A couple of conjectures in arithmetic dynamics over fields of positive characteristic

Dragos Ghioca

University of British Columbia

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Throughout this talk, we let:

- $\blacktriangleright \mathbb{N}_0 := \mathbb{N} \cup \{0\};$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Throughout this talk, we let:

- $\blacktriangleright \mathbb{N}_0 := \mathbb{N} \cup \{0\};$
- the orbit of a point x ∈ X under f is denoted by O<sub>f</sub>(x) and consists of all f<sup>n</sup>(x) for all n ∈ N<sub>0</sub>;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Throughout this talk, we let:

- $\blacktriangleright \mathbb{N}_0 := \mathbb{N} \cup \{0\};$
- b the orbit of a point x ∈ X under f is denoted by O<sub>f</sub>(x) and consists of all f<sup>n</sup>(x) for all n ∈ N<sub>0</sub>; and
- an arithmetic progression inside N<sub>0</sub> is a set of the form
   {an + b}<sub>n∈N<sub>0</sub></sub> for some given a, b ∈ N<sub>0</sub> (so, in the case a = 0,
   we allow the arithmetic progression be a singleton).

(日) (同) (三) (三) (三) (○) (○)

Throughout this talk, we let:

- $\blacktriangleright \mathbb{N}_0 := \mathbb{N} \cup \{0\};$
- b the orbit of a point x ∈ X under f is denoted by O<sub>f</sub>(x) and consists of all f<sup>n</sup>(x) for all n ∈ N<sub>0</sub>; and
- an arithmetic progression inside N<sub>0</sub> is a set of the form
   {an + b}<sub>n∈N<sub>0</sub></sub> for some given a, b ∈ N<sub>0</sub> (so, in the case a = 0,
   we allow the arithmetic progression be a singleton).

**DML:** Given a quasiprojective variety X defined over a field K of characteristic 0 endowed with an endomorphism  $\Phi$ , then for any subvariety  $V \subseteq X$  and for any point  $\alpha \in X(K)$ , the set

 $\{n \in \mathbb{N}_0 \colon \Phi^n(\alpha) \in V(K)\}$ 

is a finite union of arithmetic progressions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Φ is an unramified endomorphism of a smooth variety;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

- Φ is an unramified endomorphism of a smooth variety;
- $\Phi$  is an endomorphism of  $\mathbb{A}^2$ ;

- Φ is an unramified endomorphism of a smooth variety;
- $\Phi$  is an endomorphism of  $\mathbb{A}^2$ ;
- Φ : A<sup>N</sup> → A<sup>N</sup> is given by the coordinatewise action of one-variable polynomials, i.e,

$$(x_1,\ldots,x_N)\mapsto (f_1(x_1),\ldots,f_N(x_N))$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and  $V \subset \mathbb{A}^N$  is a curve.

- Φ is an unramified endomorphism of a smooth variety;
- $\Phi$  is an endomorphism of  $\mathbb{A}^2$ ;
- Φ : A<sup>N</sup> → A<sup>N</sup> is given by the coordinatewise action of one-variable polynomials, i.e,

$$(x_1,\ldots,x_N)\mapsto (f_1(x_1),\ldots,f_N(x_N))$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and  $V \subset \mathbb{A}^N$  is a curve.

The next interesting case, still open for the DML conjecture is the case of arbitrary endomorphisms  $\Phi$  of  $\mathbb{A}^3$ .

The exact translation of the **DML** conjecture in positive characteristic *fails*.

The exact translation of the **DML** conjecture in positive characteristic *fails*.

For example, consider the case of the affine line  $V \subset \mathbb{A}^2$  given by the equation x + y = 1 (over  $\mathbb{F}_p(t)$ ) and the automorphism  $\Phi$  of  $\mathbb{A}^2$  given by

$$\Phi(x,y)=(tx,(1-t)y).$$

The exact translation of the **DML** conjecture in positive characteristic *fails*.

For example, consider the case of the affine line  $V \subset \mathbb{A}^2$  given by the equation x + y = 1 (over  $\mathbb{F}_p(t)$ ) and the automorphism  $\Phi$  of  $\mathbb{A}^2$  given by

$$\Phi(x,y)=(tx,(1-t)y).$$

Then the set S of all  $n \in \mathbb{N}_0$  such that  $\Phi^n(1,1) \in V(\mathbb{F}_p(t))$  is the set

$$\{p^m \colon m \in \mathbb{N}_0\}$$

since it reduces to solving the equation

$$t^n + (1-t)^n = 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The exact translation of the **DML** conjecture in positive characteristic *fails*.

For example, consider the case of the affine line  $V \subset \mathbb{A}^2$  given by the equation x + y = 1 (over  $\mathbb{F}_p(t)$ ) and the automorphism  $\Phi$  of  $\mathbb{A}^2$  given by

$$\Phi(x,y)=(tx,(1-t)y).$$

Then the set S of all  $n \in \mathbb{N}_0$  such that  $\Phi^n(1,1) \in V(\mathbb{F}_p(t))$  is the set

$$\{p^m \colon m \in \mathbb{N}_0\}$$

since it reduces to solving the equation

$$t^n + (1-t)^n = 1.$$

One can construct other examples in which the return set S is even more complicated, as follows.

#### Another example

Let *p* be a prime number, let  $V \subset \mathbb{G}_m^2$  be the curve defined over  $\mathbb{F}_p(t)$  given by the equation tx + (1 - t)y = 1, let  $\Phi : \mathbb{A}^2 \longrightarrow \mathbb{A}^2$  be the endomorphism given by  $\Phi(x, y) = \left(t^{p^2-1} \cdot x, (1 - t)^{p^2-1} \cdot y\right)$ , and let  $\alpha = (1, 1)$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Another example

Let *p* be a prime number, let  $V \subset \mathbb{G}_m^2$  be the curve defined over  $\mathbb{F}_p(t)$  given by the equation tx + (1 - t)y = 1, let  $\Phi : \mathbb{A}^2 \longrightarrow \mathbb{A}^2$  be the endomorphism given by  $\Phi(x, y) = \left(t^{p^2-1} \cdot x, (1 - t)^{p^2-1} \cdot y\right)$ , and let  $\alpha = (1, 1)$ . Then the return set *S* of all  $n \in \mathbb{N}_0$  such that  $\Phi^n(\alpha) \in V$  is

$$\left\{rac{1}{p^2-1}\cdot p^{2n}-rac{1}{p^2-1}\colon n\in\mathbb{N}_0
ight\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### One more example

Let p > 2, let  $K = \mathbb{F}_p(t)$ , let  $X = \mathbb{A}^3$ , let  $\Phi : \mathbb{A}^3 \longrightarrow \mathbb{A}^3$  given by  $\Phi(x, y, z) = (tx, (1 + t)y, (1 - t)z)$ , let  $V \subset \mathbb{A}^3$  be the hyperplane given by the equation y + z - 2x = 2, and let  $\alpha = (1, 1, 1)$ .

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

#### One more example

Let p > 2, let  $K = \mathbb{F}_p(t)$ , let  $X = \mathbb{A}^3$ , let  $\Phi : \mathbb{A}^3 \longrightarrow \mathbb{A}^3$  given by  $\Phi(x, y, z) = (tx, (1 + t)y, (1 - t)z)$ , let  $V \subset \mathbb{A}^3$  be the hyperplane given by the equation y + z - 2x = 2, and let  $\alpha = (1, 1, 1)$ . Then one can show that the return set S of all  $n \in \mathbb{N}_0$  such that  $\Phi^n(\alpha) \in V$  is

$$\{p^{n_1}+p^{n_2}: n_1, n_2 \in \mathbb{N}_0\}.$$

#### One more example

Let p > 2, let  $K = \mathbb{F}_p(t)$ , let  $X = \mathbb{A}^3$ , let  $\Phi : \mathbb{A}^3 \longrightarrow \mathbb{A}^3$  given by  $\Phi(x, y, z) = (tx, (1 + t)y, (1 - t)z)$ , let  $V \subset \mathbb{A}^3$  be the hyperplane given by the equation y + z - 2x = 2, and let  $\alpha = (1, 1, 1)$ . Then one can show that the return set S of all  $n \in \mathbb{N}_0$  such that  $\Phi^n(\alpha) \in V$  is

$$\{p''_1 + p''_2 : n_1, n_2 \in \mathbb{N}_0\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

All these examples motivate the following conjecture.

# Dynamical Mordell-Lang Conjecture in positive characteristic

**DML in characteristic** p: Given a quasiprojective variety X defined over a field K of characteristic 0 endowed with an endomorphism  $\Phi$ , then for any subvariety  $V \subseteq X$  and for any point  $\alpha \in X(K)$ , the set

$$\{n \in \mathbb{N}_0 \colon \Phi^n(\alpha) \in V(K)\}$$

is a finite union of arithmetic progressions along with finitely many sets of the form

$$\left\{\sum_{j=1}^m c_j p^{k_j n_j} : n_j \in \mathbb{N}_0 \text{ for each } j = 1, \dots m\right\},$$
 (1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for some  $m \in \mathbb{N}$ , some  $c_j \in \mathbb{Q}$ , and some  $k_j \in \mathbb{N}_0$ .

Theorem (jointly with Pietro Corvaja, Thomas Scanlon and Umberto Zannier): Let  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  be a regular self-map defined over a field K of characteristic p, let  $\alpha \in \mathbb{G}_m^N(K)$  and let  $V \subseteq \mathbb{G}_m^N$  be a subvariety. Then the Dynamical Mordell-Lang Conjecture holds in the following two cases:

Theorem (jointly with Pietro Corvaja, Thomas Scanlon and Umberto Zannier): Let  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  be a regular self-map defined over a field K of characteristic p, let  $\alpha \in \mathbb{G}_m^N(K)$  and let  $V \subseteq \mathbb{G}_m^N$  be a subvariety. Then the Dynamical Mordell-Lang Conjecture holds in the following two cases:

(1)  $\dim(V) \le 2$ .

**Theorem (jointly with Pietro Corvaja, Thomas Scanlon and Umberto Zannier)**: Let  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  be a regular self-map defined over a field K of characteristic p, let  $\alpha \in \mathbb{G}_m^N(K)$  and let  $V \subseteq \mathbb{G}_m^N$  be a subvariety. Then the Dynamical Mordell-Lang Conjecture holds in the following two cases:

(1) dim $(V) \leq 2$ .

(2)  $\Phi$  is a group endomorphism and there is no nontrivial connected algebraic subgroup  $G \subseteq \mathbb{G}_m^N$  such that an iterate of  $\Phi$  induces an endomorphism of G that equals a power of the Frobenius.

Theorem (jointly with Pietro Corvaja, Thomas Scanlon and Umberto Zannier): Let  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  be a regular self-map defined over a field K of characteristic p, let  $\alpha \in \mathbb{G}_m^N(K)$  and let  $V \subseteq \mathbb{G}_m^N$  be a subvariety. Then the Dynamical Mordell-Lang Conjecture holds in the following two cases:

(1) dim $(V) \leq 2$ .

(2) Φ is a group endomorphism and there is no nontrivial connected algebraic subgroup G ⊆ 𝔅<sup>N</sup><sub>m</sub> such that an iterate of Φ induces an endomorphism of G that equals a power of the Frobenius. In other words, if we write the action of Φ as x̄ ↦ x̄<sup>A</sup> for some N-by-N matrix with integer entries, then A has no eigenvalue which is multiplicatively dependent with respect to p.

**Step 1**: A regular self-map  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a composition of a translation with a group endomorphism  $\vec{x} \longrightarrow \vec{x}^A$  (for some  $A \in M_{N,N}(\mathbb{Z})$ ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

**Step 1**: A regular self-map  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a composition of a translation with a group endomorphism  $\vec{x} \longrightarrow \vec{x}^A$  (for some  $A \in M_{N,N}(\mathbb{Z})$ ). Therefore, for any given starting point  $\alpha \in \mathbb{G}_m^N(K)$ , the entire orbit  $\mathcal{O}_{\Phi}(\alpha)$  is contained in some finitely generated subgroup  $\Gamma \subset \mathbb{G}_m^N(K)$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Step 1**: A regular self-map  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a composition of a translation with a group endomorphism  $\vec{x} \longrightarrow \vec{x}^A$  (for some  $A \in M_{N,N}(\mathbb{Z})$ ). Therefore, for any given starting point  $\alpha \in \mathbb{G}_m^N(K)$ , the entire orbit  $\mathcal{O}_{\Phi}(\alpha)$  is contained in some finitely generated subgroup  $\Gamma \subset \mathbb{G}_m^N(K)$ . **Step 2**: According to the the *F*-structure theorem of Rahim Moosa and Thomas Scanlon, the intersection of the subvariety

 $V\subseteq \mathbb{G}_m^N$  with the finitely generated subgroup  $\Gamma$  is a finite union of F-sets

**Step 1**: A regular self-map  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a composition of a translation with a group endomorphism  $\vec{x} \longrightarrow \vec{x}^A$  (for some  $A \in M_{N,N}(\mathbb{Z})$ ). Therefore, for any given starting point  $\alpha \in \mathbb{G}_m^N(K)$ , the entire orbit  $\mathcal{O}_{\Phi}(\alpha)$  is contained in some finitely generated subgroup  $\Gamma \subset \mathbb{G}_m^N(K)$ .

**Step 2**: According to the the *F*-structure theorem of Rahim Moosa and Thomas Scanlon, the intersection of the subvariety  $V \subseteq \mathbb{G}_m^N$  with the finitely generated subgroup  $\Gamma$  is a finite union of *F*-sets, i.e., sets of the form  $S_i \cdot H_i$ , where each  $H_i$  is a subgroup of  $\Gamma$  and each  $S_i$  is a set of the form

$$\left\{\prod_{j=1}^m \gamma_j^{p^{k_j n_j}} \colon n_j \in \mathbb{N}_0\right\},\,$$

for some given  $\gamma_j \in \mathbb{G}_m^N(\overline{K})$  and  $k_j \in \mathbb{N}_0$ .

**Step 1**: A regular self-map  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a composition of a translation with a group endomorphism  $\vec{x} \longrightarrow \vec{x}^A$  (for some  $A \in M_{N,N}(\mathbb{Z})$ ). Therefore, for any given starting point  $\alpha \in \mathbb{G}_m^N(K)$ , the entire orbit  $\mathcal{O}_{\Phi}(\alpha)$  is contained in some finitely generated subgroup  $\Gamma \subset \mathbb{G}_m^N(K)$ .

**Step 2**: According to the the *F*-structure theorem of Rahim Moosa and Thomas Scanlon, the intersection of the subvariety  $V \subseteq \mathbb{G}_m^N$  with the finitely generated subgroup  $\Gamma$  is a finite union of *F*-sets, i.e., sets of the form  $S_i \cdot H_i$ , where each  $H_i$  is a subgroup of  $\Gamma$  and each  $S_i$  is a set of the form

$$\left\{\prod_{j=1}^m \gamma_j^{p^{k_j n_j}} \colon n_j \in \mathbb{N}_0\right\},\,$$

for some given  $\gamma_j \in \mathbb{G}_m^N(\overline{K})$  and  $k_j \in \mathbb{N}_0$ . **Step 3.** We are left to determine the set of all  $n \in \mathbb{N}_0$  such that  $\Phi^n(\alpha) \in S \cdot H$ , for a given *F*-set  $S \cdot H$ .

This last step is **equivalent** with some deep classical Diophantine questions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

This last step is **equivalent** with some deep classical Diophantine questions.

**Theorem**: Let  $\{u_k\}$  be a linear recurrence sequence of integers, let  $m, c_1, \ldots, c_m \in \mathbb{N}$ , and let q be a power of the prime number p such that

$$\sum_{i=1}^m c_i < q-1.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

This last step is **equivalent** with some deep classical Diophantine questions.

**Theorem**: Let  $\{u_k\}$  be a linear recurrence sequence of integers, let  $m, c_1, \ldots, c_m \in \mathbb{N}$ , and let q be a power of the prime number p such that

$$\sum_{i=1}^m c_i < q-1.$$

Then there exists  $N \in \mathbb{N}$ , there exists an algebraically closed field K, there exists an algebraic group endomorphism  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$ , there exists  $\alpha \in \mathbb{G}_m^N(K)$  and there exists a subvariety  $V \subset \mathbb{G}_m^N(K)$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This last step is **equivalent** with some deep classical Diophantine questions.

**Theorem**: Let  $\{u_k\}$  be a linear recurrence sequence of integers, let  $m, c_1, \ldots, c_m \in \mathbb{N}$ , and let q be a power of the prime number p such that

$$\sum_{i=1}^m c_i < q-1.$$

Then there exists  $N \in \mathbb{N}$ , there exists an algebraically closed field K, there exists an algebraic group endomorphism  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$ , there exists  $\alpha \in \mathbb{G}_m^N(K)$  and there exists a subvariety  $V \subset \mathbb{G}_m^N(K)$  such that the set of all  $n \in \mathbb{N}_0$  for which  $\Phi^n(\alpha) \in V(K)$  is precisely the set of all  $n \in \mathbb{N}_0$  such that

$$u_n = \sum_{i=1}^m c_i q^{n_i}, \qquad (2)$$

for some  $n_1, \ldots, n_m \in \mathbb{N}_0$ .

$$u_n = \sum_{i=1}^m c_i p^{n_i}$$

For example, a special case of this polynomial-exponential equation is

$$n^2 = \sum_{i=1}^m p^{n_i}$$

which is open when m > 5.



$$u_n = \sum_{i=1}^m c_i p^{n_i}$$

For example, a special case of this polynomial-exponential equation is

$$n^2 = \sum_{i=1}^m p^{n_i}$$

which is open when m > 5. One still expects that the set of  $n \in \mathbb{N}_0$  satisfying the general polynomial-exponential equation

$$u_n = \sum_{i=1}^m c_i p^{n_i}$$

is a finite union of arithmetic progressions along with finitely many sets of the form

$$\left\{\sum_{j=1}^\ell d_j p^{k_j n_j} \colon n_j \in \mathbb{N}_0
ight\}$$

but when m > 2, the case of a general linear recurrence sequence  $\{u_n\}$  is open.

$$u_n = \sum_{i=1}^m c_i p^{n_i}$$

So, in order to prove the DML in characteristic p, we needed to employ the aforementioned technical hypotheses which guarantee that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

$$u_n = \sum_{i=1}^m c_i p^{n_i}$$

So, in order to prove the DML in characteristic p, we needed to employ the aforementioned technical hypotheses which guarantee that either

(1)  $m \leq 2$  (this is the case when the dimension of the subvariety  $V \subseteq \mathbb{G}_m^N$  is at most 2);

 $u_n = \sum_{i=1}^m c_i p^{n_i}$ 

So, in order to prove the DML in characteristic p, we needed to employ the aforementioned technical hypotheses which guarantee that either

- (1)  $m \le 2$  (this is the case when the dimension of the subvariety  $V \subseteq \mathbb{G}_m^N$  is at most 2);or
- (2) no characteristic root of the linear recurrence sequence  $\{u_n\}$  is multiplicatively dependent with respect to p (this is the case when  $\Phi$  is a group endomorphism corresponding to a matrix  $A \in M_{N,N}(\mathbb{Z})$  whose eigenvalues are not multiplicatively dependent with respect to p).

# Beyond tori

For a regular self-map  $\Phi$  on an isotrivial semiabelian variety G, the strategy works identically, only that this time we obtain that the problem is equivalent with solving even more general polynomial-exponential equations of the form:

$$u_n=\sum_{i=1}^m c_i\lambda_i^{n_i},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where  $\{u_n\}$  is a linear recurrence sequence and the  $\lambda_i$ 's are the eigenvalues of the Frobenius endomorphism of G.

## Beyond tori

For a regular self-map  $\Phi$  on an isotrivial semiabelian variety G, the strategy works identically, only that this time we obtain that the problem is equivalent with solving even more general polynomial-exponential equations of the form:

$$u_n=\sum_{i=1}^m c_i\lambda_i^{n_i},$$

where  $\{u_n\}$  is a linear recurrence sequence and the  $\lambda_i$ 's are the eigenvalues of the Frobenius endomorphism of G.

At the opposite spectrum, if G were an abelian variety defined over an algebraically closed field K which has trivial trace over  $\overline{\mathbb{F}}_p$ , then actually the DML problem in characteristic p is identical in methods and solution to the classical DML problem for abelian varieties (and in this case, the return set is simply a finite union of arithmetic progressions).

# Beyond tori

For a regular self-map  $\Phi$  on an isotrivial semiabelian variety G, the strategy works identically, only that this time we obtain that the problem is equivalent with solving even more general polynomial-exponential equations of the form:

$$u_n=\sum_{i=1}^m c_i\lambda_i^{n_i},$$

where  $\{u_n\}$  is a linear recurrence sequence and the  $\lambda_i$ 's are the eigenvalues of the Frobenius endomorphism of G.

At the opposite spectrum, if G were an abelian variety defined over an algebraically closed field K which has trivial trace over  $\overline{\mathbb{F}_p}$ , then actually the DML problem in characteristic p is identical in methods and solution to the classical DML problem for abelian varieties (and in this case, the return set is simply a finite union of arithmetic progressions).

For arbitrary semiabelian varieties, and more general, for arbitrary ambient varieties, the DML problem in characteristic p is expected to be at least as difficult as the classical DML conjecture.

#### Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana):

Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map  $\Phi$ . Then the following dichotomy holds:

**Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana)**: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map  $\Phi$ . Then the following dichotomy holds:

(A) there exists a point  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is well-defined and also Zariski dense in X;

**Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana)**: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map  $\Phi$ . Then the following dichotomy holds:

- (A) there exists a point  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is well-defined and also Zariski dense in X;or
- (B) there exists a nonconstant rational function  $f : X \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .

**Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana)**: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map  $\Phi$ . Then the following dichotomy holds:

- (A) there exists a point  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is well-defined and also Zariski dense in X;or
- (B) there exists a nonconstant rational function  $f : X \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .

The result is known in general when K is uncountable, but when K is countable, the conclusion was proven only in a handful of cases.

**Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana)**: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map  $\Phi$ . Then the following dichotomy holds:

- (A) there exists a point  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is well-defined and also Zariski dense in X;or
- (B) there exists a nonconstant rational function  $f : X \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .

The result is known in general when K is uncountable, but when K is countable, the conclusion was proven only in a handful of cases. The difficulty lies in the fact that if condition (B) does not hold, then one can prove that outside a countable union  $\bigcup_i Y_i$  of proper subvarieties of X, each point would have a well-defined Zariski dense orbit;

**Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana)**: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic 0 endowed with a dominant rational self-map  $\Phi$ . Then the following dichotomy holds:

- (A) there exists a point  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is well-defined and also Zariski dense in X;or
- (B) there exists a nonconstant rational function  $f : X \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .

The result is known in general when K is uncountable, but when K is countable, the conclusion was proven only in a handful of cases. The difficulty lies in the fact that if condition (B) does not hold, then one can prove that outside a countable union  $\bigcup_i Y_i$  of proper subvarieties of X, each point would have a well-defined Zariski dense orbit; however, if K is countable, one needs to show that  $\bigcup_i Y_i(K)$  is a proper subset of X(K).

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

There are several instances when the conjecture is known to hold:
 Φ : A<sup>N</sup> → A<sup>N</sup> is given by the coordinatewise action of one-variable polynomials

$$(x_1,\ldots,x_N)\mapsto (f_1(x_1),\ldots,f_N(x_N)).$$

• Φ : A<sup>N</sup> → A<sup>N</sup> is given by the coordinatewise action of one-variable polynomials

$$(x_1,\ldots,x_N)\mapsto (f_1(x_1),\ldots,f_N(x_N)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•  $\Phi$  is a regular self-map of a semiabelian variety.

• Φ : A<sup>N</sup> → A<sup>N</sup> is given by the coordinatewise action of one-variable polynomials

$$(x_1,\ldots,x_N)\mapsto (f_1(x_1),\ldots,f_N(x_N)).$$

- Φ is a regular self-map of a semiabelian variety.
- Φ is a group endomorphism of a commutative linear algebraic group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Φ : A<sup>N</sup> → A<sup>N</sup> is given by the coordinatewise action of one-variable polynomials

$$(x_1,\ldots,x_N)\mapsto (f_1(x_1),\ldots,f_N(x_N)).$$

- Φ is a regular self-map of a semiabelian variety.
- Φ is a group endomorphism of a commutative linear algebraic group.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $\Phi$  is an endomorphism of a projective surface.
- The next interesting open case is the case of arbitrary endomorphisms  $\Phi$  of  $\mathbb{A}^3.$

# Useful reductions

(i) It suffices to prove the result after replacing  $\Phi$  by any suitable iterate of it.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

# Useful reductions

- (i) It suffices to prove the result after replacing  $\Phi$  by any suitable iterate of it.
- (ii) It suffices to prove the result after replacing  $\Phi$  by a conjugate of it  $\Psi^{-1} \circ \Phi \circ \Psi$ , where  $\Psi$  is an automorphism of X.

・ロト・日本・モート モー うへで

## Useful reductions

- (i) It suffices to prove the result after replacing Φ by any suitable iterate of it.
- (ii) It suffices to prove the result after replacing Φ by a conjugate of it Ψ<sup>-1</sup> ◦ Φ ◦ Ψ, where Ψ is an automorphism of X.
- (iii) Generally, the strategy in all known instances when the Zariski dense conjecture was proven is to assume that condition (B) does not hold (i.e., that  $\Phi$  does not leave invariant a non-constant rational function) and then use the arithmetic of the ambient variety X combined with various information on the map  $\Phi$  to prove the existence of a Zariski dense orbit.

(日) (同) (三) (三) (三) (○) (○)

## The picture in positive characteristic

If X is any variety defined over  $\mathbb{F}_p$ , then there exists no non-constant rational function  $f : X \longrightarrow \mathbb{P}^1$  invariant under the Frobenius endomorphism  $F : X \longrightarrow X$  (corresponding to the field automorphism  $x \mapsto x^p$ );

### The picture in positive characteristic

If X is any variety defined over  $\mathbb{F}_p$ , then there exists no non-constant rational function  $f: X \to \mathbb{P}^1$  invariant under the Frobenius endomorphism  $F: X \longrightarrow X$  (corresponding to the field automorphism  $x \mapsto x^p$ ); however, unless  $\operatorname{trdeg}_{\mathbb{F}_p} K \ge \dim(X)$ , there is no point in X(K) with a Zariski dense orbit in X (each orbit of a point  $\alpha \in X(K)$  lives in a subvariety  $Y \subseteq X$  defined over  $\mathbb{F}_p$  of dimension  $\dim(Y) = \operatorname{trdeg}_{\mathbb{F}_p} L$ , where L is the minimal field extension of  $\mathbb{F}_p$  for which  $\alpha \in X(L)$ ).

### The picture in positive characteristic

If X is any variety defined over  $\mathbb{F}_p$ , then there exists no non-constant rational function  $f: X \dashrightarrow \mathbb{P}^1$  invariant under the Frobenius endomorphism  $F: X \longrightarrow X$  (corresponding to the field automorphism  $x \mapsto x^p$ ); however, unless  $\operatorname{trdeg}_{\mathbb{F}_p} K \ge \dim(X)$ , there is no point in X(K) with a Zariski dense orbit in X (each orbit of a point  $\alpha \in X(K)$  lives in a subvariety  $Y \subseteq X$  defined over  $\mathbb{F}_p$  of dimension  $\dim(Y) = \operatorname{trdeg}_{\mathbb{F}_p} L$ , where L is the minimal field extension of  $\mathbb{F}_p$  for which  $\alpha \in X(L)$ ). This motivates the following conjecture.

**Conjecture 1**: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic p and let  $\Phi : X \dashrightarrow X$  be a dominant rational self-map defined over K as well. Assume  $\operatorname{trdeg}_{\mathbb{F}_p} K \ge \dim(X)$ . Then either there exists  $\alpha \in X(K)$  whose orbit under  $\Phi$  is well-defined and Zariski dense in X, or there exists a non-constant rational function  $f : X \dashrightarrow X$  such that  $f \circ \Phi = f$ .

(日) (同) (三) (三) (三) (○) (○)

**Conjecture 1**: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic p and let  $\Phi : X \dashrightarrow X$  be a dominant rational self-map defined over K as well. Assume  $\operatorname{trdeg}_{\mathbb{F}_p} K \ge \dim(X)$ . Then either there exists  $\alpha \in X(K)$  whose orbit under  $\Phi$  is well-defined and Zariski dense in X, or there exists a non-constant rational function  $f : X \dashrightarrow X$  such that  $f \circ \Phi = f$ . **Theorem (jointly with Sina Saleh)**: The above Conjecture 1 holds for regular self-maps  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$ .

(日) (同) (三) (三) (三) (○) (○)

**Conjecture 1**: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic p and let  $\Phi : X \dashrightarrow X$  be a dominant rational self-map defined over K as well. Assume trdeg<sub> $\mathbb{F}_p$ </sub>  $K \ge \dim(X)$ . Then either there exists  $\alpha \in X(K)$  whose orbit under  $\Phi$  is well-defined and Zariski dense in X, or there exists a non-constant rational function  $f : X \dashrightarrow X$  such that  $f \circ \Phi = f$ . **Theorem (jointly with Sina Saleh)**: The above Conjecture 1 holds for regular self-maps  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$ . Once again, the Frobenius endomorphism complicates the arithmetic dynamics question;

**Conjecture 1**: Let X be a quasiprojective variety defined over an algebraically closed field K of characteristic p and let  $\Phi: X \rightarrow X$ be a dominant rational self-map defined over K as well. Assume trdeg<sub> $\mathbb{F}_n$ </sub>  $K \geq \dim(X)$ . Then either there exists  $\alpha \in X(K)$  whose orbit under  $\Phi$  is well-defined and Zariski dense in X, or there exists a non-constant rational function  $f: X \dashrightarrow X$  such that  $f \circ \Phi = f$ . **Theorem (jointly with Sina Saleh)**: The above Conjecture 1 holds for regular self-maps  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$ . Once again, the Frobenius endomorphism complicates the arithmetic dynamics question; we expect this is the only obstruction from obtaining the aforementioned dichotomy for the Zariski dense orbit conjecture.

**Conjecture 2**: Let K be an algebraically closed field of positive transcendence degree over  $\overline{\mathbb{F}}_p$ , let X be a quasiprojective variety defined over K, and let  $\Phi : X \to X$  be a dominant rational self-map defined over K as well.

(A) There exists  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is Zariski dense in X.

(A) There exists  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is Zariski dense in X.

(B) There exists a non-constant rational function  $f : X \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .

- (A) There exists  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is Zariski dense in X.
- (B) There exists a non-constant rational function  $f : X \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .
- (C) There exists a positive integer m, there exist subvarieties  $Y \subseteq Z \subseteq X$  and there exists a birational automorphism  $\tau$  of Z with the following properties:

- (A) There exists  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is Zariski dense in X.
- (B) There exists a non-constant rational function  $f : X \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .
- (C) There exists a positive integer m, there exist subvarieties  $Y \subseteq Z \subseteq X$  and there exists a birational automorphism  $\tau$  of Z with the following properties:

(1) Y is defined over a finite field  $\mathbb{F}_q$  and dim $(Y) \ge 2$ ;

- (A) There exists  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is Zariski dense in X.
- (B) There exists a non-constant rational function  $f : X \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .
- (C) There exists a positive integer m, there exist subvarieties  $Y \subseteq Z \subseteq X$  and there exists a birational automorphism  $\tau$  of Z with the following properties:
  - (1) *Y* is defined over a finite field  $\mathbb{F}_q$  and dim(*Y*)  $\geq 2$ ;
  - Z is invariant under Φ<sup>m</sup>, i.e., φ := Φ<sup>m</sup>|<sub>Z</sub> is a rational self-map on Z;

- (A) There exists  $\alpha \in X(K)$  whose orbit  $\mathcal{O}_{\Phi}(\alpha)$  is Zariski dense in X.
- (B) There exists a non-constant rational function  $f : X \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .
- (C) There exists a positive integer m, there exist subvarieties  $Y \subseteq Z \subseteq X$  and there exists a birational automorphism  $\tau$  of Z with the following properties:
  - (1) *Y* is defined over a finite field  $\mathbb{F}_q$  and dim(*Y*)  $\geq 2$ ;
  - (2) Z is invariant under Φ<sup>m</sup>, i.e., φ := Φ<sup>m</sup>|<sub>Z</sub> is a rational self-map on Z;and
  - (3)  $(\tau^{-1} \circ \varphi \circ \tau)$  restricted to Y induces the Frobenius endomorphism F of Y, which corresponds to the field automorphism  $x \mapsto x^q$ .

Conjecture 2 holds for regular self-maps of tori, in which case the following more precise statement can be proven.

(ロト・日本)・モン・モン・モー のへの

Conjecture 2 holds for regular self-maps of tori, in which case the following more precise statement can be proven.

**Theorem (jointly with Sina Saleh)**: Let K be an algebraically closed field of characteristic p such that  $\operatorname{trdeg}_{\mathbb{F}_p} K \ge 1$ . Let  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  be a dominant regular self-map defined over K. Then at least one of the following statements must hold.

Conjecture 2 holds for regular self-maps of tori, in which case the following more precise statement can be proven.

**Theorem (jointly with Sina Saleh)**: Let K be an algebraically closed field of characteristic p such that  $\operatorname{trdeg}_{\mathbb{F}_p} K \ge 1$ . Let  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  be a dominant regular self-map defined over K.

Then at least one of the following statements must hold.

(A) There exists  $\alpha \in \mathbb{G}_m^N(K)$  whose orbit under  $\Phi$  is Zariski dense in  $\mathbb{G}_m^N$ .

Conjecture 2 holds for regular self-maps of tori, in which case the following more precise statement can be proven.

**Theorem (jointly with Sina Saleh)**: Let K be an algebraically closed field of characteristic p such that  $\operatorname{trdeg}_{\mathbb{F}_p} K \ge 1$ . Let  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  be a dominant regular self-map defined over K. Then at least one of the following statements must hold.

- (A) There exists  $\alpha \in \mathbb{G}_m^N(K)$  whose orbit under  $\Phi$  is Zariski dense in  $\mathbb{G}_m^N$ .
- (B) There exists a non-constant rational function  $f : \mathbb{G}_m^N \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .

Conjecture 2 holds for regular self-maps of tori, in which case the following more precise statement can be proven.

**Theorem (jointly with Sina Saleh)**: Let K be an algebraically closed field of characteristic p such that  $\operatorname{trdeg}_{\mathbb{F}_p} K \ge 1$ . Let  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  be a dominant regular self-map defined over K. Then at least one of the following statements must hold.

- (A) There exists  $\alpha \in \mathbb{C}^{N}(K)$  where orbit under  $\Phi$  is Zariski da
- (A) There exists  $\alpha \in \mathbb{G}_m^N(K)$  whose orbit under  $\Phi$  is Zariski dense in  $\mathbb{G}_m^N$ .
- (B) There exists a non-constant rational function  $f : \mathbb{G}_m^N \dashrightarrow \mathbb{P}^1$  such that  $f \circ \Phi = f$ .
- (C) There exist positive integers m and r, a connected algebraic subgroup Y of  $\mathbb{G}_m^N$  of dimension at least equal to 2 and a translation map  $\tau_y : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  corresponding to a point  $y \in \mathbb{G}_m^N(K)$  such that

$$\left(\tau_{y}^{-1}\circ\Phi^{m}\circ\tau_{y}\right)|_{Y}=\left(F^{r}\right)|_{Y},$$
(3)

where F is the usual Frobenius endomorphism of  $\mathbb{G}_m^N$  induced by the field automorphism  $x \mapsto x^p$ .

In case of regular self-maps  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$ , condition (C) can be rephrased more simply as follows.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In case of regular self-maps  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$ , condition (C) can be rephrased more simply as follows. We write  $\Phi$  as a composition of a translation with an algebraic group endomorphism

$$\vec{x} \mapsto \vec{x}^{\mathcal{A}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for some N-by-N matrix A with integer entries.

In case of regular self-maps  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$ , condition (C) can be rephrased more simply as follows. We write  $\Phi$  as a composition of a translation with an algebraic group endomorphism

$$\vec{x} \mapsto \vec{x}^A$$

for some *N*-by-*N* matrix *A* with integer entries. Then condition (C) is equivalent with asking that there exist two distinct Jordan blocks for the Jordan canonical form of *A* with the property that their corresponding eigenvalues  $\lambda_1$  and  $\lambda_2$  have the property that there exist  $\ell, m \in \mathbb{N}$  such that

$$\lambda_1^\ell = \lambda_2^\ell = p^m.$$

In case of regular self-maps  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$ , condition (C) can be rephrased more simply as follows. We write  $\Phi$  as a composition of a translation with an algebraic group endomorphism

$$\vec{x} \mapsto \vec{x}^A$$

for some *N*-by-*N* matrix *A* with integer entries. Then condition (C) is equivalent with asking that there exist two distinct Jordan blocks for the Jordan canonical form of *A* with the property that their corresponding eigenvalues  $\lambda_1$  and  $\lambda_2$  have the property that there exist  $\ell, m \in \mathbb{N}$  such that

$$\lambda_1^\ell = \lambda_2^\ell = p^m.$$

The next examples of regular self-maps  $\Phi$  on  $\mathbb{G}_m^3$  defined over  $\mathcal{K} := \mathbb{F}_p(t)$  will show the various instances of conditions (A)-(C) from our result.

# **Example 1.** $\Phi(x_1, x_2, x_3) = (\beta_1 x_1, \beta_2 x_2, \beta_3 x_3)$ for some given $\beta_1, \beta_2, \beta_3 \in K$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

**Example 1.**  $\Phi(x_1, x_2, x_3) = (\beta_1 x_1, \beta_2 x_2, \beta_3 x_3)$  for some given  $\beta_1, \beta_2, \beta_3 \in K$ . Then  $\Phi$  has a Zariski dense orbit (i.e., condition (A) is met) if and only if  $\beta_1, \beta_2, \beta_3$  are multiplicatively independent;

**Example 2.**  $\Phi(x_1, x_2, x_3) = (x_1^p, x_2^p, x_3^k)$  for some given integer k > 1.

**Example 2.**  $\Phi(x_1, x_2, x_3) = (x_1^p, x_2^p, x_3^k)$  for some given integer k > 1. In this case, condition (C) is met and neither conditions (A) or (B) are met.

(日) (同) (三) (三) (三) (○) (○)

**Example 2.**  $\Phi(x_1, x_2, x_3) = (x_1^p, x_2^p, x_3^k)$  for some given integer k > 1. In this case, condition (C) is met and neither conditions (A) or (B) are met. For any starting point  $\alpha := (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{G}_m^3(K)$ , the orbit  $\mathcal{O}_{\Phi}(\alpha)$  is contained in  $C \times \mathbb{G}_m$  where  $C \subset \mathbb{G}_m^2$  is a plane curve defined over  $\mathbb{F}_p$  containing the point  $(\alpha_1, \alpha_2)$ .

**Example 2.**  $\Phi(x_1, x_2, x_3) = (x_1^p, x_2^p, x_3^k)$  for some given integer k > 1. In this case, condition (C) is met and neither conditions (A) or (B) are met. For any starting point  $\alpha := (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{G}_m^3(K)$ , the orbit  $\mathcal{O}_{\Phi}(\alpha)$  is contained in  $C \times \mathbb{G}_m$  where  $C \subset \mathbb{G}_m^2$  is a plane curve defined over  $\mathbb{F}_p$  containing the point  $(\alpha_1, \alpha_2)$ .

Example 3. 
$$\Phi(x_1, x_2, x_3) = \left(x_1^p, x_2^{p^2}, x_3^{p^3}\right)$$

**Example 2.**  $\Phi(x_1, x_2, x_3) = (x_1^p, x_2^p, x_3^k)$  for some given integer k > 1. In this case, condition (C) is met and neither conditions (A) or (B) are met. For any starting point  $\alpha := (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{G}_m^3(K)$ , the orbit  $\mathcal{O}_{\Phi}(\alpha)$  is contained in  $C \times \mathbb{G}_m$  where  $C \subset \mathbb{G}_m^2$  is a plane curve defined over  $\mathbb{F}_p$  containing the point  $(\alpha_1, \alpha_2)$ .

**Example 3.**  $\Phi(x_1, x_2, x_3) = (x_1^p, x_2^{p^2}, x_3^{p^3})$  satisfies condition (A) always, i.e., there exists a Zariski dense orbit.

For both theorems (either when  $\operatorname{trdeg}_{\mathbb{F}_p} K \ge N$  or not), we have a similar approach.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

For both theorems (either when  $\operatorname{trdeg}_{\mathbb{F}_p} K \geq N$  or not), we have a similar approach. There are two extreme cases for our regular self-map  $\Phi$  of  $\mathbb{G}_m^N$  in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of  $\Phi$  composed with a suitable translation on  $\mathbb{G}_m^N$  decomposes as a direct product of the following two limit cases.

For both theorems (either when  $\operatorname{trdeg}_{\mathbb{F}_p} K \geq N$  or not), we have a similar approach. There are two extreme cases for our regular self-map  $\Phi$  of  $\mathbb{G}_m^N$  in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of  $\Phi$  composed with a suitable translation on  $\mathbb{G}_m^N$  decomposes as a direct product of the following two limit cases.

**Case 1.**  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a dominant group endomorphism  $\vec{x} \mapsto \vec{x}^A$  for a matrix  $A \in M_{N,N}(\mathbb{Z})$  whose eigenvalues are not roots of unity.

For both theorems (either when  $\operatorname{trdeg}_{\mathbb{F}_p} K \geq N$  or not), we have a similar approach. There are two extreme cases for our regular self-map  $\Phi$  of  $\mathbb{G}_m^N$  in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of  $\Phi$  composed with a suitable translation on  $\mathbb{G}_m^N$  decomposes as a direct product of the following two limit cases.

**Case 1.**  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a dominant group endomorphism  $\vec{x} \mapsto \vec{x}^A$  for a matrix  $A \in M_{N,N}(\mathbb{Z})$  whose eigenvalues are not roots of unity.

**Case 2.**  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a composition of a translation with a unipotent group endomorphism.

For both theorems (either when  $\operatorname{trdeg}_{\mathbb{F}_p} K \geq N$  or not), we have a similar approach. There are two extreme cases for our regular self-map  $\Phi$  of  $\mathbb{G}_m^N$  in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of  $\Phi$  composed with a suitable translation on  $\mathbb{G}_m^N$  decomposes as a direct product of the following two limit cases.

**Case 1.**  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a dominant group endomorphism  $\vec{x} \mapsto \vec{x}^A$  for a matrix  $A \in M_{N,N}(\mathbb{Z})$  whose eigenvalues are not roots of unity.

**Case 2.**  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a composition of a translation with a unipotent group endomorphism.

For both Cases, an important tool used is the *F*-structure theorem of Moosa-Scanlon, but there are several other arguments needed.

For both theorems (either when  $\operatorname{trdeg}_{\mathbb{F}_p} K \geq N$  or not), we have a similar approach. There are two extreme cases for our regular self-map  $\Phi$  of  $\mathbb{G}_m^N$  in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of  $\Phi$  composed with a suitable translation on  $\mathbb{G}_m^N$  decomposes as a direct product of the following two limit cases.

**Case 1.**  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a dominant group endomorphism  $\vec{x} \mapsto \vec{x}^A$  for a matrix  $A \in M_{N,N}(\mathbb{Z})$  whose eigenvalues are not roots of unity.

**Case 2.**  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a composition of a translation with a unipotent group endomorphism.

For both Cases, an important tool used is the *F*-structure theorem of Moosa-Scanlon, but there are several other arguments needed. Also, our proof of Case 2 works for an arbitrary function field  $K/\mathbb{F}_p$ , while the proof of Case 1 is significantly more delicate when trdeg<sub> $\mathbb{F}_p$ </sub> K = 1

For both theorems (either when  $\operatorname{trdeg}_{\mathbb{F}_p} K \geq N$  or not), we have a similar approach. There are two extreme cases for our regular self-map  $\Phi$  of  $\mathbb{G}_m^N$  in which cases we prove that our theorems hold and then we show how the general case can be induced from these two special cases by proving that a suitable iterate of  $\Phi$  composed with a suitable translation on  $\mathbb{G}_m^N$  decomposes as a direct product of the following two limit cases.

**Case 1.**  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a dominant group endomorphism  $\vec{x} \mapsto \vec{x}^A$  for a matrix  $A \in M_{N,N}(\mathbb{Z})$  whose eigenvalues are not roots of unity.

**Case 2.**  $\Phi : \mathbb{G}_m^N \longrightarrow \mathbb{G}_m^N$  is a composition of a translation with a unipotent group endomorphism.

For both Cases, an important tool used is the *F*-structure theorem of Moosa-Scanlon, but there are several other arguments needed. Also, our proof of Case 2 works for an arbitrary function field  $K/\mathbb{F}_p$ , while the proof of Case 1 is significantly more delicate when trdeg<sub> $\mathbb{F}_p$ </sub> K = 1 (which is not surprising since Condition (C) appears in Case 1 only).

#### Examples for Case 1

**Example 4.**  $\Phi : \mathbb{G}_m^2 \longrightarrow \mathbb{G}_m^2$  is the group endomorphism given by  $(x, y) \mapsto (x^p, y^{p^2}).$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Examples for Case 1

**Example 4.**  $\Phi : \mathbb{G}_m^2 \longrightarrow \mathbb{G}_m^2$  is the group endomorphism given by  $(x, y) \mapsto (x^p, y^{p^2})$ . Then the orbit of  $\alpha := (t, t) \in \mathbb{G}_m^2(\mathbb{F}_p(t))$  is Zariski dense since the height of second coordinate in  $\Phi^n(\alpha)$  grows much faster than the height of the first coordinate.

#### Examples for Case 1

**Example 4.**  $\Phi: \mathbb{G}_m^2 \longrightarrow \mathbb{G}_m^2$  is the group endomorphism given by  $(x, y) \mapsto (x^p, y^{p^2})$ . Then the orbit of  $\alpha := (t, t) \in \mathbb{G}_m^2(\mathbb{F}_p(t))$  is Zariski dense since the height of second coordinate in  $\Phi^n(\alpha)$  grows much faster than the height of the first coordinate. A similar argument works each time when the eigenvalues of the matrix A corresponding to the group endomorphism  $\Phi$  (in arbitrary dimensions) has eigenvalues whose quotients do not have absolute value equal to 1.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

**Example 5.**  $\Phi : \mathbb{G}_m^2 \longrightarrow \mathbb{G}_m^2$  is the group endomorphism given by  $(x, y) \mapsto (x^2, y^2)$  (where p > 2).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

**Example 5.**  $\Phi : \mathbb{G}_m^2 \longrightarrow \mathbb{G}_m^2$  is the group endomorphism given by  $(x, y) \mapsto (x^2, y^2)$  (where p > 2). Then the orbit of  $(t, t+1) \in \mathbb{G}_m^2(\mathbb{F}_p(t))$  is Zariski dense, but the proof is harder.

**Example 5.**  $\Phi : \mathbb{G}_m^2 \longrightarrow \mathbb{G}_m^2$  is the group endomorphism given by  $(x, y) \mapsto (x^2, y^2)$  (where p > 2). Then the orbit of  $(t, t+1) \in \mathbb{G}_m^2(\mathbb{F}_p(t))$  is Zariski dense, but the proof is harder. Even for such examples, the easiest route would be to use Moosa-Scanlon's *F*-structure theorem.

(日) (同) (三) (三) (三) (○) (○)

**Example 5.**  $\Phi: \mathbb{G}_m^2 \longrightarrow \mathbb{G}_m^2$  is the group endomorphism given by  $(x, y) \mapsto (x^2, y^2)$  (where p > 2). Then the orbit of  $(t, t+1) \in \mathbb{G}_m^2(\mathbb{F}_p(t))$  is Zariski dense, but the proof is harder. Even for such examples, the easiest route would be to use Moosa-Scanlon's *F*-structure theorem. The general Case 1 reduces actually to a special case of Laurent's classical theorem for the unit equation solved in a finitely generated subgroup of  $\mathbb{G}_m^k(\overline{\mathbb{Q}})$ :

$$\lambda^n = \sum_{i=1}^m c_i p^{n_i},\tag{4}$$

(日) (同) (三) (三) (三) (○) (○)

for some given  $m \in \mathbb{N}$  and given constants  $\lambda$  and  $c_i$ , where  $\lambda$  is not multiplicatively dependent with respect to p.

**Example 5.**  $\Phi: \mathbb{G}_m^2 \longrightarrow \mathbb{G}_m^2$  is the group endomorphism given by  $(x, y) \mapsto (x^2, y^2)$  (where p > 2). Then the orbit of  $(t, t+1) \in \mathbb{G}_m^2(\mathbb{F}_p(t))$  is Zariski dense, but the proof is harder. Even for such examples, the easiest route would be to use Moosa-Scanlon's *F*-structure theorem. The general Case 1 reduces actually to a special case of Laurent's classical theorem for the unit equation solved in a finitely generated subgroup of  $\mathbb{G}_m^k(\overline{\mathbb{Q}})$ :

$$\lambda^n = \sum_{i=1}^m c_i p^{n_i},\tag{4}$$

(日) (同) (三) (三) (三) (○) (○)

for some given  $m \in \mathbb{N}$  and given constants  $\lambda$  and  $c_i$ , where  $\lambda$  is not multiplicatively dependent with respect to p. Then there exist finitely many  $n \in \mathbb{N}_0$  for which one could find tuples  $(n_1, \ldots, n_m) \in \mathbb{N}_0^m$  satisfying (4).

**Example 6.** Consider the self-map  $\Phi : \mathbb{G}_m^4 \longrightarrow \mathbb{G}_m^4$  (defined over a field *K* of characteristic *p*) given by

$$\Phi(x_1, x_2, x_3, x_4) = (x_1 x_2, \beta x_2, x_3 x_4, \gamma x_4)$$

for some given  $\beta, \gamma \in K$ .

**Example 6.** Consider the self-map  $\Phi : \mathbb{G}_m^4 \longrightarrow \mathbb{G}_m^4$  (defined over a field *K* of characteristic *p*) given by

$$\Phi(x_1, x_2, x_3, x_4) = (x_1 x_2, \beta x_2, x_3 x_4, \gamma x_4)$$

for some given  $\beta, \gamma \in K$ . Then  $\Phi$  leaves invariant a nonconstant rational function f if and only if  $\beta$  and  $\gamma$  are multiplicatively dependent

**Example 6.** Consider the self-map  $\Phi : \mathbb{G}_m^4 \longrightarrow \mathbb{G}_m^4$  (defined over a field *K* of characteristic *p*) given by

$$\Phi(x_1, x_2, x_3, x_4) = (x_1 x_2, \beta x_2, x_3 x_4, \gamma x_4)$$

for some given  $\beta, \gamma \in K$ . Then  $\Phi$  leaves invariant a nonconstant rational function f if and only if  $\beta$  and  $\gamma$  are multiplicatively dependent (in which case, the rational function f is simply  $x_2^a \cdot x_4^b = 1$  where the integers a and b satisfy the condition  $\beta^a \cdot \gamma^b = 1$ ).

**Example 6.** Consider the self-map  $\Phi : \mathbb{G}_m^4 \longrightarrow \mathbb{G}_m^4$  (defined over a field *K* of characteristic *p*) given by

$$\Phi(x_1, x_2, x_3, x_4) = (x_1 x_2, \beta x_2, x_3 x_4, \gamma x_4)$$

for some given  $\beta, \gamma \in K$ . Then  $\Phi$  leaves invariant a nonconstant rational function f if and only if  $\beta$  and  $\gamma$  are multiplicatively dependent (in which case, the rational function f is simply  $x_2^a \cdot x_4^b = 1$  where the integers a and b satisfy the condition  $\beta^a \cdot \gamma^b = 1$ ). Now, if  $\beta$  and  $\gamma$  are multiplicatively independent, then the orbit of (1, 1, 1, 1) under  $\Phi$  is Zariski dense in  $\mathbb{G}_m^4$ .

The same strategy employed in our proof of Theorem 1 (i.e., the case of a field K of transcendence degree at least equal to N) should extend with appropriate modification to the general case when we replace  $\mathbb{G}_m^N$  by a split semiabelian variety G defined over a finite field.

The same strategy employed in our proof of Theorem 1 (i.e., the case of a field K of transcendence degree at least equal to N) should extend with appropriate modification to the general case when we replace  $\mathbb{G}_m^N$  by a split semiabelian variety G defined over a finite field. However, the variant of Theorem 2 (i.e., the case of a field K of arbitrary transcendence degree) is already quite difficult since the proof of one of the main technical ingredients in our proof of Theorem 2 (i.e., the proof of the so-called Case 1 above) does not extend to the abelian case; even the case of a power of an elliptic curve is quite challenging.

The same strategy employed in our proof of Theorem 1 (i.e., the case of a field K of transcendence degree at least equal to N) should extend with appropriate modification to the general case when we replace  $\mathbb{G}_m^N$  by a split semiabelian variety G defined over a finite field. However, the variant of Theorem 2 (i.e., the case of a field K of arbitrary transcendence degree) is already quite difficult since the proof of one of the main technical ingredients in our proof of Theorem 2 (i.e., the proof of the so-called Case 1 above) does not extend to the abelian case; even the case of a power of an elliptic curve is quite challenging.

Furthermore, the case of a non-isotrivial abelian variety defined over a function field of positive characteristic will have additional complications since even the structure of the intersection between a subvariety of such an abelian variety with a finitely generated subgroup is significantly more delicate.

The same strategy employed in our proof of Theorem 1 (i.e., the case of a field K of transcendence degree at least equal to N) should extend with appropriate modification to the general case when we replace  $\mathbb{G}_m^N$  by a split semiabelian variety G defined over a finite field. However, the variant of Theorem 2 (i.e., the case of a field K of arbitrary transcendence degree) is already quite difficult since the proof of one of the main technical ingredients in our proof of Theorem 2 (i.e., the proof of the so-called Case 1 above) does not extend to the abelian case; even the case of a power of an elliptic curve is quite challenging.

Furthermore, the case of a non-isotrivial abelian variety defined over a function field of positive characteristic will have additional complications since even the structure of the intersection between a subvariety of such an abelian variety with a finitely generated subgroup is significantly more delicate.

Finally, the general case in Conjectures 1 and 2 when X is an arbitrary variety is expected to be just as difficult as the general case in the classical Zariski dense conjecture.