Billiards and the arithmetic of non-arithmetic groups

Curtis T McMullen Harvard University

Weil, Manin, Birch, Leutbecher, Veech, Masur, Forni, Möller, Leininger, Hubert, Lanneau, Davis, Lelievre,

Curves on a Hilbert modular surface

cf. M, Möller-Viehweg

K = real quadratic field

$$X_K = (\mathbb{H} \times \mathbb{H}) / \operatorname{SL}(\mathcal{O} \oplus \mathcal{O}^{\vee})$$

 $V = \mathbb{H} / \Gamma \hookrightarrow X_K$ geodesic curve
Theorem Q

Either V is a Shimura curve, or the cusps of V coincide with $\mathbb{P}^1(K)$ and satisfy quadratic height bounds.

proof by descent

I. Triangle groups

Triangle groups

Δ(p,q,∞)

is more mysterious!

matrix entries = ? columns (a,b) ? cusps = ? $\cup \{\infty\}$

Cor of Thm Q

The cross-ratios of the cusps of $\Delta(p,q,\infty)$ coincide with $P^{I}(K_{pq}) - \{0, I, \infty\}$, whenever $deg(K_{pq}/\mathbb{Q}) = 2$.

Proof: Every Δ comes from a geodesic curve V in a Hilbert modular variety X_K.

Golden Continued Fractions

Cor The cusps of Γ coincide with $K = \mathbb{Q}(\sqrt{5}) \cup \{\infty\}$.

Leutbecher, 1970s

Cor

Every x in $\mathbb{Q}(\sqrt{5})$ can be expressed as a *finite* golden continued fraction:

with a_i in \mathbb{Z} .

Quadratic height bounds: N, max $a_i = O(1+h(x))$.

Golden Fractions

Cor Every x in $K = \mathbb{Q}(\sqrt{5})$ can be written uniquely as a `golden fraction' x = a/c, up to sign.

a,c in $\mathbb{O} = \mathbb{Z}[\gamma] \subset K$ relatively prime (a,c) column of a matrix in Γ

Quadratic height bounds: $h(a)+h(c) = O(1+h(x)^2)$.

 $h(n) = \log n$

II. Billiards

How do the periodic trajectories behave?

6765s L(6765s) = 1.734 x 10²⁵

Slopes, lengths and heights

S

Cor The periodic slopes coincide with $\mathbb{Q}(\sqrt{5})s$, and log $L(xs) = O(h(x)^2)$.

III. Teichmüller curves

$\begin{array}{c} \textbf{Example}\\ L(10^n s) = O(10^{Cn^2}) \end{array}$

exponent 2 is sharp

Action of g in $SL_2(\mathbb{R})$ on $\Omega\mathbb{M}_g$

 $(X,\omega) = (P,dz) / gluing$ g $\cdot (X,\omega) = (g(P),dz) / gluing$

Teichmüller curves

 $SL(X,\omega)$ = stabilizer of (X,ω) in $SL_2(\mathbb{R})$

 $SL(X,\omega)$ lattice \Rightarrow $SL_2(\mathbb{R})$ orbit of (X,ω) generates

an isometrically immersed Teichmüller curve:

$$f: V = \mathbb{H} / SL(X, \omega) \rightarrow M_g$$

Billiards and Riemann surfaces

Theorem (Veech, Masur):

If $SL(X, \omega)$ is a lattice, then billiards in P has optimal dynamics.

(Every trajectory is periodic or uniformly distributed.)

Hilbert modular surfaces

Theorem For the golden table, we have

$$V = \mathbb{H} / SL(X, \omega) \rightarrow X_{K} \rightarrow M_{g}.$$
$$K = \mathbb{Q}(\sqrt{5}) \qquad g = 2$$

Jacobians have real multiplication Cor: Theorem Q applies.

Pentagon revisited

Theorem

Since $SL(X, \omega) = \Delta(2, 5, \infty)$:

golden fractions a/c describe unfolded vectors (a,c) of periodic billiards paths.

Cor: Results on billiards also follow from Theorem Q.

Holomorphic pentagon-to-star map

$$\begin{split} V & \longrightarrow X_K \text{ covered by } \mathbb{H} & \longrightarrow \mathbb{H} x \mathbb{H} \\ \text{via} \quad x & \longrightarrow (x, F(x)). \end{split}$$

Similarly for all families of optimal billiards

...since these are quadratic:

Eskin - Filip - Wright

Billiards in a regular pentagon

IV. Modular symbols

Every trajectory is periodic or uniformly distributed. (optimal dynamics)

How are the periodic trajectories distributed?

Billiards in a regular pentagon

Every trajectory is periodic or uniformly distributed.

Limit Measures

& closure of ergodic measures

Complement

We have uniform distribution iff the lengths of the golden continued fractions of the slopes tend to infinity.

How are the periodic trajectories distributed?

Davis-Lelievre: Not always uniformly! Cantor set of measures?

Where does ω^{ω} come from?

Space of Modular symbols S(V)

 $V = \mathbb{H}/\Gamma$ hyperbolic surface modular symbol of degree d: formal product

$$\sigma = \gamma_1 * \gamma_2 * \dots * \gamma_d$$

$$a_0, a_1, \dots, a_d = \text{cusps of } V$$

 γ_i geodesic from a_{i-1} to a_i

Modular symbols: topology

Algebraically:

§(V) =

morphisms in a graded category whose objects are the cusps of V

Topologically:

Modular symbols for V =
$$\mathbb{H}/SL_2(\mathbb{Z})$$

 $\infty \xrightarrow{Y} p/q \text{ in } [0,1]$
 $\widehat{\mathbb{Q}}^{1} \xrightarrow{\mathbb{Q}} p/q \text{ in } [0,1]$
 $\widehat{\mathbb{Q$

Twists and limit measures B_2 $A_1 \rightarrow B_1$ $A_2 \rightarrow A_1$ $A_2 \rightarrow A_2$ $A_3 \rightarrow A_3$ $A_3 \rightarrow A_$

Measures predicted by i(A,B)

Aside: Classical Modular symbols

 $\mathbb{Q} \cup \infty = \text{cusps of } \Gamma(\mathsf{N}) \text{ in } \mathsf{SL}_2(\mathbb{Z})$ $\mathsf{X}(\mathsf{N}) = \text{completion of } \mathbb{H} / \Gamma(\mathsf{N})$ $\{\mathsf{p},\mathsf{q}\} : \mathbb{Q} \times \mathbb{Q} \longrightarrow \mathsf{Q}(\mathsf{X})^* \simeq \mathsf{H}_1(\mathsf{X}(\mathsf{N}), \mathbb{R})$

 $\{p,q\} : \mathbb{Q} \times \mathbb{Q} \longrightarrow \Omega(X)^* \simeq H_1(X(N), \mathbb{R})$ abelian

Theorem (Manin-Drinfeld)

The difference of any 2 cusps of X(N) is torsion in Jac(X(N)).

Modular symbols to measures

We have a continuous functor $I : \mathcal{S}(V) \longrightarrow \mathcal{I}_{\mathcal{O}}(V)$ category of matrices up to scale given by $I(\gamma) = [mod(A_i) i(A_i,B_j)].$

Decouples as $\gamma \rightarrow \infty$. ~ $[h(A_i) c(B_j)]$

Independent of $\gamma!$

 \Rightarrow closure of image is ω^ω union a finite set

 \Rightarrow limit measures form a copy of ω^{ω} + 1.

hidden multiplicative structure QED Theorem II

What about matrix entries in $\Delta(2,5,\infty)$?

- M = all nonzero matrix entries
- $\delta M = \{m'/m : m \text{ is in } M\}$
- $R = -\gamma^{-2} \cdot \delta M.$

Theorem The closure of R is a countable semigroup in [-1,1], homeomorphic to $\omega^{\omega} + 1$.

(Whereas $\delta \mathbb{Z}[\gamma]$ is dense in \mathbb{R} .)

IV. Non-arithmetic groups

Image of M under (m'/m, H(m))

Compare to ω^{ω} in

Pisot numbers, Weyl spectrum, 3D hyperbolic volumes, ...

V. The heptagon

Open problems

Davis-Lelievre

Bold Conjecture

 $\mathsf{K} = \mathbb{Q}(\cos(2\pi/7))$

Every x in K is the fixed point of a parabolic or hyperbolic element g in $\Delta(2,7,\infty)$.

References

Preprints, 2019/2020

Teichmüller dynamics and unique ergodicity via currents and Hodge theory

Modular symbols for Teichmüller curves

Billiards, heights, and the arithmetic of non-arithmetic groups

Due independently to Hanson-Merberg-Towse-Yudovina, and Boulanger; further investigations by K. Winsor.

math.harvard.edu/~ctm/papers

Short Appendix

Heights and Hilbert modular surfaces

Proof of Theorem Q

Curves on a Hilbert modular surface

cf. M, Möller-Viehweg

K = real quadratic field

$$X_K = (\mathbb{H} \times \mathbb{H}) / \operatorname{SL}(\mathcal{O} \oplus \mathcal{O}^{\vee})$$

 $V = \mathbb{H} / \Gamma \hookrightarrow X_K$ geodesic curve

Theorem

Either V is a Shimura curve, or the cusps of V coincide with $\mathbb{P}^1(K)$ and satisfy quadratic height bounds.

Heights on $\mathbb{P}^n(K)$

$$H(x) = H(x_0: x_1: \cdots: x_n) = \prod_v \max_i |x_i|_v.$$

~

comparable to

 $\widetilde{H}(x) = \inf_{a} \prod_{v \mid \infty} \max_{i} |a_{i}|_{v}, \quad [a_{0} : \dots : a_{n}] = [x].$ (ai are integers)

only requires knowledge of integers and infinite places

Hodge norm at a place v

Diagonalize K on $\Omega(A)$ and $H_1(A)$

 $T_k \omega_v = \rho_v(k) \omega_v$ orthonormal eigenforms

 $H_1(A, \mathbb{R}) = \bigoplus_v S_v \xrightarrow{\pi_v} S_v$ $\|C\|_v = \|\pi_v(C)\|_A = \left| \int_C \omega_v \right|$

 $|C|_v = ||C||_v^{1/g}$ `Hodge valuation'

Real multiplication

End(A) = ring of endomorphisms of A as a complex Lie group

K totally real field of degree g = dim(A).

A has real multiplication by K if we are given a map

 $K \to \operatorname{End}(A) \otimes \mathbb{Q}$

such that T_k is self-adjoint for all k in K.

The projective line $\mathbb{P}^1_A(K)$ $K \subset \operatorname{End}(A) \otimes \mathbb{Q}$ $H_1(A, \mathbb{Q}) \cong K^2$ $\mathbb{P}^1_A(K)$ = space of K-lines in $H_1(A, \mathbb{Q}) \cong \mathbb{Q}^{2g}$ Height $H_A(x)$ on $\mathbb{P}^1_A(K)$

$$H_A(x) = \inf_C \prod_{v \mid \infty} |C|_v$$

 $x\in \mathbb{P}^1_A(K)$ $C\in H_1(A,\mathbb{Z})$ [x]=[C] (same K line)

thick

Why a height?

$$H_{A}(x) = \inf_{C} \prod_{v \mid \infty} |C|_{v}$$

$$\widetilde{H}(x) = \inf_{a} \prod_{v \mid \infty} \max_{i} |a_i|_v$$

Theorem.	Given a linear isomorphism	
	$\iota:\mathbb{P}^1_A(K)\to$	$\mathbb{P}^1(K)$
	we have	$H(\iota(x)) \asymp H_A(x).$

 $\begin{array}{l} \mbox{Proof of Theorem Q} \\ \mbox{To show a/b in K is a cusp:} \\ \mbox{$H_{\tau}(a/b) \sim (t term) \times (F(t) term)$} \\ &\leq \exp(-s) \exp(|F'| s) \\ \mbox{$When t lies over V_{thick}:$} \\ \mbox{$H_{\tau}(a/b) \geq 1$} \\ \mbox{$|F'(t)| < \delta < 1$} \\ \mbox{$F(t)| < \delta < 1$} \\ \mbox{$so \ \gamma$ spends only a finite$} \\ &= \max(t) \\ \mbox{$amount of time over V_{thick}$} \\ &\Rightarrow \\ \mbox{a/b is a cusp$} \end{array}$

 $\operatorname{\mathsf{QED}}\nolimits\operatorname{\mathsf{Theorem}}\nolimits Q$