Equivariant currents and heights on the boundary of the ample cone of a K3 surface

Simion Filip, University of Chicago
joint with Valentino Tosatti

Setup

Setup

K3 surfaces

X algebraic surface with nowhere vanishing 2-form Ω
$N=\operatorname{NS}(X) \quad$ Néron - Severi group
$\rho=\mathrm{rk} N$

Setup

K3 surfaces

X algebraic surface with nowhere vanishing 2-form Ω
$N=\operatorname{NS}(X) \quad$ Néron - Severi group
$\rho=\mathrm{rk} N$
Standing assumptions (simplifying):
$\rho \geq 3$
$\operatorname{Aut}(X) \rightarrow \mathrm{SO}(N) \simeq \mathrm{SO}_{1 . \rho-1}(\mathbb{R})$ gives a lattice
Singular fibers of elliptic fibrations are reduced and irreducible

Example

Example

K3 surface

$$
X:\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)-5 x y z=1 \text { in } \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Example

K3 surface

$$
X:\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)-5 x y z=1 \text { in } \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

$$
\operatorname{NS}(X) \quad\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right] \quad \rho=3
$$

Example

K3 surface

$$
\begin{aligned}
& X:\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)-5 x y z=1 \text { in } \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \\
& \mathrm{NS}(X) \quad\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right] \quad \rho=3 \\
& \sigma_{x}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{5 y z}{\left(1+y^{2}\right)\left(1+z^{2}\right)}-x \\
y \\
z
\end{array}\right] \text { and similarly } \sigma_{y}, \sigma_{z}
\end{aligned}
$$

Example

K3 surface

$$
\begin{aligned}
& X:\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)-5 x y z=1 \text { in } \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \\
& \mathrm{NS}(X) \quad\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right] \quad \rho=3 \\
& \sigma_{x}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{5 y z}{\left(1+y^{2}\right)\left(1+z^{2}\right)}-x \\
y \\
z
\end{array}\right] \text { and similarly } \sigma_{y}, \sigma_{z}
\end{aligned}
$$

Ample Cone

$\partial \operatorname{Amp}(X) \leftarrow \partial^{\circ} \operatorname{Amp}_{c}(X)$ (TBE)

Main Theorems

Main Theorems

Theorem C $\exists!\eta: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{Z}_{1,1}^{p o s}(X)$

Main Theorems

Theorem C $\exists!\eta: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{X}_{1,1}^{p o s}(X)$

- equivariant
- continuous (in weak topology of currents)
- currents have continuous potentials

Main Theorems

Theorem C $\exists!\eta: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{X}_{1,1}^{p o s}(X)$

- equivariant
- continuous (in weak topology of currents)
- currents have continuous potentials

Theorem H $\exists!h^{\text {can }}: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{H} \operatorname{eights}(X)$

Main Theorems

Theorem C $\exists!\eta: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{Z}_{1,1}^{p o s}(X)$

- equivariant
- continuous (in weak topology of currents)
- currents have continuous potentials

Theorem H $\exists!h^{\text {can }}: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{H} \operatorname{eights}(X)$

- equivariant
- agrees with Silverman's canonical height for classes expanded by hyperbolic automorphisms
- $\forall p \in X(\overline{\mathbb{Q}})$ the function $h_{\alpha}^{c a n}(p)$ is continuous in α

Projection of region where $h_{\alpha}^{\text {can }}(p)=1$

Elliptic fibrations

Assume: singular fibers are reduced and irreducible

Elliptic fibrations

$X \xrightarrow{\pi} B$ fibers of genus 1, everything over base number field k with $[k: \mathbb{Q}]<\infty$.
Theorem (Silverman, Tate):

Elliptic fibrations

$X \xrightarrow{\pi} B$ fibers of genus 1 , everything over base number field k with $[k: \mathbb{Q}]<\infty$.
Theorem (Silverman, Tate):

$$
\begin{aligned}
& \sigma_{0}, \sigma_{1}: B \rightarrow X \text { sections } \\
& \quad b \mapsto h_{X_{b}, \sigma_{0}(b)}^{c a n}\left(\sigma_{1}(b)\right) \in \mathbb{R}_{\geq 0}
\end{aligned}
$$

is a height function in class $\sigma_{0}^{*} \mathcal{O}\left(\sigma_{1}(B)-\sigma_{0}(B)\right)$

Elliptic fibrations

Assume: singular fibers are reduced and irreducible
$X \xrightarrow{\pi} B$ fibers of genus 1 , everything over base number field k with $[k: \mathbb{Q}]<\infty$.
Theorem (Silverman, Tate):

$$
\begin{aligned}
& \sigma_{0}, \sigma_{1}: B \rightarrow X \text { sections } \\
& \quad b \mapsto h_{X_{b}, \sigma_{0}(b)}^{c a n}\left(\sigma_{1}(b)\right) \in \mathbb{R}_{\geq 0}
\end{aligned}
$$

is a height function in class $\sigma_{0}^{*} \mathcal{O}\left(\sigma_{1}(B)-\sigma_{0}(B)\right)$
Variant (forget sections):
$\operatorname{Aut}_{\pi}(X) \times \operatorname{Pic}_{\pi}^{r e l}(X) \rightarrow \mathscr{H}$ eights $(B) \rightarrow \operatorname{Pic}(B)$

Preferred Heights

Preferred Heights

Useful Lemma (F.-Tosatti):

L^{0} line bundle of π-relative degree 0 on X.
There exists height $h_{L^{0}}^{p f}$ on X s.t.
$\left.\forall b \quad h_{L^{0}}\right|_{X_{b}}$ is affine for the group law on $X_{b}(\overline{\mathbb{Q}})$

Preferred Heights

Useful Lemma (F.-Tosatti):

L^{0} line bundle of π-relative degree 0 on X.
There exists height $h_{L^{0}}^{p f}$ on X s.t.
$\left.\forall b \quad h_{L^{0}}\right|_{X_{b}}$ is affine for the group law on $X_{b}(\overline{\mathbb{Q}})$

Archimedean variant (F.-Tosatti): cf. Betti form
Smooth closed ω on X s.t. $\int_{X_{b}} \omega=0$
There exists continuous ϕ s.t. $\omega+\left.d d^{c} \phi\right|_{X_{b}} \equiv 0$

Proofs are pedestrian (head-on).
Can we do better? Yes and No.

Proofs are pedestrian (head-on).
Can we do better? Yes and No. Why no?

What is $\partial^{\circ} \operatorname{Amp}_{c}(X) ?$

Proofs are pedestrian (head-on).
Can we do better? Yes and No.
Why no?

What is $\partial^{\circ} \operatorname{Amp}_{c}(X) ?$
Blow up $\partial \operatorname{Amp}(X)$ at the rational rays.
i.e. add in $\mathbb{P}\left(\left[X_{b}\right]^{\perp} /\left[X_{b}\right]\right)$
$h_{\alpha}^{c a n}$ is Silverman's variations of canonical height on these sets

Suspended Space

Suspended Space

$N=\mathrm{NS}(X) \quad$ Néron - Severi group
$G=\operatorname{SO}(N) \quad \Gamma=\operatorname{Aut}(X)$

$$
\mathscr{X}=\Gamma \backslash(G \times X) \rightarrow \Gamma \backslash G=: \mathbb{Q}
$$

Suspended Space

$N=\operatorname{NS}(X) \quad$ Néron - Severi group
$G=\operatorname{SO}(N) \quad \Gamma=\operatorname{Aut}(X)$

$$
\mathscr{X}=\Gamma \backslash(G \times X) \rightarrow \Gamma \backslash G=: \mathbb{Q}
$$

Many theorems can be stated using \mathcal{X}, but awkward because of $\partial^{\circ} \operatorname{Amp}_{c}(X)$

Suspended Space

$N=\operatorname{NS}(X) \quad$ Néron-Severi group
$G=\operatorname{SO}(N) \quad \Gamma=\operatorname{Aut}(X)$

$$
\mathscr{X}=\Gamma \backslash(G \times X) \rightarrow \Gamma \backslash G=: \mathscr{Q}
$$

Many theorems can be stated using \mathcal{X}, but awkward because of $\partial^{\circ} \operatorname{Amp}_{c}(X)$
G-dynamics on $\mathscr{X} \Leftrightarrow \Gamma$-dynamics on $X \quad$ (Cantat, L. Wang)

Suspended Space

$N=\operatorname{NS}(X) \quad$ Néron-Severi group
$G=\operatorname{SO}(N) \quad \Gamma=\operatorname{Aut}(X)$

$$
\mathscr{X}=\Gamma \backslash(G \times X) \rightarrow \Gamma \backslash G=: \mathbb{Q}
$$

Many theorems can be stated using \mathcal{X}, but awkward because of $\partial^{\circ} \operatorname{Amp}_{c}(X)$
G-dynamics on $\mathscr{X} \Leftrightarrow \Gamma$-dynamics on $X \quad$ (Cantat, L. Wang) P-dynamics on $\mathscr{X} \Leftrightarrow \Gamma$-random walks on X
$P \subset G$ parabolic subgroup (Cantat—Dujardin)

Some consequences

g_{t} geodesic flow (diagonal subgroup)

Some consequences

g_{t} geodesic flow (diagonal subgroup)
Corollary: μ a g_{t}-invariant measure on \mathbb{Q} / M
(homogeneous dynamics)
has a lift $\mu_{\mathscr{X}}$ on \mathscr{X} of relative entropy 1

Some consequences

g_{t} geodesic flow (diagonal subgroup)
Corollary: μ a g_{t}-invariant measure on \mathbb{Q} / M
(homogeneous dynamics)
has a lift μ_{X} on \mathscr{X} of relative entropy 1
e.g. "the" measure of maximal entropy: lift of volume
closed geodesic \Leftrightarrow mme for hyperbolic automorphism

Some consequences

g_{t} geodesic flow (diagonal subgroup)
Corollary: μ a g_{t}-invariant measure on \mathbb{Q} / M
(homogeneous dynamics)
has a lift $\mu_{\mathscr{X}}$ on \mathscr{X} of relative entropy 1
e.g. "the" measure of maximal entropy: lift of volume
closed geodesic \Leftrightarrow mme for hyperbolic automorphism Invariants of $\operatorname{Aut}(X)$-orbits on $X(\overline{\mathbb{Q}})$: volume of star-shaped set
(c.f. Silverman for a single automorphism)

Some questions

Some questions

U-invariant measures, orbit closures?
U : unipotent subgroup
(I don't know a formulation using $\operatorname{Aut}(X)$ alone)

Some questions

U-invariant measures, orbit closures?
U : unipotent subgroup
(I don't know a formulation using $\operatorname{Aut}(X)$ alone)

Precise counts of points ordered by height in $\operatorname{Aut}(X)$-orbits?

Thank you!

