Equivariant currents and heights on the boundary of the ample cone of a K3 surface

Simion Filip, University of Chicago

joint with Valentino Tosatti

Setup

Setup

K3 surfaces

- X algebraic surface with nowhere vanishing 2-form Ω
- N = NS(X) Néron-Severi group

 $\rho = \mathrm{rk}N$

Setup

K3 surfaces

- X algebraic surface with nowhere vanishing 2-form Ω
- N = NS(X) Néron-Severi group

 $\rho = \mathrm{rk}N$

Standing assumptions (simplifying):

$$\rho \ge 3$$

Aut(X) \rightarrow SO(N) \simeq SO_{1, $\rho-1$} (\mathbb{R}) gives a lattice

Singular fibers of elliptic fibrations are reduced and irreducible

K3 surface

 $X: (1+x^2)(1+y^2)(1+z^2) - 5xyz = 1 \text{ in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

K3 surface

$$X: (1+x^2)(1+y^2)(1+z^2) - 5xyz = 1 \text{ in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$

NS(X)
$$\begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix} \qquad \rho = 3$$

K3 surface

$$X: (1+x^2)(1+y^2)(1+z^2) - 5xyz = 1 \text{ in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$

NS(X)
$$\begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix} \qquad \rho = 3$$

$$\sigma_{x} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{5yz}{(1+y^{2})(1+z^{2})} - x \\ y \\ z \end{bmatrix} \text{ and similarly } \sigma_{y}, \sigma_{z}$$

K3 surface

 $X: (1+x^2)(1+y^2)(1+z^2) - 5xyz = 1 \text{ in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

NS(X)
$$\begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix} \qquad \rho = 3$$

$$\sigma_{x} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{5yz}{(1+y^{2})(1+z^{2})} - x \\ y \\ z \end{bmatrix} \text{ and similarly } \sigma_{y}, \sigma_{z}$$

Ample Cone

 $\partial \operatorname{Amp}(X) \leftarrow \partial^{\circ} \operatorname{Amp}_{c}(X)$ (TBE)

Theorem C $\exists !\eta : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{Z}_{1,1}^{pos}(X)$

Theorem C $\exists !\eta : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{Z}_{1,1}^{pos}(X)$

- equivariant
- continuous (in weak topology of currents)
- currents have continuous potentials

Theorem C $\exists !\eta : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{Z}_{1,1}^{pos}(X)$

- equivariant
- continuous (in weak topology of currents)
- currents have continuous potentials

Theorem H $\exists !h^{can} : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{H}eights(X)$

Theorem C $\exists !\eta : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{Z}_{1,1}^{pos}(X)$

- equivariant
- continuous (in weak topology of currents)
- currents have continuous potentials

Theorem H $\exists !h^{can} : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{H}eights(X)$

- equivariant
- agrees with Silverman's canonical height for classes expanded by hyperbolic automorphisms
- $\forall p \in X(\overline{\mathbb{Q}})$ the function $h_{\alpha}^{can}(p)$ is continuous in α

Projection of region where $h_{\alpha}^{can}(p) = 1$

Assume: singular fibers are reduced and irreducible

Assume: singular fibers are reduced and irreducible

 $X \xrightarrow{\pi} B$ fibers of genus 1, everything over base number field k with $[k : \mathbb{Q}] < \infty$.

Theorem (Silverman, Tate):

Assume: singular fibers are reduced and irreducible

 $X \xrightarrow{\pi} B$ fibers of genus 1, everything over base number field k with $[k : \mathbb{Q}] < \infty$.

Theorem (Silverman, Tate):

$$\sigma_0, \sigma_1 \colon B \to X \text{ sections}$$
$$b \mapsto h_{X_b, \sigma_0(b)}^{can}(\sigma_1(b)) \in \mathbb{R}_{\geq 0}$$

is a height function in class $\sigma_0^* \mathcal{O}(\sigma_1(B) - \sigma_0(B))$

Assume: singular fibers are reduced and irreducible

 $X \xrightarrow{\pi} B$ fibers of genus 1, everything over base number field k with $[k : \mathbb{Q}] < \infty$.

Theorem (Silverman, Tate):

$$\sigma_0, \sigma_1 \colon B \to X \text{ sections}$$
$$b \mapsto h_{X_b, \sigma_0(b)}^{can}(\sigma_1(b)) \in \mathbb{R}_{\geq 0}$$

is a height function in class $\sigma_0^* \mathcal{O}(\sigma_1(B) - \sigma_0(B))$

Variant (forget sections): Aut_{π}(X) × Pic^{*rel*}_{π}(X) → *Heights*(B) → Pic(B)

Preferred Heights

Preferred Heights

Useful Lemma (F.-Tosatti):

 L^0 line bundle of π -relative degree 0 on X.

There exists height $h_{L^0}^{pf}$ on X s.t.

 $\forall b \quad h_{L^0}|_{X_b}$ is affine for the group law on $X_b(\overline{\mathbb{Q}})$

Preferred Heights

Useful Lemma (F.-Tosatti):

 L^0 line bundle of π -relative degree 0 on X.

There exists height $h_{L^0}^{pf}$ on X s.t.

 $\forall b \quad h_{L^0}|_{X_b}$ is affine for the group law on $X_b(\overline{\mathbb{Q}})$

Archimedean variant (F.-Tosatti): cf. Betti form

Smooth closed ω on X s.t. $\int_{X_b} \omega = 0$

There exists **continuous** ϕ s.t. $\omega + dd^c \phi |_{X_b} \equiv 0$

Proofs are pedestrian (head-on). Can we do better? Yes and No. Proofs are pedestrian (head-on). Can we do better? Yes and No. Why no?

What is $\partial^{\circ} \operatorname{Amp}_{c}(X)$?

Proofs are pedestrian (head-on). Can we do better? Yes and No. Why no?

What is $\partial^{\circ} \operatorname{Amp}_{c}(X)$?

Blow up $\partial \operatorname{Amp}(X)$ at the rational rays. i.e. add in $\mathbb{P}\left([X_b]^{\perp}/[X_b]\right)$

 h_{α}^{can} is Silverman's variations of canonical height on these sets

$$\begin{split} &N = \mathrm{NS}(X) \quad \mathrm{N\acute{e}ron-Severi\ group} \\ &G = \mathrm{SO}(N) \quad \Gamma = \mathrm{Aut}(X) \\ &\mathcal{X} = \Gamma \backslash \big(G \times X \big) \to \Gamma \backslash G =: \mathcal{Q} \end{split}$$

Many theorems can be stated using \mathscr{X} , but awkward because of $\partial^{\circ} \operatorname{Amp}_{c}(X)$

$$\begin{split} &N = \mathrm{NS}(X) \quad \mathrm{N\acute{e}ron-Severi\ group} \\ &G = \mathrm{SO}(N) \quad \Gamma = \mathrm{Aut}(X) \\ &\mathcal{X} = \Gamma \backslash \big(G \times X \big) \to \Gamma \backslash G =: \mathcal{Q} \end{split}$$

Many theorems can be stated using \mathscr{X} , but awkward because of $\partial^{\circ} \operatorname{Amp}_{c}(X)$

G-dynamics on $\mathcal{X} \Leftrightarrow \Gamma$ -dynamics on *X* (Cantat, L. Wang)

$$\begin{split} &N = \mathrm{NS}(X) \quad \mathrm{N\acute{e}ron-Severi\ group} \\ &G = \mathrm{SO}(N) \quad \Gamma = \mathrm{Aut}(X) \\ &\mathcal{X} = \Gamma \backslash \big(G \times X \big) \to \Gamma \backslash G =: \mathcal{Q} \end{split}$$

Many theorems can be stated using \mathscr{X} , but awkward because of $\partial^{\circ} \operatorname{Amp}_{c}(X)$

 $G\text{-dynamics on } \mathcal{X} \Leftrightarrow \Gamma\text{-dynamics on } X \ \ (\text{Cantat, L. Wang})$ $P\text{-dynamics on } \mathcal{X} \Leftrightarrow \Gamma\text{-random walks on } X$

 $P \subset G$ parabolic subgroup (Cantat – Dujardin)

 g_t geodesic flow (diagonal subgroup)

 g_t geodesic flow (diagonal subgroup)

Corollary: μ a g_t -invariant measure on Q/M (homogeneous dynamics)

has a lift $\mu_{\mathcal{X}}$ on \mathcal{X} of relative entropy 1

 g_t geodesic flow (diagonal subgroup)

Corollary: μ a g_t -invariant measure on Q/M (homogeneous dynamics)

has a lift $\mu_{\mathcal{X}}$ on \mathcal{X} of relative entropy 1

<u>e.g.</u> **"the"** measure of maximal entropy: lift of volume closed geodesic ⇔ mme for hyperbolic automorphism

 g_t geodesic flow (diagonal subgroup)

Corollary: μ a g_t -invariant measure on Q/M (homogeneous dynamics)

has a lift $\mu_{\mathcal{X}}$ on \mathcal{X} of relative entropy 1

<u>e.g.</u> **"the"** measure of maximal entropy: lift of volume closed geodesic \Leftrightarrow mme for hyperbolic automorphism Invariants of Aut(X)-orbits on $X(\overline{\mathbb{Q}})$:

volume of star-shaped set

(c.f. Silverman for a single automorphism)

Some questions

Some questions

U-invariant measures, orbit closures?

U: unipotent subgroup

(I don't know a formulation using Aut(X) alone)

Some questions

U-invariant measures, orbit closures?

- *U*: unipotent subgroup
- (I don't know a formulation using Aut(X) alone)

Precise counts of points ordered by height in Aut(X)-orbits?

Thank you!