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CORTEX seqFISH: integration with 
scRNA-seq data
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1) Can scRNA-seq data be 
overlaid onto seqFISH for 
resolution enhancement?

2) What is the minimal 
number of genes needed 
for data integration?

Purpose: Identify a gene signature predictive of cell-types in the mouse 
visual cortex by integrating seqFISH+scRNASeq data.

Figure modified from Zhu et al. Nature Biotechnology 36, 1183-1190 (2018)
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How did Zhu et al. do it?
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Semi-supervised learning
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By Techerin - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19514958

Self-training

Fabien Lotte. Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based Brain-Computer
Interfaces. Proceedings of the IEEE, Institute of Electrical and Electronics Engineers (IEEE), 2015, 103 (6), pp.871-890.

glmnet R-library

ssc R-library



Does self-training actually work?
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Astrocyte Endothelial 
Cell

GABA-ergic
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Glutamatergic 
Neuron

Microglia Oligodendrocyte.1 Oligodendrocyte.2 Oligodendocyte.3

43 29 761 812 22 19 6 31
Removed: too 
few samples
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Data normalization
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Histograms of scRNA−seq and seqFISH data

“…bias-corrected, quantile-
normalized seqFISH data to 
assign cell types…”

113 genes

seqFISH

scRNA-seq

1597 cells

1723 cells
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ComBat

(sva R-library): 
treat this issue as a 
batch correction 
problem 

SGCCA/DIABLO

(RGCCA/mixOmics R-libraries): treat 
difference in the number of variables 
problem

1. For each dataset apply 
standardization (center+scale) of 
each dataset.

2. Further divide by the square root 
of the number of variables in 
that dataset.

MFA: Multiple Factor 
Analysis

(FactoMineR R-library): treat this issue 
as a scaling problem:
1. For each dataset apply 

standardization (center+scale) of 
each dataset.

2. Further divide all elements by the 
square root of the first eigenvalue 
(from applying PCA to the dataset).
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Estimate seqFISH cell-type labels using a 
semi-supervised elastic net classifier (ssenet)
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X y

p

unlabeled

labeled

Fit glmnet
to labeled 
samples

Predict 
cell-types 

of 
unlabeled 

data

Keep 
labels for 
cell-types 
with high 

confidence 
(prob > 

0.5)

Re-train 
glmnet

with 
additional 

labeled 
data

Self-trained 
glmnet classifier



ssenet() applied to scRNA-seq+seqFISH vs.
enet() applied to scRNA-seq only
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Summary
• ssenet improves classification performance by self-training on 

unlabeled data
• Although the performance of ssenet < enet, it may generalize 

better to seqFISH data

Limitations of present study:
• Data distributions of labeled (scRNA-seq) and unlabeled data 

(seqFISH) are different and should be mitigated using:
– strategies to normalize between datasets: ComBat, eigenvalue, # of 

variables

Future directions:
• Use observational weights for imbalance class sizes
• Try different data normalization strategies

Word of caution of current implement of ssenet::ssenet()
• Don’t use “singha53/ssenet” with R4.0 or glmnet4.0 at the moment 

9



Supervisors
• Dr. Bruce M McManus
• Dr. Kim-Anh Lê Cao
• Dr. Scott Tebbutt

10


