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The Dynamical Mordell-Lang Conjecture

Throughout this talk, we let:

I N0 := N ∪ {0};
I f n denote the n-th iterate of the self-map f on some ambient

space X (with f 0 := idX );

I the orbit of a point x ∈ X under f is denoted by Of (x) and
consists of all f n(x) for all n ∈ N0; and

I an arithmetic progression inside N0 is a set of the form
{an + b}n∈N0 for some given a, b ∈ N0 (so, in the case a = 0,
we allow the arithmetic progression be a singleton).

DML: Given a quasiprojective variety X defined over a field K of
characteristic 0 endowed with an endomorphism Φ, then for any
subvariety V ⊆ X and for any point α ∈ X (K ), the set

{n ∈ N0 : Φn(α) ∈ V (K )}

is a finite union of arithmetic progressions.
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There are several instances when the DML conjecture was proven,
such as the cases when:

I Φ is an unramified endomorphism of a smooth variety;

I Φ is an endomorphism of A2;

I Φ : AN −→ AN is given by the coordinatewise action of
one-variable polynomials, i.e,

(x1, . . . , xN) 7→ (f1(x1), . . . , fN(xN))

and V ⊂ AN is a curve.

The next interesting case, still open for the DML conjecture is the
case of arbitrary endomorphisms Φ of A3.
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The picture in positive characteristic

The exact translation of the DML conjecture in positive
characteristic fails.

For example, consider the case of the affine line V ⊂ A2 given by
the equation x + y = 1 (over Fp(t)) and the automorphism Φ of
A2 given by

Φ(x , y) = (tx , (1− t)y) .

Then the set S of all n ∈ N0 such that Φn(1, 1) ∈ V (Fp(t)) is the
set

{pm : m ∈ N0}

since it reduces to solving the equation

tn + (1− t)n = 1.

One can construct other examples in which the return set S is even
more complicated, as follows.
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Another example

Let p be a prime number, let V ⊂ G2
m be the curve defined over

Fp(t) given by the equation tx + (1− t)y = 1, let Φ : A2 −→ A2

be the endomorphism given by

Φ(x , y) =
(
tp2−1 · x , (1− t)p

2−1 · y
)
, and let α = (1, 1).

Then the return set S of all n ∈ N0 such that Φn(α) ∈ V is{
1

p2 − 1
· p2n − 1

p2 − 1
: n ∈ N0

}
.
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One more example

Let p > 2, let K = Fp(t), let X = A3, let Φ : A3 −→ A3 given by
Φ(x , y , z) = (tx , (1 + t)y , (1− t)z), let V ⊂ A3 be the hyperplane
given by the equation y + z − 2x = 2, and let α = (1, 1, 1).

Then one can show that the return set S of all n ∈ N0 such that
Φn(α) ∈ V is

{pn1 + pn2 : n1, n2 ∈ N0} .

All these examples motivate the following conjecture.
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Dynamical Mordell-Lang Conjecture in positive
characteristic

DML in characteristic p: Given a quasiprojective variety X
defined over a field K of characteristic 0 endowed with an
endomorphism Φ, then for any subvariety V ⊆ X and for any point
α ∈ X (K ), the set

{n ∈ N0 : Φn(α) ∈ V (K )}

is a finite union of arithmetic progressions along with finitely many
sets of the form

m∑
j=1

cjp
kjnj : nj ∈ N0 for each j = 1, . . . m

 , (1)

for some m ∈ N, some cj ∈ Q, and some kj ∈ N0.



Results

Theorem (jointly with Pietro Corvaja, Thomas Scanlon and
Umberto Zannier): Let Φ : GN

m −→ GN
m be a regular self-map

defined over a field K of characteristic p, let α ∈ GN
m(K ) and let

V ⊆ GN
m be a subvariety. Then the Dynamical Mordell-Lang

Conjecture holds in the following two cases:

(1) dim(V ) ≤ 2.

(2) Φ is a group endomorphism and there is no nontrivial
connected algebraic subgroup G ⊆ GN

m such that an iterate of
Φ induces an endomorphism of G that equals a power of the
Frobenius. In other words, if we write the action of Φ as
~x 7→ ~xA for some N-by-N matrix with integer entries, then A
has no eigenvalue which is multiplicatively dependent with
respect to p.
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Strategy

Step 1: A regular self-map Φ : GN
m −→ GN

m is a composition of a
translation with a group endomorphism ~x −→ ~xA (for some
A ∈ MN,N(Z)).

Therefore, for any given starting point
α ∈ GN

m(K ), the entire orbit OΦ(α) is contained in some finitely
generated subgroup Γ ⊂ GN

m(K ).
Step 2: According to the the F -structure theorem of Rahim
Moosa and Thomas Scanlon, the intersection of the subvariety
V ⊆ GN

m with the finitely generated subgroup Γ is a finite union of
F -sets, i.e., sets of the form Si ·Hi , where each Hi is a subgroup of
Γ and each Si is a set of the form

m∏
j=1

γp
kj nj

j : nj ∈ N0

 ,

for some given γj ∈ GN
m(K ) and kj ∈ N0.

Step 3. We are left to determine the set of all n ∈ N0 such that
Φn(α) ∈ S · H, for a given F -set S · H.
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Step 3

This last step is equivalent with some deep classical Diophantine
questions.

Theorem: Let {uk} be a linear recurrence sequence of integers, let
m, c1, . . . , cm ∈ N, and let q be a power of the prime number p
such that

m∑
i=1

ci < q − 1.

Then there exists N ∈ N, there exists an algebraically closed field
K, there exists an algebraic group endomorphism Φ : GN

m −→ GN
m,

there exists α ∈ GN
m(K ) and there exists a subvariety V ⊂ GN

m(K )
such that the set of all n ∈ N0 for which Φn(α) ∈ V (K ) is
precisely the set of all n ∈ N0 such that

un =
m∑

i=1

ciq
ni , (2)

for some n1, . . . , nm ∈ N0.
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un =
∑m

i=1 cip
ni

For example, a special case of this polynomial-exponential equation
is

n2 =
m∑

i=1

pni

which is open when m > 5.

One still expects that the set of
n ∈ N0 satisfying the general polynomial-exponential equation

un =
m∑

i=1

cip
ni

is a finite union of arithmetic progressions along with finitely many
sets of the form ∑̀

j=1

djp
kjnj : nj ∈ N0


but when m > 2, the case of a general linear recurrence sequence
{un} is open.
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∑m

i=1 cip
ni

So, in order to prove the DML in characteristic p, we needed to
employ the aforementioned technical hypotheses which guarantee
that

either

(1) m ≤ 2 (this is the case when the dimension of the subvariety
V ⊆ GN

m is at most 2);or

(2) no characteristic root of the linear recurrence sequence {un} is
multiplicatively dependent with respect to p (this is the case
when Φ is a group endomorphism corresponding to a matrix
A ∈ MN,N(Z) whose eigenvalues are not multiplicatively
dependent with respect to p).
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Beyond tori

For a regular self-map Φ on an isotrivial semiabelian variety G , the
strategy works identically, only that this time we obtain that the
problem is equivalent with solving even more general
polynomial-exponential equations of the form:

un =
m∑

i=1

ciλ
ni
i ,

where {un} is a linear recurrence sequence and the λi ’s are the
eigenvalues of the Frobenius endomorphism of G .

At the opposite spectrum, if G were an abelian variety defined over
an algebraically closed field K which has trivial trace over Fp, then
actually the DML problem in characteristic p is identical in
methods and solution to the classical DML problem for abelian
varieties (and in this case, the return set is simply a finite union of
arithmetic progressions).
For arbitrary semiabelian varieties, and more general, for arbitrary
ambient varieties, the DML problem in characteristic p is expected
to be at least as difficult as the classical DML conjecture.
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The Zariski dense orbit conjecture

Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana):
Let X be a quasiprojective variety defined over an algebraically
closed field K of characteristic 0 endowed with a dominant rational
self-map Φ. Then the folowing dichotomy holds:

(A) there exists a point α ∈ X (K ) whose orbit OΦ(α) is
well-defined and also Zariski dense in X ;or

(B) there exists a nonconstant rational function f : X 99K P1 such
that f ◦ Φ = f .

The result is known in general when K is uncountable, but when K
is countable, the conclusion was proven only in a handful of cases.
The difficulty lies in the fact that if condition (B) does not hold,
then one can prove that outside a countable union

⋃
i Yi of proper

subvarieties of X , each point would have a well-defined Zariski
dense orbit; however, if K is countable, one needs to show that⋃

i Yi (K ) is a proper subset of X (K ).
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There are several instances when the conjecture is known to hold:

I Φ : AN −→ AN is given by the coordinatewise action of
one-variable polynomials

(x1, . . . , xN) 7→ (f1(x1), . . . , fN(xN)).

I Φ is a regular self-map of a semiabelian variety.

I Φ is a group endomorphism of a commutative linear algebraic
group.

I Φ is an endomorphism of a projective surface.

The next interesting open case is the case of arbitrary
endomorphisms Φ of A3.
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Useful reductions

(i) It suffices to prove the result after replacing Φ by any suitable
iterate of it.

(ii) It suffices to prove the result after replacing Φ by a conjugate
of it Ψ−1 ◦ Φ ◦Ψ, where Ψ is an automorphism of X .

(iii) Generally, the strategy in all known instances when the Zariski
dense conjecture was proven is to assume that condition (B)
does not hold (i.e., that Φ does not leave invariant a
non-constant rational function) and then use the arithmetic of
the ambient variety X combined with various information on
the map Φ to prove the existence of a Zariski dense orbit.
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The picture in positive characteristic

If X is any variety defined over Fp, then there exists no
non-constant rational function f : X 99K P1 invariant under the
Frobenius endomorphism F : X −→ X (corresponding to the field
automorphism x 7→ xp);

however, unless trdegFp
K ≥ dim(X ),

there is no point in X (K ) with a Zariski dense orbit in X (each
orbit of a point α ∈ X (K ) lives in a subvariety Y ⊆ X defined over
Fp of dimension dim(Y ) = trdegFp

L, where L is the minimal field
extension of Fp for which α ∈ X (L)).
This motivates the following conjecture.
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Conjecture 1: Let X be a quasiprojective variety defined over an
algebraically closed field K of characteristic p and let Φ : X 99K X
be a dominant rational self-map defined over K as well. Assume
trdegFp

K ≥ dim(X ). Then either there exists α ∈ X (K ) whose
orbit under Φ is well-defined and Zariski dense in X , or there exists
a non-constant rational function f : X 99K X such that f ◦ Φ = f .

Theorem (jointly with Sina Saleh): The above Conjecture 1
holds for regular self-maps Φ : GN

m −→ GN
m.

Once again, the Frobenius endomorphism complicates the
arithmetic dynamics question; we expect this is the only
obstruction from obtaining the aforementioned dichotomy for the
Zariski dense orbit conjecture.
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Conjecture 2: Let K be an algebraically closed field of positive
transcendence degree over Fp, let X be a quasiprojective variety
defined over K, and let Φ : X 99K X be a dominant rational
self-map defined over K as well.

Then one of the following three
conditions must hold:

(A) There exists α ∈ X (K ) whose orbit OΦ(α) is Zariski dense in
X .

(B) There exists a non-constant rational function f : X 99K P1

such that f ◦ Φ = f .

(C) There exists a positive integer m, there exist subvarieties
Y ⊆ Z ⊆ X and there exists a birational automorphism τ of
Z with the following properties:

(1) Y is defined over a finite field Fq and dim(Y ) ≥ 2;
(2) Z is invariant under Φm, i.e., ϕ := Φm|Z is a rational self-map

on Z;and
(3)

(
τ−1 ◦ ϕ ◦ τ

)
restricted to Y induces the Frobenius

endomorphism F of Y , which corresponds to the field
automorphism x 7→ xq.
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Conjecture 2 holds for regular self-maps of tori, in which case the
following more precise statement can be proven.

Theorem (jointly with Sina Saleh): Let K be an algebraically
closed field of characteristic p such that trdegFp

K ≥ 1. Let

Φ : GN
m −→ GN

m be a dominant regular self-map defined over K.
Then at least one of the following statements must hold.

(A) There exists α ∈ GN
m(K ) whose orbit under Φ is Zariski dense

in GN
m.

(B) There exists a non-constant rational function f : GN
m 99K P1

such that f ◦ Φ = f .

(C) There exist positive integers m and r , a connected algebraic
subgroup Y of GN

m of dimension at least equal to 2 and a
translation map τy : GN

m −→ GN
m corresponding to a point

y ∈ GN
m(K ) such that(

τ−1
y ◦ Φm ◦ τy

)
|Y = (F r ) |Y , (3)

where F is the usual Frobenius endomorphism of GN
m induced

by the field automorphism x 7→ xp.
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Condition (C)

In case of regular self-maps Φ : GN
m −→ GN

m, condition (C) can be
rephrased more simply as follows.

We write Φ as a composition of
a translation with an algebraic group endomorphism

~x 7→ ~xA

for some N-by-N matrix A with integer entries.Then condition (C)
is equivalent with asking that there exist two distinct Jordan blocks
for the Jordan canonical form of A with the property that their
corresponding eigenvalues λ1 and λ2 have the property that there
exist `,m ∈ N such that

λ`
1 = λ`

2 = pm.

The next examples of regular self-maps Φ on G3
m defined over

K := Fp(t) will show the various instances of conditions (A)-(C)
from our result.
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Example 1. Φ(x1, x2, x3) = (β1x1, β2x2, β3x3) for some given
β1, β2, β3 ∈ K .

Then Φ has a Zariski dense orbit (i.e.,
condition (A) is met) if and only if β1, β2, β3 are multiplicatively
independent; otherwise there is a nonconstant invariant rational
function f (i.e., condition (B) is met). In this case, condition (C)
is never met.
Example 2. Φ(x1, x2, x3) = (xp

1 , xp
2 , xk

3 ) for some given integer
k > 1. In this case, condition (C) is met and neither
conditions (A) or (B) are met. For any starting point
α := (α1, α2, α3) ∈ G3

m(K ), the orbit OΦ(α) is contained in
C ×Gm where C ⊂ G2

m is a plane curve defined over Fp

containing the point (α1, α2).

Example 3. Φ(x1, x2, x3) =
(
xp
1 , xp2

2 , xp3

3

)
satisfies condition (A)

always, i.e., there exists a Zariski dense orbit.
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General strategy

For both theorems (either when trdegFp
K ≥ N or not), we have a

similar approach.

There are two extreme cases for our regular
self-map Φ of GN

m in which cases we prove that our theorems hold
and then we show how the general case can be induced from these
two special cases by proving that a suitable iterate of Φ composed
with a suitable translation on GN

m decomposes as a direct product
of the following two limit cases.
Case 1. Φ : GN

m −→ GN
m is a dominant group endomorphism

~x 7→ ~xA for a matrix A ∈ MN,N(Z) whose eigenvalues are not roots
of unity.
Case 2. Φ : GN

m −→ GN
m is a composition of a translation with a

unipotent group endomorphism.
For both Cases, an important tool used is the F -structure theorem
of Moosa-Scanlon, but there are several other arguments needed.
Also, our proof of Case 2 works for an arbitrary function field
K/Fp, while the proof of Case 1 is significantly more delicate when
trdegFp

K = 1 (which is not surprising since Condition (C) appears
in Case 1 only).
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Examples for Case 1

Example 4. Φ : G2
m −→ G2

m is the group endomorphism given by

(x , y) 7→
(
xp, yp2

)
.

Then the orbit of α := (t, t) ∈ G2
m(Fp(t)) is

Zariski dense since the height of second coordinate in Φn(α) grows
much faster than the height of the first coordinate.
A similar argument works each time when the eigenvalues of the
matrix A corresponding to the group endomorphism Φ (in arbitrary
dimensions) has eigenvalues whose quotients do not have absolute
value equal to 1.
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Example 5. Φ : G2
m −→ G2

m is the group endomorphism given by
(x , y) 7→ (x2, y2) (where p > 2).

Then the orbit of
(t, t + 1) ∈ G2

m(Fp(t)) is Zariski dense, but the proof is harder.
Even for such examples, the easiest route would be to use
Moosa-Scanlon’s F -structure theorem. The general Case 1 reduces
actually to a special case of Laurent’s classical theorem for the unit
equation solved in a finitely generated subgroup of Gk

m(Q̄):

λn =
m∑

i=1

cip
ni , (4)

for some given m ∈ N and given constants λ and ci , where λ is not
multiplicatively dependent with respect to p. Then there exist
finitely many n ∈ N0 for which one could find tuples
(n1, . . . , nm) ∈ Nm

0 satisfying (4).
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Example for the unipotent case

Example 6. Consider the self-map Φ : G4
m −→ G4

m (defined over a
field K of characteristic p) given by

Φ(x1, x2, x3, x4) = (x1x2, βx2, x3x4, γx4)

for some given β, γ ∈ K .

Then Φ leaves invariant a nonconstant
rational function f if and only if β and γ are multiplicatively
dependent (in which case, the rational function f is simply
xa
2 · xb

4 = 1 where the integers a and b satisfy the condition
βa · γb = 1).
Now, if β and γ are multiplicatively independent, then the orbit of
(1, 1, 1, 1) under Φ is Zariski dense in G4

m.
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Beyond tori

The same strategy employed in our proof of Theorem 1 (i.e., the
case of a field K of transcendence degree at least equal to N)
should extend with appropriate modification to the general case
when we replace GN

m by a split semiabelian variety G defined over
a finite field.

However, the variant of Theorem 2 (i.e., the case of a
field K of arbitrary transcendence degree) is already quite difficult
since the proof of one of the main technical ingredients in our
proof of Theorem 2 (i.e., the proof of the so-called Case 1 above)
does not extend to the abelian case; even the case of a power of an
elliptic curve is quite challenging.
Furthermore, the case of a non-isotrivial abelian variety defined
over a function field of positive characteristic will have additional
complications since even the structure of the intersection between
a subvariety of such an abelian variety with a finitely generated
subgroup is significantly more delicate.
Finally, the general case in Conjectures 1 and 2 when X is an
arbitrary variety is expected to be just as difficult as the general
case in the classical Zariski dense conjecture.
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