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Community recovery/estimation

Given: Undirected graph G = (V ,E ) on n nodes

Goal: Partition nodes into communities based on relative connectivity

Network structure may be assortative (homophilic), disassortative
(heterophilic), etc.
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Stochastic block model

Probabilistic model introduced by Holland et al. ’83 for generating
community-structured data

K ≥ 2 communities
For node i , let σ(i) ∈ {1, 2, . . . ,K} denote community assignment
Presence of edge depends only on communities of incident vertices:

Wi ,j
i.i.d.∼ Ber(pσ(i)σ(j))

Gives rise to “block” structure:
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Questions

What are good algorithms for community estimation?

Can “optimal” accuracy be obtained with computationally tractable
algorithms?

Po-Ling Loh (University of Cambridge) Community estimation in weighted SBMs Aug 10, 2021 4 / 23



Measure of accuracy

For clustering algorithm σ̂, define misclassification error

`(σ̂(W ), σ0) := min
τ∈SK

1

n
dH(σ̂(W ), τ ◦ σ0)

Define risk
R(σ̂, σ0) := E [`(σ̂(W ), σ0)]

Characterize minimax risk

inf
σ̂

sup
σ0,P∈Θ

R(σ̂, σ0)
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Sharp thresholds (Zhang & Zhou ’15)

Minimax bounds for misclassification error in (roughly) equal-sized
communities:

inf
σ̂

sup
σ0,P∈Θ

R(σ̂, σ0) = exp

(
−(1 + o(1))

nIn
K

)

where Θ is parameter space such that within-community edges have
probability ≥ a

n , between-community edges have probability ≤ b
n , and

In = −2 log

(√
a

n

√
b

n
+

√
1− a

n

√
1− b

n

)

= D1/2

(
Ber

(a
n

)∥∥∥Ber

(
b

n

))

is Renyi divergence of order 1
2
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Sharp thresholds (Zhang & Zhou ’15)

Implies weak consistency is governed by behavior of In: If nIn →∞,

inf
σ̂

sup
σ0,P∈Θ

R(σ̂, σ0)→ 0

Rough intuition: In = D1/2

(
Ber

(
a
n

) ∥∥∥Ber
(
b
n

))
quantifies

distinguishability of within-community and between-community edges

Question: What if edge distributions are not Bernoulli?
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Motivating examples

Weighted/labeled graphs occur naturally in social networks, airline
networks, neural networks, etc.

C. elegans nervous system:

Chemical synapses

Gap junctions

Neuromuscular junctions

neurons in Blocks 4 and 9 are mainly found in the mid-section and
anterior parts of the animal. Another noteworthy point is that the
neurons VC04 and VC05, both implicated in egg-laying, are
assigned separately to Blocks 4 and 7. The principal justification of
this separation can be traced back to the network data used in this
analysis where, for example, VC04 maintains connections to
locomotion neurons AVB and AVH, while VC05 does not and,
moreover, VC05 maintains connections to egg-laying neurons
AVFL, AVFR, HSNR and PVT (Block 7), while VC04 does not.
Given such differences in connection profiles between these two
neurons, it is not surprising that they are separated. Relating to
this, it is also worth mentioning that our network data excludes
neuromuscular connections to the vulval muscles, made by both
VC04 and VC05 which are the primary reason why these neurons
are implicated in egg-laying behaviour.

Comparison of the Erdős-Rényi Mixture Model fit with
estimates from the Fast Louvain and Spectral algorithms

The Spectral and Fast Louvain algorithms decompose the C.
elegans network into 4 and 5 modules with the maximal modularity
scores of 0.402 and 0.411, respectively (Eq. (13) and (11)),
indicating that both algorithms detect a prominent modular

structure. As shown in the adjacency matrices in Figure 4 (b) and
(c), both the Spectral and Louvain algorithms produced partitions
with strong within-group connections and relatively sparse inter-
group connections, as expected by definition.

In order to compare the community structures obtained via all
three methods, we plot an alluvial diagram (see Figure 7 (a) and
(b)) showing each block of the ERMM method (on the left) and
how these merge and split in order to make up the modules of the
Louvain and Spectral partition. Strands of the alluvial diagram are
coloured according to the block decomposition of the ERMM.

The first thing to note when observing this diagram is that the
blocks obtained in the ERMM often roughly correspond to
modules obtained via the other methods, with the Louvain and
Spectral algorithm merging progressively more blocks into fewer
modules. Secondly, we note that Blocks 3,4,5,6 and 9 (mainly
ventral cord motor neurons and interneurons controlling locomo-
tion) are fairly well separated from Blocks 1,2,7 and 8 by all
algorithms, so we will discuss these two subsets separately below.

Most nodes in Block 1 (chemo/thermo sensation) are also
classed together in the other two algorithms, although they are also
merged with some nodes from Blocks 2 (escape/avoidance) and 7
(mainly unknown function) in Module 1 of the Louvain algorithm.
In contrast, the nodes in Block 2 are fairly dispersed in the Louvain

Figure 3. Anatomical locations of neurons (cell body) in the ERMM fit. Each Block is shown on an approximate template, obtained from
http://www.wormatlas.org/, last accessed 9th October 2013.
doi:10.1371/journal.pone.0097584.g003

Stochastic Blockmodeling of C. elegans Connectome

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e97584

algorithm and almost all of them are in Module 2 of the Spectral
algorithm. We however note that, in the Spectral (but not
Louvain) partition, these neurons are also grouped together with
the anterior ventral cord motor neurons of Blocks 4 and 9. While
the roughly anatomical split between ventral cord motor neurons
in the ERMM and Louvain method may not lead to new
biological insights, it is certainly driven by a strong lack of
connectivity between Blocks 4 (anterior) and 3 (posterior) which is
a true feature of the data. It is worth noting that the connectivity
data for C. elegans are known to be partial or missing for 39 of 302
neurons, including 21 of the 75 locomotor motoneurons [63] and
the data for the posterior parts of the nerve cords are especially
sparse and uncertain. It is therefore unclear whether this split
between Blocks 3,4 and 9 contains biological information or
whether a more complete mapping of connections in the posterior
part of the ventral cord would alter these results. Note, for
example, that the split does not correspond to a division between
neurons involved in forward and backward locomotion [30].

Finally, Blocks 5 and 6 are also merged with ventral cord motor
neurons from Blocks 3 in both Louvain and Spectral algorithms.
This is driven by the dense inter-connectivity between these nodes,
however, the separation of Blocks 5 and 6 from the rest of the
networks is one of the key features of the ERMM decomposition.
Indeed, these blocks correspond almost exactly to the rich-club
(core-periphery structure) whose functional importance has
recently been confirmed [9].

It is also worth noting that compressed views of the network -
see the ERMM fit in Figure 5 - are not available for the Fast
Louvain and Spectral algorithms since these, by definition,
decompose the network into modules with minimal connectivity
between them.

Figure 6 (b) and (c) show the Locomotion circuit and the
partitions found by the Spectral and Fast Louvain algorithms. In
contrast to the ERMM model, both of these algorithms failed to
distinguish the command neurons from the motorneurons. In the
case of the Spectral algorithm, some of the command neurons like
AVEL and AVER are isolated but the rest are mixed with the
motorneurons. This effect may be explained by the rigid definition
of the notion of ‘‘community’’ that is common to both algorithms.
As we can observe, this particular a priori assumption does not
allow the network’s topology to dictate the form of the community
structure, resulting in functionally less meaningful decompositions.
Similar observations can be made about the neurons VC04 and
VC05, which are merged by both algorithms despite their different
connectivity profiles, inherent to the data. As we saw previously,
these neurons are split in the ERMM partition.

Further quantifications of the solutions in terms of the
separation of of L/R (left/right symmetric) neurons of the same
class are presented in Table S1 in File S1. Here, we note that out
of 92 L/R neuron pairs, contained in this data set, the ERMM
and Spectral algorithm partitions assigned 85 such neuron pairs in
the same groups and misclassified 7 pairs, while the Louvain
partitions misclassified 5 pairs. In general, ALM and SAAD are
separated by all methods, while other misclassified neurons appear
to be distinct.

Although the same block neurons in the ERMM partition
appear to be functionally related, this overall partition does not
correspond closely to the anatomical partition of neurons in 10
groups called ganglions (see Figure 2 and Figures S1 & S2 in File
S1). More formal evaluations of this and other metrics, given in
Figure 8 (a), use the ARI (Eq. (15)) scores to measure similarity
between each of the known biological partitions (ganglion, neuron
classes and neuron types) and each of the community estimate

Figure 5. Compressed view of the C. elegans network, in terms of between/within block connection probability rates of the ERMM
fit. The relative size of each circle indicates the number of neurons in that Block. The number inside the circle is the within-block connection
probability in percent. The relative thickness of each line indicates the between-group connection strength, while the number on the edge gives the
connection probability in percent (those less than 7% are omitted). Each Block is broadly characterised by its most representative function. Note how
Blocks 1, 2 and 9 are ‘‘modules’’ with internal connectivity that is greater than external connectivity, while other structures are characterised by strong
inter-block connectivity (e.g., Blocks 5 & 6 and Blocks 6 & 7). In addition, Block 6 (command interneurons) maintains relatively strong ties with the
Block 3 and 4 (motor neurons) whose internal connections, however, are sparse, an example of core-periphery.
doi:10.1371/journal.pone.0097584.g005

Stochastic Blockmodeling of C. elegans Connectome

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e97584

“Stochastic blockmodeling of the modules

and core of the Caenorhabditis elegans connectome”

Pavlovic et al. (2014)
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Weighted stochastic block model (discrete case)

Entries of adjacency matrix drawn from general distributions

pn, qn denote within-community, between-community distributions

Edge labels may contain valuable information for community recovery
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Example: Multilayer networks

Nodes in graph give rise to m different edge sets/“views”

Goal: Combine all views to recover underlying community structure

Can be viewed as single weight distribution taking 2m possible values
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Algorithms for unweighted SBMs

MLE formulation has good theoretical properties, but computationally
infeasible

Popular approach based on spectral clustering: W is close to E[W ],
which (viewed columnwise) has well-separated cluster structure

Performing spectral clustering on W yields weak recovery under
appropriate problem scaling (Lei & Rinaldo ’15)
To achieve optimal misclassification error, require additional refinement
steps involving local MLE calculations (Gao et al. ’15)

Naively applying spectral clustering to weighted adjacency matrix
cannot be optimal, since numerical labels may be arbitrary
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Reducing to unweighted case

Idea: Map weighted graph to unweighted graph, then perform
recovery algorithm for unweighted SBM

or

Questions: Could this possibly lead to optimal estimation rates. . . ?
How to perform mapping?

Modifying Zhang & Zhou ’15 analysis yields lower bound

inf
σ̂

sup
σ0,(pn,qn)∈(P,Q)

R(σ̂, σ0) ≥ exp

(
−(1 + o(1))

nIn
K

)
,

but this rate cannot be achieved simply by dropping edge weights
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Characterization via Hellinger distance

In setting where In → 0,

In = −2 log

(
L∑

`=0

√
pn(`)qn(`)

)

=

(
L∑

`=0

(√
pn(`)−

√
qn(`)

)2
)

(1 + o(1))

Latter expression known as Hellinger distance between pn and qn
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Initial color identification

Key insight: If nIn →∞ (regime where weak recovery is possible),
∃`∗ ∈ {1, . . . , L} such that

n
(√

pn(`∗)−
√
qn(`∗)

)2
→∞,

so community recovery based on `∗ alone achieves weak recovery

Problem: How to identify `∗ based on observing graph?

How to refine initial clustering based on `∗ to obtain optimal error
rate?
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Choosing `∗

For each 1 ≤ ` ≤ L, perform spectral clustering on unweighted
adjacency matrix A` to obtain community assignments σ̂`

Estimate within- and between-community edge probabilities:

P̂` =

∑
u 6=v :σ̂`(u)=σ̂`(v)(A`)uv

|{u 6= v : σ̂`(u) = σ̂`(v)}| , Q̂` =

∑
u 6=v :σ̂`(u)6=σ̂`(v)(A`)uv

|{u 6= v : σ̂`(u) 6= σ̂`(v)}|

Select

`∗ := arg max
`

{
(P̂` − Q̂`)

2

P̂` ∨ Q̂`

}

to be color achieving “maximal separation”

Po-Ling Loh (University of Cambridge) Community estimation in weighted SBMs Aug 10, 2021 15 / 23



Choosing `∗

For each 1 ≤ ` ≤ L, perform spectral clustering on unweighted
adjacency matrix A` to obtain community assignments σ̂`

Estimate within- and between-community edge probabilities:

P̂` =

∑
u 6=v :σ̂`(u)=σ̂`(v)(A`)uv

|{u 6= v : σ̂`(u) = σ̂`(v)}| , Q̂` =

∑
u 6=v :σ̂`(u)6=σ̂`(v)(A`)uv

|{u 6= v : σ̂`(u) 6= σ̂`(v)}|

Select

`∗ := arg max
`

{
(P̂` − Q̂`)

2

P̂` ∨ Q̂`

}

to be color achieving “maximal separation”

Po-Ling Loh (University of Cambridge) Community estimation in weighted SBMs Aug 10, 2021 15 / 23



Choosing `∗

For each 1 ≤ ` ≤ L, perform spectral clustering on unweighted
adjacency matrix A` to obtain community assignments σ̂`

Estimate within- and between-community edge probabilities:

P̂` =

∑
u 6=v :σ̂`(u)=σ̂`(v)(A`)uv

|{u 6= v : σ̂`(u) = σ̂`(v)}| , Q̂` =

∑
u 6=v :σ̂`(u)6=σ̂`(v)(A`)uv

|{u 6= v : σ̂`(u) 6= σ̂`(v)}|

Select

`∗ := arg max
`

{
(P̂` − Q̂`)

2

P̂` ∨ Q̂`

}

to be color achieving “maximal separation”

Po-Ling Loh (University of Cambridge) Community estimation in weighted SBMs Aug 10, 2021 15 / 23



Achieving optimal rate

However, recovery algorithm σ̂`∗ yields suboptimal error rate

Additional steps (based on Gao et al. ’15) can bootstrap σ̂`∗ to
optimal recovery rates:

1 For each node u,
Cluster G\u via spectral method with color `∗ to obtain σ̂u

Use local MLE to estimate assignment of u:

σ̂u(u) = argmax
k

∑
v :σ̂u(v)=k,v 6=u

L∑
`=0

log
P̂∗`

Q̂∗`
(A`)uv

G \ u

u

Cluster (G \ u) using `⇤

2 Combine assignments {σ̂u}u∈V to obtain overall clustering
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Cluster (G \ u) using `⇤

2 Combine assignments {σ̂u}u∈V to obtain overall clustering
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Theorem: Optimal recovery (discrete)

Theorem

Suppose In → 0 and nIn →∞. Then

lim
n→∞

P
(
`(σ̂(W ), σ0) ≤ exp

(
−nIn

K
(1 + o(1))

))
= 1.

Conditions In → 0 and nIn →∞ imply weight distributions converge
together, but not too quickly

Matches lower bound stated above: Misclassification error governed
by Renyi divergence
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Continuous setting

Also desirable to perform community recovery in settings where edge
weights are continuous

Examples: Gaussian distributions, exponential distributions, etc.

Previous work relatively scarce, depends on parametric assumptions

Our contribution: Nonparametric, computationally feasible recovery
algorithm achieving optimal error rates
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Mathematical formulation

Suppose weight distribution is mixture of point mass at 0 with
probability P0,n, continuous distribution with density pn(x) with
probability 1− P0,n (similarly for Q0,n and qn(x))

In order to obtain optimal error rate, discretize pn(x) and qn(x)
more and more finely and reduce to previous algorithm

If pn(x) and qn(x) have bounded support S = [0, 1], partition into Ln
equal-length intervals

0 1

pn(x)

qn(x)

1

L

2

L
· · ·

Otherwise, first apply transformation Φ : S → [0, 1] and then partition
into Ln equal-length intervals
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Theoretical guarantees

Theorem

Suppose In → 0 and nIn →∞ and pn and qn satisfy appropriate regularity
conditions with respect to Φ. If Ln →∞ is chosen such that

nIn
Ln exp(L

1/r
n )
→∞, then

lim
n→∞

P
(
`(σ̂(W ), σ0) ≤ exp

(
−nIn

K
(1 + o(1))

))
= 1.

Note that if nIn →∞, appropriate discretization level Ln always exists

Under additional condition lim supn
nIn

log n ≤ 1, can obtain

E [`(σ̂(W ), σ0)] ≤ exp

(
−nIn

K
(1 + o(1))

)
,

agreeing with lower bound on risk
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Examples

When S = [0, 1], simplest case satisfying conditions is when
pn, qn, |p′n|, and |q′n| are uniformly bounded away from 0 and ∞

When S = R, consider location-scale family:

fµ,σ(x) = f

(
x − µ
σ

)
− log σ,

with parameter space µ ∈ [−Cµ,Cµ] and σ ∈
[

1
cσ
, cσ
]

Densities given by

pn(x) = exp
(
fµ1,n,σ1,n(x)

)
, qn(x) = exp

(
fµ2,n,σ2,n(x)

)

Requirements:
|f (k)(x)| bounded for some k ≥ 2,
∃c ,M such that f ′(x) > M for x < −c and f ′(x) < −M for x > c

(satisfied for Gaussian and Laplace families)
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Main contributions

Misclassification error rate for weighted SBMs sharply characterized
by Renyi divergence

In = −2 log

∫ √
pn(x)qn(x)dx

Computationally feasible algorithm for optimal recovery:
1 (If necessary) discretize continuous weight distribution
2 Cluster according to each individual color, find `∗ with greatest

separation
3 Refine weakly consistent clustering based on `∗ to obtain optimal error

rate
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Thank you!
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