\Pi(0)$ is a localisation of the $\beta\gamma$ VOA ${\cal S}$
- $\Pi(0)$ is a localisation of the Weyl VOA = $\beta\gamma$ system
- Set $\beta = e^c$, $\beta^{-1} := e^{-c}$ i $\beta^{-1}(n) := e^{-c}_{n-2}$. We have:

$$\beta^{-1}(z) = Y(\beta^{-1}, z) = \sum_{n \in \mathbb{Z}} \beta^{-1}(n) z^{-n+1}.$$

$$\beta^{-1}(z)\beta(z) = Id.$$

Realisation of $L_k(\mathfrak{sl}_2)$

Let
$$k + 2 = \frac{u}{v}$$
, $(u, v) = 1$, $d_{u,v} = 1 - \frac{6(u-v)^2}{uv}$.

Theorem (D.A, CMP, 2019)

Assume that $k \notin \mathbb{Z}_{>0}$.

There is a non-trivial vertex algebra homomorphism

$$\Phi: L_k(\mathfrak{sl}_2) \to L_{d_u,v}^{Vir} \otimes \Pi(0)$$

such that

$$e \mapsto e^{c}, h \mapsto 2\mu$$

 $f \mapsto ((k+2)\omega_{u,v} - \nu(-1)^{2} - (k+1)\nu(-2))e^{-c}$

where
$$\nu = \frac{1}{2}d - \frac{k}{4}c$$
, $\mu = \frac{1}{2}d + \frac{k}{4}c$.

• For each admissible k such that $v \ge 3$, there exist logarithmic $L_k(\mathfrak{sl}_2)$ -modules of nilpotent rank two.

Realisation of $L_k(\mathfrak{sl}_3)$

Based on new paper

- [ACG] D.A, T.Creutzig, N. Genra, Relaxed and logarithmic modules of $\widehat{\mathfrak{sl}}_3$, arXiv:2110.15203 (last week)
 - Let

$$BP^k = H_{f_{\theta}}(V^k(\mathfrak{sl}_3)) = W^k(\mathfrak{sl}_3, f_{\theta})$$

be the universal Bershadsky-Polyakov vertex algebra of level k

- BP_k its simple quotient of BP^k .
- $\mathcal{S} \beta \gamma$ VOA, $\Pi(0)$ as before.
- We prove that there exist embeddings

$$\Phi_0: V^k(\mathfrak{sl}_3) \hookrightarrow BP^k \otimes \mathcal{S} \otimes \Pi(0),$$

$$\Phi_1: L_k(\mathfrak{sl}_3) \hookrightarrow BP_k \otimes S \otimes \Pi(0) \quad (k \notin \mathbb{Z}_{>0}).$$

• Therefore in our case, tensoring with the free-field algebra $\mathcal{F} = \mathcal{S} \otimes \Pi(0)$ we invert QHR

Realisation of $L_k(\mathfrak{sl}_3)$

- BP^k generators G^{\pm}, J, L^{BP} .
- $V^k(\mathfrak{sl}_3)$ generators $e_i, f_i, h_j, i = 1, 2, 3, j = 1, 2$.

The homomorphism $\Phi_0: V^k(\mathfrak{sl}_3) \to BP^k \otimes \mathcal{S} \otimes \Pi(0)$ is uniquely determined by:

$$\begin{split} e_1 &\mapsto -\gamma \mathrm{e}^c, \quad e_2 \mapsto \beta, \quad e_3 \mapsto \mathrm{e}^c, \\ h_1 &\mapsto -2J + \ \mathring{\circ} \ \gamma \beta - \frac{2k+9}{6}c + \frac{1}{2}d, \quad h_2 \mapsto J - 2 \ \mathring{\circ} \ \gamma \beta + \frac{4k+9}{6}c + \frac{1}{2}d, \\ f_1 &\mapsto G^+ - \ \mathring{\circ} \left(2J + \frac{8k+9}{6}c - \frac{1}{2}d\right)\beta \mathrm{e}^{-c} + (k+1)(\partial\beta)\mathrm{e}^{-c}, \\ f_2 &\mapsto G^-\mathrm{e}^{-c} + \left(J + \frac{4k+9}{6}c + \frac{1}{2}d\right)\gamma + k\partial\gamma - \ \mathring{\circ} \ \gamma^2\beta, \\ f_3 &\mapsto G^+\gamma - G^-\beta\mathrm{e}^{-2c} +(k+3)L^{BP}...... \end{split}$$

On the proof of simplicity

- Note that $\mathfrak{b} = \operatorname{span}_{\mathbb{C}}\{e_1, e_2, e_3, \bar{h} = h_1 + 2h_2\} \subset \mathcal{S} \otimes \Pi(0)$.
- Consider the action of $\widehat{\mathfrak{b}}$ on $\mathcal{S} \otimes \Pi(0)$.
- We show that each $\widehat{\mathfrak{b}}$ -singular vector in $\mathcal{S}\otimes\Pi(0)$ is of the form $e^{\ell c}$.
- Consider $\widetilde{L}(\mathfrak{sl}_3) \subset BP_k \otimes S \otimes \Pi(0)$.
- If $\widetilde{L}(\mathfrak{sl}_3)$ is not simple, it contains a singular vector, which must be of the form

$$v = Z \otimes e^{\ell c}, \quad Z \in BP_k.$$

- Using the action of other generators, we get that $v = e^{\ell c}$.
- Such singular vector can exist only for $k \in \mathbb{Z}_{>0}$.
- This proves that $\widetilde{L}(\mathfrak{sl}_3) = L(\mathfrak{sl}_3)$ for $k \notin \mathbb{Z}_{\geq 0}$.

Applications of realizations: Category KL^k

Theorem (ACG)

• Each irreducible module M in KL^k (resp. KL_k when $k \notin \mathbb{Z}_{\geq 0}$) is realizated as

$$M = \left(L[x,y] \otimes S \otimes \Pi(0)^{1/3}\right)^{int_{\mathfrak{sl}_3}}$$

- L[x, y] is highest weight C_1 -cofinite BP^k -module (resp. BP_k module).
- $\Pi(0)^{1/3}$ is a SCE of $\Pi(0)$:

$$\Pi(0)^{1/3} = \Pi(0) + \Pi(0)e^{\frac{c}{3}} + \Pi(0)e^{\frac{2c}{3}}.$$

Relaxed highest weight modules

- Consider VOA $\Pi(0)^{\otimes 2}$ generated by $c_i, d_i, e^{\pm c_i}$, i = 1, 2.
- FMS bosonization gives that $S \otimes \Pi(0) \hookrightarrow \Pi(0)^{\otimes 2}$.
- $\Pi_{r,s}(\lambda_1,\lambda_2):=\Pi(0)^{\otimes 2}.e^{r_1d_1/2+r_2d_2/2+\lambda_1c_1+\lambda_2c_2}$ is an irreducible $\Pi(0)^{\otimes 2}$ -module.
- Let R be a $\mathbb{Z}_{\geq 0}$ -graded BP^k -module (resp. BP_k -module if $k \notin \mathbb{Z}_{\geq 0}$) which is a weight module with respect to $(J(0), \widetilde{L}(0))$, where $\widetilde{L} = L^{BP} + \frac{DJ}{2}$.
- Then $R \otimes \Pi_{-1,-1}(\lambda_1,\lambda_2)$ is a $\mathbb{Z}_{\geq 0}$ -graded $V^k(\mathfrak{sl}_3)$ -module (resp. $L_k(\mathfrak{sl}_3)$ -module.
- $R \otimes \Pi_{-1,-1}(\lambda_1,\lambda_2)$ has finite-dimensional weight spaces for $\widehat{\mathfrak{sl}_3}$ if and only if R_{top} is finite-dimensional.

Irreducibility criterion for relaxed highest weight modules

Theorem (ACG)

Assume that $(R \otimes \Pi_{-1,-1}(\lambda_1,\lambda_2))_{top}$ is an irreducible $U(\mathfrak{sl}_3)$ -module. Then:

- $R \otimes \Pi_{-1,-1}(\lambda_1,\lambda_2)$ is an irreducible $V^k(\mathfrak{sl}_3)$ -module.
- If $k \notin \mathbb{Z}_{\geq 0}$ and R is an BP_k -module, then $R \otimes \Pi_{-1,-1}(\lambda_1,\lambda_2)$ is an irreducible $L_k(\mathfrak{sl}_3)$ -module.
- For each $N \in \mathbb{Z}_{\geq 0}$, there exist an irreducible relaxed $V^k(\mathfrak{sl}_3)$ -module realized as

$$W = L[x, y] \otimes \Pi_{-1, -1}(\lambda_1, \lambda_2)$$

such W_{top} is Gelfand-Tsetlin module with all N-dimensional weight spaces.

Large relaxed highest weight module

- In [D.A, Kawasetsu-Ridout, 2020], we constructed family of irreducible relaxed BP^k -modules (resp. BP_k -modules under some assumptions) $R_M(\lambda)$ such that $R_M(\lambda)_{top}$ is infinite-dimensional.
- Then we have the following $V^k(\mathfrak{sl}_3)$ -module (resp. $L_k(\mathfrak{sl}_3)$ -module):

$$R_M(\lambda) \otimes \Pi_{-1,-1}(\lambda_1,\lambda_2)$$

with all infinite-dimensional weight spaces.

- The irreducibility proof is reduced to the irreducibility of some non Gelfand-Tsetlin modules with infinite-dimensional weight spaces for *sl*(3), which seems to be unknown.
- We believe that they are related to modules recently studied by Futorny, Zhao, Lu and collaborators.

Logarithmic modules for $L_k(\mathfrak{sl}_3)$: strategy

- We are looking for modules on which
- (*) $L_{sug}(0)$ doesn't act semisimple, but cartan subalgebra $\mathfrak{h} \subset \mathfrak{sl}_3$ acts semi-simply.
 - It seems that logarithmic Π(0) modules don't contribute to log. modules satisfying (*).
 - Since for $k \notin \mathbb{Z}$, $L_k(\mathfrak{sl}_3) \hookrightarrow BP_k \otimes \mathcal{S} \otimes \Pi(0)$, existence of logarithmic modules will follow from the existence of logarithmic \mathcal{S} and BP_k -modules.
 - $\beta\gamma$ VOA $\mathcal S$ has logarithmic modules $\mathcal P_s$, $s\in\mathbb Z$ which are projective in the category $\mathcal F$ introduced by Allan and Wood (2020).
 - For a construction of log. BP_k -modules, we need to explore realization $BP_k \hookrightarrow \mathcal{Z}_k \otimes \Pi(0)$.

What we can prove for log $L_k(\mathfrak{sl}_3)$ -modules so far:

Theorem (ACG)

- The universal affine VOA $V^k(\mathfrak{sl}_3)$ has logarithmic modules of rank three.
- For each level $k \notin \mathbb{Z}_{\geq 0}$, $L_k(\mathfrak{sl}_3)$ has logarithmic modules of rank two. Assume that $k = -3 + \frac{u}{v}$ be an admissible level such that u, v are coprime positive integers and $v \geq 4$.
- Then there exists log. BP_k -module $\widetilde{\mathcal{V}_k}$ of $L^{BP}(0)$ nilpotent rank two.
- For each $r, s \in \mathbb{Z}$, $\lambda \in \mathbb{C}$:

$$\widetilde{\mathcal{V}_k} \otimes \mathcal{P}_s \otimes \Pi(0).e^{\frac{r}{2}d_2 + \lambda c_2}$$

is a logarithmic $L_k(\mathfrak{sl}_3)$ -module of $L_{sug}(0)$ -nilpotent rank three.

Realisation of BP_k

Let $\mathcal{Z}^k = W^k(\mathfrak{sl}_3, f_{pr})$ be the universal Zamolodchikov vertex algebra \mathcal{Z}^k freely generated by fields T and W. Let \mathcal{Z}_k be its simple quotient.

Theorem (D.A, K. Kawasetsu, D. Ridout 2020)

For $k \neq -3$, $2k + 3 \notin \mathbb{Z}_{\geq 0}$, there is a non-trivial vertex algebra homomorphism $\phi: BP_k \to \mathcal{Z}_k \otimes \Pi(0)$, uniquely determined by

$$G^{+} \mapsto e^{c}, \quad J \mapsto j, \quad L \mapsto T + \omega_{\Pi(0)},$$

$$G^{-} \mapsto \left(W + \frac{1}{2}(k+2)(k+3)\partial T\right) \otimes e^{-c} + (k+3)T \otimes i_{-1}e^{-c} \qquad (4)$$

$$-1 \otimes \left(i_{-1}^{3} + 3(k+2)i_{-2}i_{-1} + 2(k+2)^{2}i_{-3}\right)e^{-c}.$$

$$\omega_{\Pi(0)} = \frac{1}{2}c(-1)d(-1) + \frac{2k+3}{3}c(-2) - \frac{1}{2}d(-2)$$

$$i = d-j, \ j = (d-c)/2 + \frac{k+3}{3}c.$$

Screening operators for realization

Theorem (D.A, T. Creutzig, N. Genra, 2021)

There exist a highest weight \mathbb{Z}^k -module \widetilde{L} with the highest weight vector v_0 such that

$$T_0v_0=rac{4k+9}{3}v_0, \quad W_0v_0=-rac{(k+3)(4k+9)(5k+12)}{27}v_0,$$

and that

$$V = \int (v_0 \otimes e^{-\frac{2k+3}{6}c + \frac{1}{2}d})(z)dz : \mathcal{Z}^k \otimes \Pi(0) \to \widetilde{L} \otimes \Pi(0).e^{-\frac{2k+3}{6}c + \frac{1}{2}d}$$

is a screening operator of $BP^k \hookrightarrow \mathcal{Z}^k \otimes \Pi(0)$.

• Question: Is \widetilde{L} a \mathcal{Z}_k -module?

Construction of logarithmic BP_k -modules

- Let L be the irreducible quotient of \widetilde{L} .
- Assume that L is an irreducible module for the simple VOA \mathcal{Z}_k .
- Consider the extended vertex algebra

$$\mathcal{V}_k = \mathcal{Z}_k \otimes \Pi(0) \bigoplus Z \otimes \Pi(0).e^{-\frac{2k+3}{6}c + \frac{1}{2}d}.$$

New screening operator

$$Q = \int \mathcal{Y}(v_0 \otimes e^i, z) dz : \mathcal{Z}_k \otimes \Pi(0) \to L \otimes \Pi(0).e^{-\frac{2k+3}{6}c + \frac{1}{2}d}.$$

• For a V_k -module \mathcal{M} we define

$$(\widetilde{\mathcal{M}},\widetilde{Y}_{\mathcal{M}}(\cdot,z)):=(\mathcal{M},Y_{\mathcal{M}}(\Delta(s,z)\cdot,z)),$$

where

$$s = v_0 \otimes e^{-\frac{2k+3}{6}c + \frac{1}{2}d},$$

$$\Delta(s,z) = z^{s_0} \exp\left(\sum_{n=1}^{\infty} \frac{s(n)}{-n}(-z)^{-n}\right).$$

Construction of logarithmic BP_k -modules

Theorem (ACG)

Assume that Z is a \mathcal{Z}_k -module and $2k + 3 \notin \mathbb{Z}_{\geq 0}$.

- Let \mathcal{M} be any \mathcal{V}_k -module. Define
- Assume that \mathcal{M} is a $L^{BP}(0)$ semi-simple \mathcal{V} -module such that Q acts non-trivially on \mathcal{M} . Then $\widetilde{\mathcal{M}}$ is a logarithmic BP_k -module.
- $\widetilde{\mathcal{V}_k}$ is a logarithmic BP_k -module of $\widetilde{L}^{BP}(0)$ nilpotent rank two.
- In particular, BP_k has logarithmic modules of nilpotent rank two for each admissible k such that $k + 3 = \frac{u}{v}$, $v \ge 4$.
- With suitable modification we can get log modules for admissible modules of levels with denominator v = 3.
- We expect that even beyond admissible levels, L is also Z_k -module, so we will have logarithmic BP_k -modules in that case too.

More applications: Affine analog of Feigin-Tipunin algebra

• Note that for $2k + 3 \notin \mathbb{Z}_{>0}$:

$$L_k(\mathfrak{sl}_3) \hookrightarrow \mathcal{Z}_k \otimes \mathcal{S} \otimes \Pi(0)^{\otimes 2}$$
.

 We can transfer "classical" logarithmic VOAs to logarithmic affine VOAs:

Ex. Take Feigin-Tipunin algebra $W_{A_2}(p)$ of central charge (1, p) models for \mathcal{Z}_k (higher rank analog of triplet VOA). Then

$$\mathcal{V}_{A_2}^{(p)} = (W_{A_2}(p) \otimes \mathcal{S} \otimes \Pi(0)^{1/2} \otimes \Pi(0)^{1/3})^{int_{\mathfrak{sl}_3}}$$

is a logarithmic VOA associated to $L_k(\mathfrak{sl}_3)$ for k = -3 + 1/p.

• Admits \mathfrak{sl}_3 —action inherited from $W_{A_2}(p)$. Applications to VOA tensor category theory.

Literature

- D.A, Realizations of simple affine vertex algebras and their modules: the cases $\widehat{sl(2)}$ and $\widehat{osp(1,2)}$, Communications in Mathematical Physics (2019)
- D. A., T. Creutzig, N. Genra, Relaxed and logarithmic modules of $\widehat{\mathfrak{sl}}_3$, arXiv:2110.15203 [math.RT]
- D.A, K Kawasetsu, D. Ridout, A realisation of the Bershadsky-Polyakov algebras and their relaxed modules, Lett Math Phys 111, 38 (2021).
- + some related work

Thank you