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Community recovery/estimation

e Given: Undirected graph G = (V, E) on n nodes

@ Goal: Partition nodes into communities based on relative connectivity

e Network structure may be assortative (homophilic), disassortative
(heterophilic), etc.
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Stochastic block model

@ Probabilistic model introduced by Holland et al. '83 for generating
community-structured data
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Stochastic block model

@ Probabilistic model introduced by Holland et al. '83 for generating
community-structured data
@ K > 2 communities

e For node i, let o(i) € {1,2,..., K} denote community assignment
@ Presence of edge depends only on communities of incident vertices:
i.i.d.
Wi " Ber(pa(i)a(j))

Po-Ling Loh (University of Cambridge) Community estimation in weighted SBMs Aug 10, 2021 3/23



Stochastic block model

@ Probabilistic model introduced by Holland et al. '83 for generating
community-structured data

@ K > 2 communities
e For node i, let o(i) € {1,2,..., K} denote community assignment
@ Presence of edge depends only on communities of incident vertices:

i.i.d.
VV’J ~ Ber(pa(i)(f(j))

@ Gives rise to “block” structure:

A : B
110 1i0 001
111 1i0 100
Alo 11 1i0 0 1 1
W = 1180 0 0 1
00 00i1 1 1 1
B|l0 1 00i1 101
001010 11
101 1i1 111
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@ What are good algorithms for community estimation?

o Can “optimal” accuracy be obtained with computationally tractable
algorithms?

Po-Ling Loh (University of Cambridge) Community estimation in weighted SBMs Aug 10, 2021 4/23



asure of accuracy

@ For clustering algorithm &, define misclassification error

(G(W), 00) = min ~du(G(W), o 00)

TESK N
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Measure of accuracy

@ For clustering algorithm &, define misclassification error

(G(W), 00) = min ~du(G(W), o 00)

TESK N

@ Define risk
R(c,00) :=E[l(a(W),00)]
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Measure of accuracy

@ For clustering algorithm &, define misclassification error

(G(W), 00) = min ~du(G(W), o 00)

TESK N

@ Define risk
R(c,00) :=E[l(a(W),00)]

@ Characterize minimax risk

inf sup R(c,00)

0 g9,PEO
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Sharp thresholds (zhang & Zhou '15)

@ Minimax bounds for misclassification error in (roughly) equal-sized
communities:

/
inf sup R(T,00) = exp <—(1 =+ 0(1))”")
0 00,PEO K

where © is parameter space such that within-community edges have
probability > 2, between-community edges have probability < %, and

log ([\ﬁ N F)
= 0yz (Ber (2) er (7))

. . . 1
is Renyi divergence of order 5

In

/23
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Sharp thresholds (zhang & Zhou

@ Implies weak consistency is governed by behavior of /,: If nl, — oo,

inf sup R(c,00) = 0
0 00p,PEO
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Sharp thresholds (zhang & Zhou '15)

@ Implies weak consistency is governed by behavior of /,: If nl, — oo,

inf sup R(c,00) = 0
0 00p,PEO

e Rough intuition: I, = D), (Ber HBer ) quantifies
distinguishability of within-community and between-community edges
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Sharp thresholds (zhang & Zhou '15)

@ Implies weak consistency is governed by behavior of /,: If nl, — oo,

inf sup R(c,00) = 0
0 00p,PEO

e Rough intuition: I, = D), (Ber HBer ) quantifies
distinguishability of within-community and between-community edges

@ Question: What if edge distributions are not Bernoulli?
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Motivating examples

o Weighted/labeled graphs occur naturally in social networks, airline
networks, neural networks, etc.

Head Tail

Block 1

(Chemosensation / thermosensation)

Block 9 Block 2
(Motor anterior) (Escape / avoidance)
C. elegans nervous system: Block 8 @
) (Nose-touch / head motor) " Block 3
@ Chemical synapses (Motor posterion
@ Gap junctions ! v @
1" 3 28
@ Neuromuscular junctions
@ 8 38 14
Block 7 5t 25, o o Block 4
(Unknown / egg-laying / defecation) (Motor anterior)
w
Block 6 Block 5
(Command) (Command)

“Stochastic blockmodeling of the modules
and core of the Caenorhabditis elegans connectome”
Pavlovic et al. (2014)
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Weighted stochastic block model (discrete case)

@ Entries of adjacency matrix drawn from general distributions
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Weighted stochastic block model (discrete case)

@ Entries of adjacency matrix drawn from general distributions

@ pn, gn denote within-community, between-community distributions
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Weighted stochastic block model (discrete case)

@ Entries of adjacency matrix drawn from general distributions

@ pn, gn denote within-community, between-community distributions

o Edge labels may contain valuable information for community recovery
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Example: Multilayer networks

@ Nodes in graph give rise to m different edge sets/ "views"

//oo\\

@ Goal: Combine all views to recover underlying community structure
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Example: Multilayer networks

@ Nodes in graph give rise to m different edge sets/ "views"

//oo\\

@ Goal: Combine all views to recover underlying community structure

@ Can be viewed as single weight distribution taking 2™ possible values
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Algorithms for unweighted SBMs

@ MLE formulation has good theoretical properties, but computationally
infeasible
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Algorithms for unweighted SBMs

@ MLE formulation has good theoretical properties, but computationally

infeasible
@ Popular approach based on spectral clustering: W is close to E[W],
which (viewed columnwise) has well-separated cluster structure
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Algorithms for unweighted SBMs

@ MLE formulation has good theoretical properties, but computationally

infeasible
@ Popular approach based on spectral clustering: W is close to E[W],
which (viewed columnwise) has well-separated cluster structure
e Performing spectral clustering on W yields weak recovery under
appropriate problem scaling (Lei & Rinaldo '15)
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Algorithms for unweighted SBMs

@ MLE formulation has good theoretical properties, but computationally

infeasible
@ Popular approach based on spectral clustering: W is close to E[W],
which (viewed columnwise) has well-separated cluster structure
e Performing spectral clustering on W yields weak recovery under

appropriate problem scaling (Lei & Rinaldo '15)
e To achieve optimal misclassification error, require additional refinement

steps involving local MLE calculations (Gao et al. '15)
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Algorithms for unweighted SBMs

@ MLE formulation has good theoretical properties, but computationally
infeasible

@ Popular approach based on spectral clustering: W is close to E[W],
which (viewed columnwise) has well-separated cluster structure
o Performing spectral clustering on W yields weak recovery under
appropriate problem scaling (Lei & Rinaldo '15)
e To achieve optimal misclassification error, require additional refinement
steps involving local MLE calculations (Gao et al. '15)

o Naively applying spectral clustering to weighted adjacency matrix
cannot be optimal, since numerical labels may be arbitrary
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Reducing to unweighted case

o ldea: Map weighted graph to unweighted graph, then perform
recovery algorithm for unweighted SBM

-
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Reducing to unweighted case

o ldea: Map weighted graph to unweighted graph, then perform
recovery algorithm for unweighted SBM

-

@ Questions: Could this possibly lead to optimal estimation rates. . .?
How to perform mapping?
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Reducing to unweighted case

o ldea: Map weighted graph to unweighted graph, then perform
recovery algorithm for unweighted SBM

-

@ Questions: Could this possibly lead to optimal estimation rates. . .?
How to perform mapping?

@ Modifying Zhang & Zhou '15 analysis yields lower bound

In
o s R(E00) > e (14 o) ).
g 007(Pn,qn)6(7379) K

but this rate cannot be achieved simply by dropping edge weights
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Characterization via Hellinger distance

@ In setting where I, — 0,

L
ln = —2log (Z V Pn(g)qn(€)>

(=0

= (ZL: (\/pn(ﬁ) - \/qn(f))z) (1+0(1))

(=0

o Latter expression known as Hellinger distance between p, and g,
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Initial color identification

e Key insight: If nl, — oo (regime where weak recovery is possible),
3¢* € {1,...,L} such that

0 (Vo) Van ) oo,

so community recovery based on £* alone achieves weak recovery
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Initial color identification

e Key insight: If nl, — oo (regime where weak recovery is possible),
3¢* € {1,...,L} such that

0 (Vo) Van ) oo,

so community recovery based on £* alone achieves weak recovery

o Problem: How to identify £* based on observing graph?
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Initial color identification

e Key insight: If nl, — oo (regime where weak recovery is possible),
3¢* € {1,...,L} such that

0 (Vonl) —vanlD)) = o,

so community recovery based on £* alone achieves weak recovery

o Problem: How to identify £* based on observing graph?

@ How to refine initial clustering based on ¢* to obtain optimal error
rate?
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Choosing ¢*

@ For each 1 < /¢ < L, perform spectral clustering on unweighted
adjacency matrix A, to obtain community assignments &
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Choosing ¢*

@ For each 1 < /¢ < L, perform spectral clustering on unweighted
adjacency matrix A, to obtain community assignments oy

@ Estimate within- and between-community edge probabilities:

IBZ _ Zu;év:ae(u)zﬁg(v)(Ae)UV /Q\g _ Zu;ﬁv:&g(u);ﬁ&g(v)(Ae)UV
{u#v:5u(u) =Ge(v)}’ {u# v :au(u) # Te(v)}]
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Choosing ¢*

@ For each 1 < /¢ < L, perform spectral clustering on unweighted
adjacency matrix A, to obtain community assignments oy

@ Estimate within- and between-community edge probabilities:

IBZ _ Zu;év:ae(u)zﬁg(v)(Ae)UV Q\g _ Zu;ﬁv:&g(u);ﬁ&g(v)(Ae)UV
{u#v:5u(u) =Ge(v)}’ {u# v :au(u) # Te(v)}]

@ Select

D _ 0,)2
0* := arg max M
¢ PV Qp

to be color achieving “maximal separation”
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Achieving optimal rate

@ However, recovery algorithm oy« yields suboptimal error rate
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Achieving optimal rate

@ However, recovery algorithm oy« yields suboptimal error rate

e Additional steps (based on Gao et al. '15) can bootstrap 7y« to
optimal recovery rates:
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Achieving optimal rate

@ However, recovery algorithm oy« yields suboptimal error rate
e Additional steps (based on Gao et al. '15) can bootstrap 7y« to
optimal recovery rates:
@ For each node u,

o Cluster G\u via spectral method with color £* to obtain &,
@ Use local MLE to estimate assignment of u:

L D
Gu(u) = arg max Z Z log %(Aﬁ)uv
i

vigy(v)=k,v#£u £=0
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Achieving optimal rate

@ However, recovery algorithm oy« yields suboptimal error rate
e Additional steps (based on Gao et al. '15) can bootstrap 7y« to
optimal recovery rates:
@ For each node u,

o Cluster G\u via spectral method with color £* to obtain &,
@ Use local MLE to estimate assignment of u:

L D
Gu(u) = arg max Z Z log %(Aﬁ)uv
i

vigy(v)=k,v#£u £=0

@ Combine assignments {7, },cv to obtain overall clustering
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Theorem: Optimal recovery (discrete)

Suppose I, — 0 and nl, — co. Then

lim P (z(a(vv),ao) < exp (—”7’"(1 4 o(1)))> 1

n—o0

e Conditions /, — 0 and nl/, — co imply weight distributions converge
together, but not too quickly
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Theorem: Optimal recovery (discrete)

Suppose I, — 0 and nl, — co. Then

lim P (z(a(vv),ao) < exp (—”7’"(1 4 o(1)))> 1

n—o0

e Conditions /, — 0 and nl/, — co imply weight distributions converge
together, but not too quickly

@ Matches lower bound stated above: Misclassification error governed
by Renyi divergence
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Continuous setting

@ Also desirable to perform community recovery in settings where edge
weights are continuous

o Examples: Gaussian distributions, exponential distributions, etc.
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@ Also desirable to perform community recovery in settings where edge
weights are continuous

o Examples: Gaussian distributions, exponential distributions, etc.

@ Previous work relatively scarce, depends on parametric assumptions
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Continuous setting

@ Also desirable to perform community recovery in settings where edge
weights are continuous

o Examples: Gaussian distributions, exponential distributions, etc.

@ Previous work relatively scarce, depends on parametric assumptions

@ Our contribution: Nonparametric, computationally feasible recovery
algorithm achieving optimal error rates
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Mathematical formulation

@ Suppose weight distribution is mixture of point mass at 0 with
probability Py ,, continuous distribution with density p,(x) with
probability 1 — Py , (similarly for Qo,» and gn(x))
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Mathematical formulation

@ Suppose weight distribution is mixture of point mass at 0 with
probability Py ,, continuous distribution with density p,(x) with
probability 1 — Py , (similarly for Qo,» and gn(x))

@ In order to obtain optimal error rate, discretize p,(x) and g,(x)
more and more finely and reduce to previous algorithm
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Mathematical formulation

@ Suppose weight distribution is mixture of point mass at 0 with
probability Py ,, continuous distribution with density p,(x) with
probability 1 — Py , (similarly for Qo,» and gn(x))

@ In order to obtain optimal error rate, discretize p,(x) and g,(x)
more and more finely and reduce to previous algorithm

o If py(x) and gn(x) have bounded support S = [0, 1], partition into L,
equal-length intervals
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Mathematical formulation

@ Suppose weight distribution is mixture of point mass at 0 with
probability Py ,, continuous distribution with density p,(x) with
probability 1 — Py , (similarly for Qo,» and gn(x))

@ In order to obtain optimal error rate, discretize p,(x) and g,(x)
more and more finely and reduce to previous algorithm

o If py(x) and gn(x) have bounded support S = [0, 1], partition into L,
equal-length intervals

pn(®)

L L L
’ 1 1
ol2
L L
e Otherwise, first apply transformation ® : S — [0, 1] and then partition

into L, equal-length intervals
Aug 10, 2021 19/23
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Theoretical guarantees

Suppose I, — 0 and nl, — oo and p, and q, satisfy appropriate regularity
conditions with respect to ®. If L, — oo is chosen such that

"—"’1/, — 00, then
Lnexp(Ly")

im P (E(&(W),ao) < o (-”7’"(1 4 o(l)))) 1
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Theoretical guarantees

Suppose I, — 0 and nl, — oo and p, and q, satisfy appropriate regularity
conditions with respect to ®. If L, — oo is chosen such that

"—"’1/, — 00, then
Lnexp(Ly")

im P (E(&(W),ao) < o (-”7’"(1 4 o(l)))) 1

v

o Note that if nl, — oo, appropriate discretization level L, always exists
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Theoretical guarantees

Suppose I, — 0 and nl, — oo and p, and q, satisfy appropriate regularity
conditions with respect to ®. If L, — oo is chosen such that

"—"’1/, — 00, then
Lnexp(Ly")

im P (E(&(W),ao) < o (—”7’"(1 4 o(l)))) 1

o Note that if nl, — oo, appropriate discretization level L, always exists

@ Under additional condition limsup,, Io'" < 1, can obtain

v

EIGW).00)] < o0 (=521 +0(1)).

agreeing with lower bound on risk
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Examples

@ When S = [0, 1], simplest case satisfying conditions is when
Pns Gn, |Ph], and |g},| are uniformly bounded away from 0 and oo
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@ When S = [0, 1], simplest case satisfying conditions is when
Pn, dn, |PL|, and |g}| are uniformly bounded away from 0 and co

@ When S = R, consider location-scale family:

fuo(x)=f (X ; “) “logoa,

with parameter space p € [-C,, C,] and 0 € [é, cg}
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@ When S = [0, 1], simplest case satisfying conditions is when
Pn, dn, |PL|, and |g}| are uniformly bounded away from 0 and co

@ When S = R, consider location-scale family:

fuo(x)=f (X ; “) “logoa,

with parameter space p € [-C,, C,] and 0 € [é, cg}

@ Densities given by

pn(x) = exp (fm,mm,n(x)) , Gn(x) = exp (fuz,n,az,n(x))
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@ When S = [0, 1], simplest case satisfying conditions is when
Pn, dn, |PL|, and |g}| are uniformly bounded away from 0 and co

@ When S = R, consider location-scale family:

fuo(x)=f (X ; “) “logoa,

with parameter space p € [-C,, C,] and 0 € [é, cg}

@ Densities given by

pn(x) = exp (fm,mm,n(x)) , Gn(x) = exp (fuz,n,az,n(x))

@ Requirements:
o |f9)(x)| bounded for some k > 2,
o Jdc, M such that /(x) > M for x < —c and f/(x) < —M for x > ¢
(satisfied for Gaussian and Laplace families)
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Main contributions

@ Misclassification error rate for weighted SBMs sharply characterized
by Renyi divergence

In=-2 Iog/ v Pn(X)qn(x)dx

Po-Ling Loh (University of Cambridge) Community estimation in weighted SBMs Aug 10, 2021 22/23



Main contributions

@ Misclassification error rate for weighted SBMs sharply characterized
by Renyi divergence

Ih= —2Iog/ v Pn(X)qn(x)dx

o Computationally feasible algorithm for optimal recovery:
@ (If necessary) discretize continuous weight distribution
@ Cluster according to each individual color, find £* with greatest
separation
© Refine weakly consistent clustering based on £* to obtain optimal error
rate
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Thank you!
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