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Data: Two Mass Cytometry Imaging data in breast cancer
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Integrative analysis challenge 1: Limited overlapped proteins

13 Common proteins:
EGFR, Ki67, SMA, Vimentin, p53,
panCK, CD20, vWF, H3K27me3,
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Integrative analysis challenge 2: Very different cell type annotation
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Integrative analysis challenge 3: Partially overlapped of clinical types

between these datasets
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Integrative analysis challenge 4: cohort heterogeneity

Clinical features Non-spatial features
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Challenges and Questions
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Challenges and Questions

\
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Spatial discriminative features
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Spatial metrics I: Spatial autocorrelation - Moran’s |

Moran’s | measures spatial autocorrelation based on both feature locations and values simultaneously:
__N Xinjwij(x; — X)(xj — X)

Zij Wij X — %)?
where N is the total number of cells indexed by i and j;

x is one epitope expression;
w;; is @ matrix of spatial weights
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Spatial metrics Il: Nearest Neighbour Correlation

Nearest Neighbour Correlation: Correlation of protein expression between of cells with their

nearest neighbours
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Spatial metrics ll: Nearest Neighbour Correlation
MIBI-TOF (Keren et al.)
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Spatial metrics ll: Nearest Neighbour Correlation
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Spatial metrics lll: Cell type
interaction composition
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Spatial metrics IV: L functions

L functions: to assess the significance of cell-cell interactions
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Survival analysis using
spatial features
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Survival analysis (MIBI-TOF)
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Spatial features (IMC TNBC)

Spatial features
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Mesenchymal markers

MO rda n’S I Immune markers

Cell status markers
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Top features are from diverse marker categories.
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Moran’s |

MIBI-TOF

Cox proportional hazards regression model (Moran's |)
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J Spatial discriminative features
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Optimal transport

_ _ Optimal transport plan
Optimal transport problem setting
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where M is the cost matrix for the dissimilarity of cells between CyTOF and Cells from imaging
imaging data;
a; is the weight for cell j in imaging data; and b; is the weight for cell i in
CyTOF data.
The prediction of a protein expression at position j in Challenges:
imaging using the CyTOF protein expression g € R™ is « Wagner et al. CyTOF data only has ~14
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Protein prediction
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Identification of new sub cell type
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Identification of new sub cell type
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Survival analysis based on new annotations
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Conclusion

- Spatial features especially spatial association of the protein expression improve the
survival prediction in both imaging datasets.

— Limited common feature is found between the survival models due to the limited
common proteins measured in two datasets.

— Imputation of additional protein expression improved the cell type identification, and
have potentials to increase the commonality between two datasets and further
improve the survival prediction.
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