A couple of conjectures in arithmetic dynamics over fields of positive characteristic

Dragos Ghioca

University of British Columbia

The Dynamical Mordell-Lang Conjecture

Throughout this talk, we let:

- $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\} ;$
- f^{n} denote the n-th iterate of the self-map f on some ambient space X (with $f^{0}:=\operatorname{id}_{X}$);

The Dynamical Mordell-Lang Conjecture

Throughout this talk, we let:

- $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\} ;$
- f^{n} denote the n-th iterate of the self-map f on some ambient space X (with $f^{0}:=\operatorname{id}_{X}$);
- the orbit of a point $x \in X$ under f is denoted by $\mathcal{O}_{f}(x)$ and consists of all $f^{n}(x)$ for all $n \in \mathbb{N}_{0}$;

The Dynamical Mordell-Lang Conjecture

Throughout this talk, we let:

- $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\} ;$
- f^{n} denote the n-th iterate of the self-map f on some ambient space X (with $f^{0}:=\operatorname{id}_{X}$);
- the orbit of a point $x \in X$ under f is denoted by $\mathcal{O}_{f}(x)$ and consists of all $f^{n}(x)$ for all $n \in \mathbb{N}_{0}$; and
- an arithmetic progression inside \mathbb{N}_{0} is a set of the form $\{a n+b\}_{n \in \mathbb{N}_{0}}$ for some given $a, b \in \mathbb{N}_{0}$ (so, in the case $a=0$, we allow the arithmetic progression be a singleton).

The Dynamical Mordell-Lang Conjecture

Throughout this talk, we let:

- $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\} ;$
- f^{n} denote the n-th iterate of the self-map f on some ambient space X (with $f^{0}:=\mathrm{id}_{X}$);
- the orbit of a point $x \in X$ under f is denoted by $\mathcal{O}_{f}(x)$ and consists of all $f^{n}(x)$ for all $n \in \mathbb{N}_{0}$; and
- an arithmetic progression inside \mathbb{N}_{0} is a set of the form $\{a n+b\}_{n \in \mathbb{N}_{0}}$ for some given $a, b \in \mathbb{N}_{0}$ (so, in the case $a=0$, we allow the arithmetic progression be a singleton).
DML: Given a quasiprojective variety X defined over a field K of characteristic 0 endowed with an endomorphism Φ, then for any subvariety $V \subseteq X$ and for any point $\alpha \in X(K)$, the set

$$
\left\{n \in \mathbb{N}_{0}: \Phi^{n}(\alpha) \in V(K)\right\}
$$

is a finite union of arithmetic progressions.

There are several instances when the DML conjecture was proven, such as the cases when:

There are several instances when the DML conjecture was proven, such as the cases when:

- Φ is an unramified endomorphism of a smooth variety;

There are several instances when the DML conjecture was proven, such as the cases when:

- Φ is an unramified endomorphism of a smooth variety;
- Φ is an endomorphism of \mathbb{A}^{2};

There are several instances when the DML conjecture was proven, such as the cases when:

- Φ is an unramified endomorphism of a smooth variety;
- Φ is an endomorphism of \mathbb{A}^{2};
$-\Phi: \mathbb{A}^{N} \longrightarrow \mathbb{A}^{N}$ is given by the coordinatewise action of one-variable polynomials, i.e,

$$
\left(x_{1}, \ldots, x_{N}\right) \mapsto\left(f_{1}\left(x_{1}\right), \ldots, f_{N}\left(x_{N}\right)\right)
$$

and $V \subset \mathbb{A}^{N}$ is a curve.

There are several instances when the DML conjecture was proven, such as the cases when:

- Φ is an unramified endomorphism of a smooth variety;
- Φ is an endomorphism of \mathbb{A}^{2};
$-\Phi: \mathbb{A}^{N} \longrightarrow \mathbb{A}^{N}$ is given by the coordinatewise action of one-variable polynomials, i.e,

$$
\left(x_{1}, \ldots, x_{N}\right) \mapsto\left(f_{1}\left(x_{1}\right), \ldots, f_{N}\left(x_{N}\right)\right)
$$

and $V \subset \mathbb{A}^{N}$ is a curve.
The next interesting case, still open for the DML conjecture is the case of arbitrary endomorphisms Φ of \mathbb{A}^{3}.

The picture in positive characteristic

The exact translation of the DML conjecture in positive characteristic fails.

The picture in positive characteristic

The exact translation of the DML conjecture in positive characteristic fails.
For example, consider the case of the affine line $V \subset \mathbb{A}^{2}$ given by the equation $x+y=1$ (over $\mathbb{F}_{p}(t)$) and the automorphism Φ of \mathbb{A}^{2} given by

$$
\Phi(x, y)=(t x,(1-t) y)
$$

The picture in positive characteristic

The exact translation of the DML conjecture in positive characteristic fails.
For example, consider the case of the affine line $V \subset \mathbb{A}^{2}$ given by the equation $x+y=1$ (over $\mathbb{F}_{p}(t)$) and the automorphism Φ of \mathbb{A}^{2} given by

$$
\Phi(x, y)=(t x,(1-t) y) .
$$

Then the set S of all $n \in \mathbb{N}_{0}$ such that $\Phi^{n}(1,1) \in V\left(\mathbb{F}_{p}(t)\right)$ is the set

$$
\left\{p^{m}: m \in \mathbb{N}_{0}\right\}
$$

since it reduces to solving the equation

$$
t^{n}+(1-t)^{n}=1
$$

The picture in positive characteristic

The exact translation of the DML conjecture in positive characteristic fails.
For example, consider the case of the affine line $V \subset \mathbb{A}^{2}$ given by the equation $x+y=1$ (over $\mathbb{F}_{p}(t)$) and the automorphism Φ of \mathbb{A}^{2} given by

$$
\Phi(x, y)=(t x,(1-t) y)
$$

Then the set S of all $n \in \mathbb{N}_{0}$ such that $\Phi^{n}(1,1) \in V\left(\mathbb{F}_{p}(t)\right)$ is the set

$$
\left\{p^{m}: m \in \mathbb{N}_{0}\right\}
$$

since it reduces to solving the equation

$$
t^{n}+(1-t)^{n}=1
$$

One can construct other examples in which the return set S is even more complicated, as follows.

Another example

Let p be a prime number, let $V \subset \mathbb{G}_{m}^{2}$ be the curve defined over $\mathbb{F}_{p}(t)$ given by the equation $t x+(1-t) y=1$, let $\Phi: \mathbb{A}^{2} \longrightarrow \mathbb{A}^{2}$ be the endomorphism given by

$$
\Phi(x, y)=\left(t^{p^{2}-1} \cdot x,(1-t)^{p^{2}-1} \cdot y\right), \text { and let } \alpha=(1,1)
$$

Another example

Let p be a prime number, let $V \subset \mathbb{G}_{m}^{2}$ be the curve defined over $\mathbb{F}_{p}(t)$ given by the equation $t x+(1-t) y=1$, let $\Phi: \mathbb{A}^{2} \longrightarrow \mathbb{A}^{2}$ be the endomorphism given by

$$
\Phi(x, y)=\left(t^{p^{2}-1} \cdot x,(1-t)^{p^{2}-1} \cdot y\right), \text { and let } \alpha=(1,1)
$$

Then the return set S of all $n \in \mathbb{N}_{0}$ such that $\Phi^{n}(\alpha) \in V$ is

$$
\left\{\frac{1}{p^{2}-1} \cdot p^{2 n}-\frac{1}{p^{2}-1}: n \in \mathbb{N}_{0}\right\}
$$

One more example

Let $p>2$, let $K=\mathbb{F}_{p}(t)$, let $X=\mathbb{A}^{3}$, let $\Phi: \mathbb{A}^{3} \longrightarrow \mathbb{A}^{3}$ given by $\Phi(x, y, z)=(t x,(1+t) y,(1-t) z)$, let $V \subset \mathbb{A}^{3}$ be the hyperplane given by the equation $y+z-2 x=2$, and let $\alpha=(1,1,1)$.

One more example

Let $p>2$, let $K=\mathbb{F}_{p}(t)$, let $X=\mathbb{A}^{3}$, let $\Phi: \mathbb{A}^{3} \longrightarrow \mathbb{A}^{3}$ given by $\Phi(x, y, z)=(t x,(1+t) y,(1-t) z)$, let $V \subset \mathbb{A}^{3}$ be the hyperplane given by the equation $y+z-2 x=2$, and let $\alpha=(1,1,1)$.
Then one can show that the return set S of all $n \in \mathbb{N}_{0}$ such that $\Phi^{n}(\alpha) \in V$ is

$$
\left\{p^{n_{1}}+p^{n_{2}}: n_{1}, n_{2} \in \mathbb{N}_{0}\right\}
$$

One more example

Let $p>2$, let $K=\mathbb{F}_{p}(t)$, let $X=\mathbb{A}^{3}$, let $\Phi: \mathbb{A}^{3} \longrightarrow \mathbb{A}^{3}$ given by $\Phi(x, y, z)=(t x,(1+t) y,(1-t) z)$, let $V \subset \mathbb{A}^{3}$ be the hyperplane given by the equation $y+z-2 x=2$, and let $\alpha=(1,1,1)$.
Then one can show that the return set S of all $n \in \mathbb{N}_{0}$ such that $\Phi^{n}(\alpha) \in V$ is

$$
\left\{p^{n_{1}}+p^{n_{2}}: n_{1}, n_{2} \in \mathbb{N}_{0}\right\}
$$

All these examples motivate the following conjecture.

Dynamical Mordell-Lang Conjecture in positive

 characteristicDML in characteristic p : Given a quasiprojective variety X defined over a field K of characteristic 0 endowed with an endomorphism Φ, then for any subvariety $V \subseteq X$ and for any point $\alpha \in X(K)$, the set

$$
\left\{n \in \mathbb{N}_{0}: \Phi^{n}(\alpha) \in V(K)\right\}
$$

is a finite union of arithmetic progressions along with finitely many sets of the form

$$
\begin{equation*}
\left\{\sum_{j=1}^{m} c_{j} p^{k_{j} n_{j}}: n_{j} \in \mathbb{N}_{0} \text { for each } j=1, \ldots m\right\} \tag{1}
\end{equation*}
$$

for some $m \in \mathbb{N}$, some $c_{j} \in \mathbb{Q}$, and some $k_{j} \in \mathbb{N}_{0}$.

Results

Theorem (jointly with Pietro Corvaja, Thomas Scanlon and Umberto Zannier): Let $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ be a regular self-map defined over a field K of characteristic p, let $\alpha \in \mathbb{G}_{m}^{N}(K)$ and let $V \subseteq \mathbb{G}_{m}^{N}$ be a subvariety. Then the Dynamical Mordell-Lang
Conjecture holds in the following two cases:

Results

Theorem (jointly with Pietro Corvaja, Thomas Scanlon and Umberto Zannier): Let $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ be a regular self-map defined over a field K of characteristic p, let $\alpha \in \mathbb{G}_{m}^{N}(K)$ and let $V \subseteq \mathbb{G}_{m}^{N}$ be a subvariety. Then the Dynamical Mordell-Lang
Conjecture holds in the following two cases:
(1) $\operatorname{dim}(V) \leq 2$.

Results

Theorem (jointly with Pietro Corvaja, Thomas Scanlon and Umberto Zannier): Let $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ be a regular self-map defined over a field K of characteristic p, let $\alpha \in \mathbb{G}_{m}^{N}(K)$ and let $V \subseteq \mathbb{G}_{m}^{N}$ be a subvariety. Then the Dynamical Mordell-Lang
Conjecture holds in the following two cases:
(1) $\operatorname{dim}(V) \leq 2$.
(2) Φ is a group endomorphism and there is no nontrivial connected algebraic subgroup $G \subseteq \mathbb{G}_{m}^{N}$ such that an iterate of Φ induces an endomorphism of G that equals a power of the Frobenius.

Results

Theorem (jointly with Pietro Corvaja, Thomas Scanlon and Umberto Zannier): Let $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ be a regular self-map defined over a field K of characteristic p, let $\alpha \in \mathbb{G}_{m}^{N}(K)$ and let $V \subseteq \mathbb{G}_{m}^{N}$ be a subvariety. Then the Dynamical Mordell-Lang
Conjecture holds in the following two cases:
(1) $\operatorname{dim}(V) \leq 2$.
(2) Φ is a group endomorphism and there is no nontrivial connected algebraic subgroup $G \subseteq \mathbb{G}_{m}^{N}$ such that an iterate of Φ induces an endomorphism of G that equals a power of the Frobenius. In other words, if we write the action of Φ as $\vec{x} \mapsto \vec{x}^{A}$ for some N-by- N matrix with integer entries, then A has no eigenvalue which is multiplicatively dependent with respect to p.

Strategy

Step 1: A regular self-map $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a composition of a translation with a group endomorphism $\vec{x} \longrightarrow \vec{x}^{A}$ (for some $\left.A \in M_{N, N}(\mathbb{Z})\right)$.

Strategy

Step 1: A regular self-map $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a composition of a translation with a group endomorphism $\vec{x} \longrightarrow \vec{x}^{A}$ (for some $A \in M_{N, N}(\mathbb{Z})$). Therefore, for any given starting point $\alpha \in \mathbb{G}_{m}^{N}(K)$, the entire orbit $\mathcal{O}_{\Phi}(\alpha)$ is contained in some finitely generated subgroup $\Gamma \subset \mathbb{G}_{m}^{N}(K)$.

Strategy

Step 1: A regular self-map $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a composition of a translation with a group endomorphism $\vec{x} \longrightarrow \vec{x}^{A}$ (for some $\left.A \in M_{N, N}(\mathbb{Z})\right)$. Therefore, for any given starting point $\alpha \in \mathbb{G}_{m}^{N}(K)$, the entire orbit $\mathcal{O}_{\Phi}(\alpha)$ is contained in some finitely generated subgroup $\Gamma \subset \mathbb{G}_{m}^{N}(K)$.
Step 2: According to the the F-structure theorem of Rahim Moosa and Thomas Scanlon, the intersection of the subvariety $V \subseteq \mathbb{G}_{m}^{N}$ with the finitely generated subgroup Γ is a finite union of F-sets

Strategy

Step 1: A regular self-map $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a composition of a translation with a group endomorphism $\vec{x} \longrightarrow \vec{x}^{A}$ (for some $\left.A \in M_{N, N}(\mathbb{Z})\right)$. Therefore, for any given starting point $\alpha \in \mathbb{G}_{m}^{N}(K)$, the entire orbit $\mathcal{O}_{\Phi}(\alpha)$ is contained in some finitely generated subgroup $\Gamma \subset \mathbb{G}_{m}^{N}(K)$.
Step 2: According to the the F-structure theorem of Rahim Moosa and Thomas Scanlon, the intersection of the subvariety $V \subseteq \mathbb{G}_{m}^{N}$ with the finitely generated subgroup Γ is a finite union of F-sets, i.e., sets of the form $S_{i} \cdot H_{i}$, where each H_{i} is a subgroup of Γ and each S_{i} is a set of the form

$$
\left\{\prod_{j=1}^{m} \gamma_{j}^{p^{k_{j} n_{j}}}: n_{j} \in \mathbb{N}_{0}\right\}
$$

for some given $\gamma_{j} \in \mathbb{G}_{m}^{N}(\bar{K})$ and $k_{j} \in \mathbb{N}_{0}$.

Strategy

Step 1: A regular self-map $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a composition of a translation with a group endomorphism $\vec{x} \longrightarrow \vec{x}^{A}$ (for some $\left.A \in M_{N, N}(\mathbb{Z})\right)$. Therefore, for any given starting point $\alpha \in \mathbb{G}_{m}^{N}(K)$, the entire orbit $\mathcal{O}_{\Phi}(\alpha)$ is contained in some finitely generated subgroup $\Gamma \subset \mathbb{G}_{m}^{N}(K)$.
Step 2: According to the the F-structure theorem of Rahim Moosa and Thomas Scanlon, the intersection of the subvariety $V \subseteq \mathbb{G}_{m}^{N}$ with the finitely generated subgroup Γ is a finite union of F-sets, i.e., sets of the form $S_{i} \cdot H_{i}$, where each H_{i} is a subgroup of Γ and each S_{i} is a set of the form

$$
\left\{\prod_{j=1}^{m} \gamma_{j}^{p^{k_{j} n_{j}}}: n_{j} \in \mathbb{N}_{0}\right\}
$$

for some given $\gamma_{j} \in \mathbb{G}_{m}^{N}(\bar{K})$ and $k_{j} \in \mathbb{N}_{0}$.
Step 3. We are left to determine the set of all $n \in \mathbb{N}_{0}$ such that $\Phi^{n}(\alpha) \in S \cdot H$, for a given F-set $S \cdot H$.

Step 3

This last step is equivalent with some deep classical Diophantine questions.

Step 3

This last step is equivalent with some deep classical Diophantine questions.
Theorem: Let $\left\{u_{k}\right\}$ be a linear recurrence sequence of integers, let $m, c_{1}, \ldots, c_{m} \in \mathbb{N}$, and let q be a power of the prime number p such that

$$
\sum_{i=1}^{m} c_{i}<q-1
$$

Step 3

This last step is equivalent with some deep classical Diophantine questions.
Theorem: Let $\left\{u_{k}\right\}$ be a linear recurrence sequence of integers, let $m, c_{1}, \ldots, c_{m} \in \mathbb{N}$, and let q be a power of the prime number p such that

$$
\sum_{i=1}^{m} c_{i}<q-1
$$

Then there exists $N \in \mathbb{N}$, there exists an algebraically closed field K, there exists an algebraic group endomorphism $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$, there exists $\alpha \in \mathbb{G}_{m}^{N}(K)$ and there exists a subvariety $V \subset \mathbb{G}_{m}^{N}(K)$

Step 3

This last step is equivalent with some deep classical Diophantine questions.
Theorem: Let $\left\{u_{k}\right\}$ be a linear recurrence sequence of integers, let $m, c_{1}, \ldots, c_{m} \in \mathbb{N}$, and let q be a power of the prime number p such that

$$
\sum_{i=1}^{m} c_{i}<q-1
$$

Then there exists $N \in \mathbb{N}$, there exists an algebraically closed field K, there exists an algebraic group endomorphism $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$, there exists $\alpha \in \mathbb{G}_{m}^{N}(K)$ and there exists a subvariety $V \subset \mathbb{G}_{m}^{N}(K)$ such that the set of all $n \in \mathbb{N}_{0}$ for which $\Phi^{n}(\alpha) \in V(K)$ is precisely the set of all $n \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
u_{n}=\sum_{i=1}^{m} c_{i} q^{n_{i}} \tag{2}
\end{equation*}
$$

for some $n_{1}, \ldots, n_{m} \in \mathbb{N}_{0}$.

$$
u_{n}=\sum_{i=1}^{m} c_{i} p^{n_{i}}
$$

For example, a special case of this polynomial-exponential equation is

$$
n^{2}=\sum_{i=1}^{m} p^{n_{i}}
$$

which is open when $m>5$.

$$
u_{n}=\sum_{i=1}^{m} c_{i} p^{n_{i}}
$$

For example, a special case of this polynomial-exponential equation is

$$
n^{2}=\sum_{i=1}^{m} p^{n_{i}}
$$

which is open when $m>5$. One still expects that the set of $n \in \mathbb{N}_{0}$ satisfying the general polynomial-exponential equation

$$
u_{n}=\sum_{i=1}^{m} c_{i} p^{n_{i}}
$$

is a finite union of arithmetic progressions along with finitely many sets of the form

$$
\left\{\sum_{j=1}^{\ell} d_{j} p^{k_{j} n_{j}}: n_{j} \in \mathbb{N}_{0}\right\}
$$

but when $m>2$, the case of a general linear recurrence sequence $\left\{u_{n}\right\}$ is open.

$$
u_{n}=\sum_{i=1}^{m} c_{i} p^{n_{i}}
$$

So, in order to prove the DML in characteristic p, we needed to employ the aforementioned technical hypotheses which guarantee that

$$
u_{n}=\sum_{i=1}^{m} c_{i} p^{n_{i}}
$$

So, in order to prove the DML in characteristic p, we needed to employ the aforementioned technical hypotheses which guarantee that either
(1) $m \leq 2$ (this is the case when the dimension of the subvariety $V \subseteq \mathbb{G}_{m}^{N}$ is at most 2);

$$
u_{n}=\sum_{i=1}^{m} c_{i} p^{n_{i}}
$$

So, in order to prove the DML in characteristic p, we needed to employ the aforementioned technical hypotheses which guarantee that either
(1) $m \leq 2$ (this is the case when the dimension of the subvariety
$V \subseteq \mathbb{G}_{m}^{N}$ is at most 2);or
(2) no characteristic root of the linear recurrence sequence $\left\{u_{n}\right\}$ is multiplicatively dependent with respect to p (this is the case when Φ is a group endomorphism corresponding to a matrix $A \in M_{N, N}(\mathbb{Z})$ whose eigenvalues are not multiplicatively dependent with respect to p).

Beyond tori

For a regular self-map Φ on an isotrivial semiabelian variety G, the strategy works identically, only that this time we obtain that the problem is equivalent with solving even more general polynomial-exponential equations of the form:

$$
u_{n}=\sum_{i=1}^{m} c_{i} \lambda_{i}^{n_{i}}
$$

where $\left\{u_{n}\right\}$ is a linear recurrence sequence and the λ_{i} 's are the eigenvalues of the Frobenius endomorphism of G.

Beyond tori

For a regular self-map Φ on an isotrivial semiabelian variety G, the strategy works identically, only that this time we obtain that the problem is equivalent with solving even more general polynomial-exponential equations of the form:

$$
u_{n}=\sum_{i=1}^{m} c_{i} \lambda_{i}^{n_{i}},
$$

where $\left\{u_{n}\right\}$ is a linear recurrence sequence and the λ_{i} 's are the eigenvalues of the Frobenius endomorphism of G.
At the opposite spectrum, if G were an abelian variety defined over an algebraically closed field K which has trivial trace over \mathbb{F}_{p}, then actually the DML problem in characteristic p is identical in methods and solution to the classical DML problem for abelian varieties (and in this case, the return set is simply a finite union of arithmetic progressions).

Beyond tori

For a regular self-map Φ on an isotrivial semiabelian variety G, the strategy works identically, only that this time we obtain that the problem is equivalent with solving even more general polynomial-exponential equations of the form:

$$
u_{n}=\sum_{i=1}^{m} c_{i} \lambda_{i}^{n_{i}},
$$

where $\left\{u_{n}\right\}$ is a linear recurrence sequence and the λ_{i} 's are the eigenvalues of the Frobenius endomorphism of G.
At the opposite spectrum, if G were an abelian variety defined over an algebraically closed field K which has trivial trace over $\overline{\mathbb{F}_{p}}$, then actually the DML problem in characteristic p is identical in methods and solution to the classical DML problem for abelian varieties (and in this case, the return set is simply a finite union of arithmetic progressions).
For arbitrary semiabelian varieties, and more general, for arbitrary ambient varieties, the DML problem in characteristic p is expected to be at least as difficult as the classical DML conjecture.

The Zariski dense orbit conjecture

Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana): Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map Φ. Then the folowing dichotomy holds:

The Zariski dense orbit conjecture

Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana): Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map Φ. Then the folowing dichotomy holds:
(A) there exists a point $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is well-defined and also Zariski dense in X;

The Zariski dense orbit conjecture

Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana): Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map Φ. Then the folowing dichotomy holds:
(A) there exists a point $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is well-defined and also Zariski dense in X;or
(B) there exists a nonconstant rational function $f: X \rightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.

The Zariski dense orbit conjecture

Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana):

 Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map Φ. Then the folowing dichotomy holds:(A) there exists a point $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is well-defined and also Zariski dense in X;or
(B) there exists a nonconstant rational function $f: X \rightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.

The result is known in general when K is uncountable, but when K is countable, the conclusion was proven only in a handful of cases.

The Zariski dense orbit conjecture

Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana): Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map Φ. Then the folowing dichotomy holds:
(A) there exists a point $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is well-defined and also Zariski dense in X;or
(B) there exists a nonconstant rational function $f: X \rightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.
The result is known in general when K is uncountable, but when K is countable, the conclusion was proven only in a handful of cases. The difficulty lies in the fact that if condition (B) does not hold, then one can prove that outside a countable union $\bigcup_{i} Y_{i}$ of proper subvarieties of X, each point would have a well-defined Zariski dense orbit;

The Zariski dense orbit conjecture

Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana): Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map Φ. Then the folowing dichotomy holds:
(A) there exists a point $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is well-defined and also Zariski dense in X;or
(B) there exists a nonconstant rational function $f: X \rightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.
The result is known in general when K is uncountable, but when K is countable, the conclusion was proven only in a handful of cases. The difficulty lies in the fact that if condition (B) does not hold, then one can prove that outside a countable union $\bigcup_{i} Y_{i}$ of proper subvarieties of X, each point would have a well-defined Zariski dense orbit; however, if K is countable, one needs to show that $\bigcup_{i} Y_{i}(K)$ is a proper subset of $X(K)$.

There are several instances when the conjecture is known to hold:

There are several instances when the conjecture is known to hold:
$-\Phi: \mathbb{A}^{N} \longrightarrow \mathbb{A}^{N}$ is given by the coordinatewise action of one-variable polynomials

$$
\left(x_{1}, \ldots, x_{N}\right) \mapsto\left(f_{1}\left(x_{1}\right), \ldots, f_{N}\left(x_{N}\right)\right) .
$$

There are several instances when the conjecture is known to hold:
$-\Phi: \mathbb{A}^{N} \longrightarrow \mathbb{A}^{N}$ is given by the coordinatewise action of one-variable polynomials

$$
\left(x_{1}, \ldots, x_{N}\right) \mapsto\left(f_{1}\left(x_{1}\right), \ldots, f_{N}\left(x_{N}\right)\right) .
$$

- Φ is a regular self-map of a semiabelian variety.

There are several instances when the conjecture is known to hold:
$-\Phi: \mathbb{A}^{N} \longrightarrow \mathbb{A}^{N}$ is given by the coordinatewise action of one-variable polynomials

$$
\left(x_{1}, \ldots, x_{N}\right) \mapsto\left(f_{1}\left(x_{1}\right), \ldots, f_{N}\left(x_{N}\right)\right)
$$

- Φ is a regular self-map of a semiabelian variety.
- Φ is a group endomorphism of a commutative linear algebraic group.

There are several instances when the conjecture is known to hold:
$-\Phi: \mathbb{A}^{N} \longrightarrow \mathbb{A}^{N}$ is given by the coordinatewise action of one-variable polynomials

$$
\left(x_{1}, \ldots, x_{N}\right) \mapsto\left(f_{1}\left(x_{1}\right), \ldots, f_{N}\left(x_{N}\right)\right)
$$

- Φ is a regular self-map of a semiabelian variety.
- Φ is a group endomorphism of a commutative linear algebraic group.
- Φ is an endomorphism of a projective surface.

The next interesting open case is the case of arbitrary endomorphisms Φ of \mathbb{A}^{3}.

Useful reductions

(i) It suffices to prove the result after replacing Φ by any suitable iterate of it.

Useful reductions

(i) It suffices to prove the result after replacing Φ by any suitable iterate of it.
(ii) It suffices to prove the result after replacing Φ by a conjugate of it $\Psi^{-1} \circ \Phi \circ \Psi$, where Ψ is an automorphism of X.

Useful reductions

(i) It suffices to prove the result after replacing Φ by any suitable iterate of it.
(ii) It suffices to prove the result after replacing Φ by a conjugate of it $\Psi^{-1} \circ \Phi \circ \Psi$, where Ψ is an automorphism of X.
(iii) Generally, the strategy in all known instances when the Zariski dense conjecture was proven is to assume that condition (B) does not hold (i.e., that Φ does not leave invariant a non-constant rational function) and then use the arithmetic of the ambient variety X combined with various information on the map Φ to prove the existence of a Zariski dense orbit.

The picture in positive characteristic

If X is any variety defined over \mathbb{F}_{p}, then there exists no non-constant rational function $f: X \rightarrow \mathbb{P}^{1}$ invariant under the Frobenius endomorphism $F: X \longrightarrow X$ (corresponding to the field automorphism $x \mapsto x^{p}$);

The picture in positive characteristic

If X is any variety defined over \mathbb{F}_{p}, then there exists no non-constant rational function $f: X \rightarrow \mathbb{P}^{1}$ invariant under the Frobenius endomorphism $F: X \longrightarrow X$ (corresponding to the field automorphism $x \mapsto x^{p}$); however, unless $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq \operatorname{dim}(X)$, there is no point in $X(K)$ with a Zariski dense orbit in X (each orbit of a point $\alpha \in X(K)$ lives in a subvariety $Y \subseteq X$ defined over \mathbb{F}_{p} of dimension $\operatorname{dim}(Y)=\operatorname{trdeg}_{\mathbb{F}_{p}} L$, where L is the minimal field extension of \mathbb{F}_{p} for which $\left.\alpha \in X(L)\right)$.

The picture in positive characteristic

If X is any variety defined over \mathbb{F}_{p}, then there exists no non-constant rational function $f: X \rightarrow \mathbb{P}^{1}$ invariant under the Frobenius endomorphism $F: X \longrightarrow X$ (corresponding to the field automorphism $x \mapsto x^{p}$); however, unless $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq \operatorname{dim}(X)$, there is no point in $X(K)$ with a Zariski dense orbit in X (each orbit of a point $\alpha \in X(K)$ lives in a subvariety $Y \subseteq X$ defined over \mathbb{F}_{p} of dimension $\operatorname{dim}(Y)=\operatorname{trdeg}_{\mathbb{F}_{p}} L$, where L is the minimal field extension of \mathbb{F}_{p} for which $\left.\alpha \in X(L)\right)$.
This motivates the following conjecture.

Conjecture 1: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic p and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Assume $\operatorname{trdeg} \overline{\mathbb{F}}_{p} K \geq \operatorname{dim}(X)$. Then either there exists $\alpha \in X(K)$ whose orbit under Φ is well-defined and Zariski dense in X, or there exists a non-constant rational function $f: X \rightarrow X$ such that $f \circ \Phi=f$.

Conjecture 1: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic p and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Assume $\operatorname{trdeg}_{\overline{\mathbb{F}_{p}}} K \geq \operatorname{dim}(X)$. Then either there exists $\alpha \in X(K)$ whose orbit under Φ is well-defined and Zariski dense in X, or there exists a non-constant rational function $f: X \rightarrow X$ such that $f \circ \Phi=f$. Theorem (jointly with Sina Saleh): The above Conjecture 1 holds for regular self-maps $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$.

Conjecture 1: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic p and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Assume $\operatorname{trdeg}_{\overline{\mathbb{F}_{p}}} K \geq \operatorname{dim}(X)$. Then either there exists $\alpha \in X(K)$ whose orbit under Φ is well-defined and Zariski dense in X, or there exists a non-constant rational function $f: X \rightarrow X$ such that $f \circ \Phi=f$. Theorem (jointly with Sina Saleh): The above Conjecture 1 holds for regular self-maps $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$.
Once again, the Frobenius endomorphism complicates the arithmetic dynamics question;

Conjecture 1: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic p and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Assume $\operatorname{trdeg}_{\overline{\mathbb{F}_{p}}} K \geq \operatorname{dim}(X)$. Then either there exists $\alpha \in X(K)$ whose orbit under Φ is well-defined and Zariski dense in X, or there exists a non-constant rational function $f: X \rightarrow X$ such that $f \circ \Phi=f$. Theorem (jointly with Sina Saleh): The above Conjecture 1 holds for regular self-maps $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$.
Once again, the Frobenius endomorphism complicates the arithmetic dynamics question; we expect this is the only obstruction from obtaining the aforementioned dichotomy for the Zariski dense orbit conjecture.

Conjecture 2: Let K be an algebraically closed field of positive transcendence degree over $\overline{\mathbb{F}_{p}}$, let X be a quasiprojective variety defined over K, and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well.

Conjecture 2: Let K be an algebraically closed field of positive transcendence degree over $\overline{\mathbb{F}_{p}}$, let X be a quasiprojective variety defined over K, and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Then one of the following three conditions must hold:
(A) There exists $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is Zariski dense in X.

Conjecture 2: Let K be an algebraically closed field of positive transcendence degree over $\overline{\mathbb{F}_{p}}$, let X be a quasiprojective variety defined over K, and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Then one of the following three conditions must hold:
(A) There exists $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is Zariski dense in X.
(B) There exists a non-constant rational function $f: X \rightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.

Conjecture 2: Let K be an algebraically closed field of positive transcendence degree over $\overline{\mathbb{F}_{p}}$, let X be a quasiprojective variety defined over K, and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Then one of the following three conditions must hold:
(A) There exists $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is Zariski dense in X.
(B) There exists a non-constant rational function $f: X \longrightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.
(C) There exists a positive integer m, there exist subvarieties $Y \subseteq Z \subseteq X$ and there exists a birational automorphism τ of Z with the following properties:

Conjecture 2: Let K be an algebraically closed field of positive transcendence degree over $\overline{\mathbb{F}_{p}}$, let X be a quasiprojective variety defined over K, and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Then one of the following three conditions must hold:
(A) There exists $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is Zariski dense in X.
(B) There exists a non-constant rational function $f: X \rightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.
(C) There exists a positive integer m, there exist subvarieties $Y \subseteq Z \subseteq X$ and there exists a birational automorphism τ of Z with the following properties:
(1) Y is defined over a finite field \mathbb{F}_{q} and $\operatorname{dim}(Y) \geq 2$;

Conjecture 2: Let K be an algebraically closed field of positive transcendence degree over $\overline{\mathbb{F}_{p}}$, let X be a quasiprojective variety defined over K, and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Then one of the following three conditions must hold:
(A) There exists $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is Zariski dense in X.
(B) There exists a non-constant rational function $f: X \rightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.
(C) There exists a positive integer m, there exist subvarieties $Y \subseteq Z \subseteq X$ and there exists a birational automorphism τ of Z with the following properties:
(1) Y is defined over a finite field \mathbb{F}_{q} and $\operatorname{dim}(Y) \geq 2$;
(2) Z is invariant under Φ^{m}, i.e., $\varphi:=\Phi^{m} \mid z$ is a rational self-map on Z;

Conjecture 2: Let K be an algebraically closed field of positive transcendence degree over $\overline{\mathbb{F}_{p}}$, let X be a quasiprojective variety defined over K, and let $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Then one of the following three conditions must hold:
(A) There exists $\alpha \in X(K)$ whose orbit $\mathcal{O}_{\Phi}(\alpha)$ is Zariski dense in X.
(B) There exists a non-constant rational function $f: X \rightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.
(C) There exists a positive integer m, there exist subvarieties $Y \subseteq Z \subseteq X$ and there exists a birational automorphism τ of Z with the following properties:
(1) Y is defined over a finite field \mathbb{F}_{q} and $\operatorname{dim}(Y) \geq 2$;
(2) Z is invariant under Φ^{m}, i.e., $\varphi:=\left.\Phi^{m}\right|_{Z}$ is a rational self-map on Z;and
(3) $\left(\tau^{-1} \circ \varphi \circ \tau\right)$ restricted to Y induces the Frobenius endomorphism F of Y, which corresponds to the field automorphism $x \mapsto x^{q}$.

Conjecture 2 holds for regular self-maps of tori, in which case the following more precise statement can be proven.

Conjecture 2 holds for regular self-maps of tori, in which case the following more precise statement can be proven.
Theorem (jointly with Sina Saleh): Let K be an algebraically closed field of characteristic p such that $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq 1$. Let $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ be a dominant regular self-map defined over K. Then at least one of the following statements must hold.

Conjecture 2 holds for regular self-maps of tori, in which case the following more precise statement can be proven.
Theorem (jointly with Sina Saleh): Let K be an algebraically closed field of characteristic p such that $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq 1$. Let $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ be a dominant regular self-map defined over K. Then at least one of the following statements must hold.
(A) There exists $\alpha \in \mathbb{G}_{m}^{N}(K)$ whose orbit under Φ is Zariski dense in \mathbb{G}_{m}^{N}.

Conjecture 2 holds for regular self-maps of tori, in which case the following more precise statement can be proven.
Theorem (jointly with Sina Saleh): Let K be an algebraically closed field of characteristic p such that $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq 1$. Let $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ be a dominant regular self-map defined over K. Then at least one of the following statements must hold.
(A) There exists $\alpha \in \mathbb{G}_{m}^{N}(K)$ whose orbit under Φ is Zariski dense in \mathbb{G}_{m}^{N}.
(B) There exists a non-constant rational function $f: \mathbb{G}_{m}^{N} \rightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.

Conjecture 2 holds for regular self-maps of tori, in which case the following more precise statement can be proven.
Theorem (jointly with Sina Saleh): Let K be an algebraically closed field of characteristic p such that $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq 1$. Let $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ be a dominant regular self-map defined over K.
Then at least one of the following statements must hold.
(A) There exists $\alpha \in \mathbb{G}_{m}^{N}(K)$ whose orbit under Φ is Zariski dense in \mathbb{G}_{m}^{N}.
(B) There exists a non-constant rational function $f: \mathbb{G}_{m}^{N} \rightarrow \mathbb{P}^{1}$ such that $f \circ \Phi=f$.
(C) There exist positive integers m and r, a connected algebraic subgroup Y of \mathbb{G}_{m}^{N} of dimension at least equal to 2 and a translation map $\tau_{y}: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ corresponding to a point $y \in \mathbb{G}_{m}^{N}(K)$ such that

$$
\begin{equation*}
\left.\left(\tau_{y}^{-1} \circ \Phi^{m} \circ \tau_{y}\right)\right|_{Y}=\left.\left(F^{r}\right)\right|_{Y} \tag{3}
\end{equation*}
$$

where F is the usual Frobenius endomorphism of \mathbb{G}_{m}^{N} induced by the field automorphism $x \mapsto x^{p}$.

Condition (C)

In case of regular self-maps $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$, condition (C) can be rephrased more simply as follows.

Condition (C)

In case of regular self-maps $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$, condition (C) can be rephrased more simply as follows. We write Φ as a composition of a translation with an algebraic group endomorphism

$$
\vec{x} \mapsto \vec{x}^{A}
$$

for some N-by- N matrix A with integer entries.

Condition (C)

In case of regular self-maps $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$, condition (C) can be rephrased more simply as follows. We write Φ as a composition of a translation with an algebraic group endomorphism

$$
\vec{x} \mapsto \vec{x}^{A}
$$

for some N-by- N matrix A with integer entries. Then condition (C) is equivalent with asking that there exist two distinct Jordan blocks for the Jordan canonical form of A with the property that their corresponding eigenvalues λ_{1} and λ_{2} have the property that there exist $\ell, m \in \mathbb{N}$ such that

$$
\lambda_{1}^{\ell}=\lambda_{2}^{\ell}=p^{m}
$$

Condition (C)

In case of regular self-maps $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$, condition (C) can be rephrased more simply as follows. We write Φ as a composition of a translation with an algebraic group endomorphism

$$
\vec{x} \mapsto \vec{x}^{A}
$$

for some N-by- N matrix A with integer entries. Then condition (C) is equivalent with asking that there exist two distinct Jordan blocks for the Jordan canonical form of A with the property that their corresponding eigenvalues λ_{1} and λ_{2} have the property that there exist $\ell, m \in \mathbb{N}$ such that

$$
\lambda_{1}^{\ell}=\lambda_{2}^{\ell}=p^{m}
$$

The next examples of regular self-maps Φ on \mathbb{G}_{m}^{3} defined over $K:=\mathbb{F}_{p}(t)$ will show the various instances of conditions (A)-(C) from our result.

Example 1. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\beta_{1} x_{1}, \beta_{2} x_{2}, \beta_{3} x_{3}\right)$ for some given $\beta_{1}, \beta_{2}, \beta_{3} \in K$.

Example 1. $\boldsymbol{\Phi}\left(x_{1}, x_{2}, x_{3}\right)=\left(\beta_{1} x_{1}, \beta_{2} x_{2}, \beta_{3} x_{3}\right)$ for some given $\beta_{1}, \beta_{2}, \beta_{3} \in K$. Then Φ has a Zariski dense orbit (i.e., condition (A) is met) if and only if $\beta_{1}, \beta_{2}, \beta_{3}$ are multiplicatively independent;

Example 1. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\beta_{1} x_{1}, \beta_{2} x_{2}, \beta_{3} x_{3}\right)$ for some given $\beta_{1}, \beta_{2}, \beta_{3} \in K$. Then Φ has a Zariski dense orbit (i.e., condition (A) is met) if and only if $\beta_{1}, \beta_{2}, \beta_{3}$ are multiplicatively independent; otherwise there is a nonconstant invariant rational function f (i.e., condition (B) is met).

Example 1. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\beta_{1} x_{1}, \beta_{2} x_{2}, \beta_{3} x_{3}\right)$ for some given $\beta_{1}, \beta_{2}, \beta_{3} \in K$. Then Φ has a Zariski dense orbit (i.e., condition (A) is met) if and only if $\beta_{1}, \beta_{2}, \beta_{3}$ are multiplicatively independent; otherwise there is a nonconstant invariant rational function f (i.e., condition (B) is met). In this case, condition (C) is never met.

Example 1. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\beta_{1} x_{1}, \beta_{2} x_{2}, \beta_{3} x_{3}\right)$ for some given $\beta_{1}, \beta_{2}, \beta_{3} \in K$. Then Φ has a Zariski dense orbit (i.e., condition (A) is met) if and only if $\beta_{1}, \beta_{2}, \beta_{3}$ are multiplicatively independent; otherwise there is a nonconstant invariant rational function f (i.e., condition (B) is met). In this case, condition (C) is never met.
Example 2. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{p}, x_{2}^{p}, x_{3}^{k}\right)$ for some given integer $k>1$.

Example 1. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\beta_{1} x_{1}, \beta_{2} x_{2}, \beta_{3} x_{3}\right)$ for some given $\beta_{1}, \beta_{2}, \beta_{3} \in K$. Then Φ has a Zariski dense orbit (i.e., condition (A) is met) if and only if $\beta_{1}, \beta_{2}, \beta_{3}$ are multiplicatively independent; otherwise there is a nonconstant invariant rational function f (i.e., condition (B) is met). In this case, condition (C)
is never met.
Example 2. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{p}, x_{2}^{p}, x_{3}^{k}\right)$ for some given integer $k>1$. In this case, condition (C) is met and neither conditions (A) or (B) are met.

Example 1. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\beta_{1} x_{1}, \beta_{2} x_{2}, \beta_{3} x_{3}\right)$ for some given $\beta_{1}, \beta_{2}, \beta_{3} \in K$. Then Φ has a Zariski dense orbit (i.e., condition (A) is met) if and only if $\beta_{1}, \beta_{2}, \beta_{3}$ are multiplicatively independent; otherwise there is a nonconstant invariant rational function f (i.e., condition (B) is met). In this case, condition (C)
is never met.
Example 2. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{p}, x_{2}^{p}, x_{3}^{k}\right)$ for some given integer $k>1$. In this case, condition (C) is met and neither conditions (A) or (B) are met. For any starting point $\alpha:=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{G}_{m}^{3}(K)$, the orbit $\mathcal{O}_{\Phi}(\alpha)$ is contained in $C \times \mathbb{G}_{m}$ where $C \subset \mathbb{G}_{m}^{2}$ is a plane curve defined over \mathbb{F}_{p} containing the point $\left(\alpha_{1}, \alpha_{2}\right)$.

Example 1. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\beta_{1} x_{1}, \beta_{2} x_{2}, \beta_{3} x_{3}\right)$ for some given $\beta_{1}, \beta_{2}, \beta_{3} \in K$. Then Φ has a Zariski dense orbit (i.e., condition (A) is met) if and only if $\beta_{1}, \beta_{2}, \beta_{3}$ are multiplicatively independent; otherwise there is a nonconstant invariant rational function f (i.e., condition (B) is met). In this case, condition (C)
is never met.
Example 2. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{p}, x_{2}^{p}, x_{3}^{k}\right)$ for some given integer $k>1$. In this case, condition (C) is met and neither conditions (A) or (B) are met. For any starting point $\alpha:=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{G}_{m}^{3}(K)$, the orbit $\mathcal{O}_{\Phi}(\alpha)$ is contained in $C \times \mathbb{G}_{m}$ where $C \subset \mathbb{G}_{m}^{2}$ is a plane curve defined over \mathbb{F}_{p} containing the point $\left(\alpha_{1}, \alpha_{2}\right)$.
Example 3. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{p}, x_{2}^{p^{2}}, x_{3}^{p^{3}}\right)$

Example 1. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\beta_{1} x_{1}, \beta_{2} x_{2}, \beta_{3} x_{3}\right)$ for some given $\beta_{1}, \beta_{2}, \beta_{3} \in K$. Then Φ has a Zariski dense orbit (i.e., condition (A) is met) if and only if $\beta_{1}, \beta_{2}, \beta_{3}$ are multiplicatively independent; otherwise there is a nonconstant invariant rational function f (i.e., condition (B) is met). In this case, condition (C) is never met.
Example 2. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{p}, x_{2}^{p}, x_{3}^{k}\right)$ for some given integer $k>1$. In this case, condition (C) is met and neither conditions (A) or (B) are met. For any starting point $\alpha:=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{G}_{m}^{3}(K)$, the orbit $\mathcal{O}_{\Phi}(\alpha)$ is contained in $C \times \mathbb{G}_{m}$ where $C \subset \mathbb{G}_{m}^{2}$ is a plane curve defined over \mathbb{F}_{p} containing the point (α_{1}, α_{2}).
Example 3. $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{p}, x_{2}^{p^{2}}, x_{3}^{p^{3}}\right)$ satisfies condition (A) always, i.e., there exists a Zariski dense orbit.

General strategy

For both theorems (either when $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq N$ or not), we have a similar approach.

General strategy

For both theorems (either when $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq N$ or not), we have a similar approach. There are two extreme cases for our regular self-map Φ of \mathbb{G}_{m}^{N} in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of Φ composed with a suitable translation on \mathbb{G}_{m}^{N} decomposes as a direct product of the following two limit cases.

General strategy

For both theorems (either when $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq N$ or not), we have a similar approach. There are two extreme cases for our regular self-map Φ of \mathbb{G}_{m}^{N} in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of Φ composed with a suitable translation on \mathbb{G}_{m}^{N} decomposes as a direct product of the following two limit cases.
Case 1. $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a dominant group endomorphism $\vec{x} \mapsto \vec{x}^{A}$ for a matrix $A \in M_{N, N}(\mathbb{Z})$ whose eigenvalues are not roots of unity.

General strategy

For both theorems (either when $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq N$ or not), we have a similar approach. There are two extreme cases for our regular self-map Φ of \mathbb{G}_{m}^{N} in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of Φ composed with a suitable translation on \mathbb{G}_{m}^{N} decomposes as a direct product of the following two limit cases.
Case 1. $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a dominant group endomorphism $\vec{x} \mapsto \vec{x}^{A}$ for a matrix $A \in M_{N, N}(\mathbb{Z})$ whose eigenvalues are not roots of unity.
Case 2. $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a composition of a translation with a unipotent group endomorphism.

General strategy

For both theorems (either when $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq N$ or not), we have a similar approach. There are two extreme cases for our regular self-map Φ of \mathbb{G}_{m}^{N} in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of Φ composed with a suitable translation on \mathbb{G}_{m}^{N} decomposes as a direct product of the following two limit cases.
Case 1. $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a dominant group endomorphism $\vec{x} \mapsto \vec{x}^{A}$ for a matrix $A \in M_{N, N}(\mathbb{Z})$ whose eigenvalues are not roots of unity.
Case 2. $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a composition of a translation with a unipotent group endomorphism.
For both Cases, an important tool used is the F-structure theorem of Moosa-Scanlon, but there are several other arguments needed.

General strategy

For both theorems (either when $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq N$ or not), we have a similar approach. There are two extreme cases for our regular self-map Φ of \mathbb{G}_{m}^{N} in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of Φ composed with a suitable translation on \mathbb{G}_{m}^{N} decomposes as a direct product of the following two limit cases.
Case 1. $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a dominant group endomorphism $\vec{x} \mapsto \vec{x}^{A}$ for a matrix $A \in M_{N, N}(\mathbb{Z})$ whose eigenvalues are not roots of unity.
Case 2. $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a composition of a translation with a unipotent group endomorphism.
For both Cases, an important tool used is the F-structure theorem of Moosa-Scanlon, but there are several other arguments needed. Also, our proof of Case 2 works for an arbitrary function field K / \mathbb{F}_{p}, while the proof of Case 1 is significantly more delicate when $\operatorname{trdeg}_{\mathbb{F}_{p}} K=1$

General strategy

For both theorems (either when $\operatorname{trdeg}_{\mathbb{F}_{p}} K \geq N$ or not), we have a similar approach. There are two extreme cases for our regular self-map Φ of \mathbb{G}_{m}^{N} in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of Φ composed with a suitable translation on \mathbb{G}_{m}^{N} decomposes as a direct product of the following two limit cases.
Case 1. $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a dominant group endomorphism $\vec{x} \mapsto \vec{x}^{A}$ for a matrix $A \in M_{N, N}(\mathbb{Z})$ whose eigenvalues are not roots of unity.
Case 2. $\Phi: \mathbb{G}_{m}^{N} \longrightarrow \mathbb{G}_{m}^{N}$ is a composition of a translation with a unipotent group endomorphism.
For both Cases, an important tool used is the F-structure theorem of Moosa-Scanlon, but there are several other arguments needed. Also, our proof of Case 2 works for an arbitrary function field K / \mathbb{F}_{p}, while the proof of Case 1 is significantly more delicate when $\operatorname{trdeg}_{\mathbb{F}_{p}} K=1$ (which is not surprising since Condition (C) appears in Case 1 only).

Examples for Case 1

Example 4. $\Phi: \mathbb{G}_{m}^{2} \longrightarrow \mathbb{G}_{m}^{2}$ is the group endomorphism given by $(x, y) \mapsto\left(x^{p}, y^{p^{2}}\right)$.

Examples for Case 1

Example 4. $\Phi: \mathbb{G}_{m}^{2} \longrightarrow \mathbb{G}_{m}^{2}$ is the group endomorphism given by $(x, y) \mapsto\left(x^{p}, y^{p^{2}}\right)$. Then the orbit of $\alpha:=(t, t) \in \mathbb{G}_{m}^{2}\left(\mathbb{F}_{p}(t)\right)$ is Zariski dense since the height of second coordinate in $\Phi^{n}(\alpha)$ grows much faster than the height of the first coordinate.

Examples for Case 1

Example 4. $\Phi: \mathbb{G}_{m}^{2} \longrightarrow \mathbb{G}_{m}^{2}$ is the group endomorphism given by $(x, y) \mapsto\left(x^{p}, y^{p^{2}}\right)$. Then the orbit of $\alpha:=(t, t) \in \mathbb{G}_{m}^{2}\left(\mathbb{F}_{p}(t)\right)$ is Zariski dense since the height of second coordinate in $\Phi^{n}(\alpha)$ grows much faster than the height of the first coordinate. A similar argument works each time when the eigenvalues of the matrix A corresponding to the group endomorphism Φ (in arbitrary dimensions) has eigenvalues whose quotients do not have absolute value equal to 1 .

Example 5. $\Phi: \mathbb{G}_{m}^{2} \longrightarrow \mathbb{G}_{m}^{2}$ is the group endomorphism given by $(x, y) \mapsto\left(x^{2}, y^{2}\right)$ (where $\left.p>2\right)$.

Example 5. $\Phi: \mathbb{G}_{m}^{2} \longrightarrow \mathbb{G}_{m}^{2}$ is the group endomorphism given by $(x, y) \mapsto\left(x^{2}, y^{2}\right)$ (where $p>2$). Then the orbit of $(t, t+1) \in \mathbb{G}_{m}^{2}\left(\mathbb{F}_{p}(t)\right)$ is Zariski dense, but the proof is harder.

Example 5. $\Phi: \mathbb{G}_{m}^{2} \longrightarrow \mathbb{G}_{m}^{2}$ is the group endomorphism given by $(x, y) \mapsto\left(x^{2}, y^{2}\right)$ (where $p>2$). Then the orbit of $(t, t+1) \in \mathbb{G}_{m}^{2}\left(\mathbb{F}_{p}(t)\right)$ is Zariski dense, but the proof is harder.
Even for such examples, the easiest route would be to use Moosa-Scanlon's F-structure theorem.

Example 5. $\Phi: \mathbb{G}_{m}^{2} \longrightarrow \mathbb{G}_{m}^{2}$ is the group endomorphism given by $(x, y) \mapsto\left(x^{2}, y^{2}\right)$ (where $\left.p>2\right)$. Then the orbit of $(t, t+1) \in \mathbb{G}_{m}^{2}\left(\mathbb{F}_{p}(t)\right)$ is Zariski dense, but the proof is harder.
Even for such examples, the easiest route would be to use Moosa-Scanlon's F-structure theorem. The general Case 1 reduces actually to a special case of Laurent's classical theorem for the unit equation solved in a finitely generated subgroup of $\mathbb{G}_{m}^{k}(\overline{\mathbb{Q}})$:

$$
\begin{equation*}
\lambda^{n}=\sum_{i=1}^{m} c_{i} p^{n_{i}} \tag{4}
\end{equation*}
$$

for some given $m \in \mathbb{N}$ and given constants λ and c_{i}, where λ is not multiplicatively dependent with respect to p.

Example 5. $\Phi: \mathbb{G}_{m}^{2} \longrightarrow \mathbb{G}_{m}^{2}$ is the group endomorphism given by $(x, y) \mapsto\left(x^{2}, y^{2}\right)$ (where $p>2$). Then the orbit of $(t, t+1) \in \mathbb{G}_{m}^{2}\left(\mathbb{F}_{p}(t)\right)$ is Zariski dense, but the proof is harder.
Even for such examples, the easiest route would be to use Moosa-Scanlon's F-structure theorem. The general Case 1 reduces actually to a special case of Laurent's classical theorem for the unit equation solved in a finitely generated subgroup of $\mathbb{G}_{m}^{k}(\overline{\mathbb{Q}})$:

$$
\begin{equation*}
\lambda^{n}=\sum_{i=1}^{m} c_{i} p^{n_{i}} \tag{4}
\end{equation*}
$$

for some given $m \in \mathbb{N}$ and given constants λ and c_{i}, where λ is not multiplicatively dependent with respect to p. Then there exist finitely many $n \in \mathbb{N}_{0}$ for which one could find tuples $\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{N}_{0}^{m}$ satisfying (4).

Example for the unipotent case

Example 6. Consider the self-map $\Phi: \mathbb{G}_{m}^{4} \longrightarrow \mathbb{G}_{m}^{4}$ (defined over a field K of characteristic p) given by

$$
\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} x_{2}, \beta x_{2}, x_{3} x_{4}, \gamma x_{4}\right)
$$

for some given $\beta, \gamma \in K$.

Example for the unipotent case

Example 6. Consider the self-map $\Phi: \mathbb{G}_{m}^{4} \longrightarrow \mathbb{G}_{m}^{4}$ (defined over a field K of characteristic p) given by

$$
\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} x_{2}, \beta x_{2}, x_{3} x_{4}, \gamma x_{4}\right)
$$

for some given $\beta, \gamma \in K$. Then Φ leaves invariant a nonconstant rational function f if and only if β and γ are multiplicatively dependent

Example for the unipotent case

Example 6. Consider the self-map $\Phi: \mathbb{G}_{m}^{4} \longrightarrow \mathbb{G}_{m}^{4}$ (defined over a field K of characteristic p) given by

$$
\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} x_{2}, \beta x_{2}, x_{3} x_{4}, \gamma x_{4}\right)
$$

for some given $\beta, \gamma \in K$. Then Φ leaves invariant a nonconstant rational function f if and only if β and γ are multiplicatively dependent (in which case, the rational function f is simply $x_{2}^{a} \cdot x_{4}^{b}=1$ where the integers a and b satisfy the condition $\left.\beta^{a} \cdot \gamma^{b}=1\right)$.

Example for the unipotent case

Example 6. Consider the self-map $\Phi: \mathbb{G}_{m}^{4} \longrightarrow \mathbb{G}_{m}^{4}$ (defined over a field K of characteristic p) given by

$$
\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} x_{2}, \beta x_{2}, x_{3} x_{4}, \gamma x_{4}\right)
$$

for some given $\beta, \gamma \in K$. Then Φ leaves invariant a nonconstant rational function f if and only if β and γ are multiplicatively dependent (in which case, the rational function f is simply $x_{2}^{a} \cdot x_{4}^{b}=1$ where the integers a and b satisfy the condition $\beta^{a} \cdot \gamma^{b}=1$).
Now, if β and γ are multiplicatively independent, then the orbit of $(1,1,1,1)$ under Φ is Zariski dense in \mathbb{G}_{m}^{4}.

Beyond tori

The same strategy employed in our proof of Theorem 1 (i.e., the case of a field K of transcendence degree at least equal to N) should extend with appropriate modification to the general case when we replace \mathbb{G}_{m}^{N} by a split semiabelian variety G defined over a finite field.

Beyond tori

The same strategy employed in our proof of Theorem 1 (i.e., the case of a field K of transcendence degree at least equal to N) should extend with appropriate modification to the general case when we replace \mathbb{G}_{m}^{N} by a split semiabelian variety G defined over a finite field. However, the variant of Theorem 2 (i.e., the case of a field K of arbitrary transcendence degree) is already quite difficult since the proof of one of the main technical ingredients in our proof of Theorem 2 (i.e., the proof of the so-called Case 1 above) does not extend to the abelian case; even the case of a power of an elliptic curve is quite challenging.

Beyond tori

The same strategy employed in our proof of Theorem 1 (i.e., the case of a field K of transcendence degree at least equal to N) should extend with appropriate modification to the general case when we replace \mathbb{G}_{m}^{N} by a split semiabelian variety G defined over a finite field. However, the variant of Theorem 2 (i.e., the case of a field K of arbitrary transcendence degree) is already quite difficult since the proof of one of the main technical ingredients in our proof of Theorem 2 (i.e., the proof of the so-called Case 1 above) does not extend to the abelian case; even the case of a power of an elliptic curve is quite challenging.
Furthermore, the case of a non-isotrivial abelian variety defined over a function field of positive characteristic will have additional complications since even the structure of the intersection between a subvariety of such an abelian variety with a finitely generated subgroup is significantly more delicate.

Beyond tori

The same strategy employed in our proof of Theorem 1 (i.e., the case of a field K of transcendence degree at least equal to N) should extend with appropriate modification to the general case when we replace \mathbb{G}_{m}^{N} by a split semiabelian variety G defined over a finite field. However, the variant of Theorem 2 (i.e., the case of a field K of arbitrary transcendence degree) is already quite difficult since the proof of one of the main technical ingredients in our proof of Theorem 2 (i.e., the proof of the so-called Case 1 above) does not extend to the abelian case; even the case of a power of an elliptic curve is quite challenging.
Furthermore, the case of a non-isotrivial abelian variety defined over a function field of positive characteristic will have additional complications since even the structure of the intersection between a subvariety of such an abelian variety with a finitely generated subgroup is significantly more delicate.
Finally, the general case in Conjectures 1 and 2 when X is an arbitrary variety is expected to be just as difficult as the general case in the classical Zariski dense conjecture.

