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Characterizing the tumor ecosystem

To identify prognosis and treatment in breast cancer
patients.
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Single-cell targeted proteomics methods1

1CyTOF (Wagner et al., 2019)
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Single-cell targeted proteomics methods2

2MIBI-TOF (Keren et al., 2018)
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Heterogeneous tumor ecosystem

Tumor ecosystem is phenotypically and functionally
heterogeneous.
Integrate multiple targeted proteomics methods.

Goal 1: How should we approach integrating
partially-overlapping proteomic data collected on different
patients with similar phenotypes?
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CyTOF : intensity is divided by five and arcsinh
transformed.
MIBI -TOF: Counts are divided by cell size, arcsinh
transformed, and standardized across markers.
Note: MIBI-TOF markers have transformed values more
than 4.2
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MultiAssayExperiment3

3(Ramos et al., 2017)
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Remove units of measurement effect

Z: Inverse transformation of CyTOF.
X: Given transformed data of MIBI-TOF.

For each marker i in MIBI-TOF, yij =

(
xij − xi,min

xi,range

)
× u,

where u is the upper limit of the rescaled variable.
u is the maximum of Z.

(Z,Y): Round to integer.
Note: We can match the quantiles if there is no concern on
the given transformation.
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Impute on rescaled data

K-nearest neighbour averaging4.

4(Hastie, Tibshirani, Narasimhan, & Chu, 2019)
pjeganat@stanford.edu 9 / 25



Motivation Single-cell proteomics data Topic modeling Results Conclusion References

Why topic modeling

Given (Z,Y).
Z does not have spatial information of cells.
Y has spatial information of cells.
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Why topic modeling

Goal 2: Without including the spatial x-y coordinate data,
how well can we predict cell co-location.
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Why topic modeling

Goal 3: Can we predict the spatial expression patterns of
proteins measured on CyTOF but not measured in the
MIBI-TOF data?
Simulate from the fitted topic model.
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Latent Dirichlet Allocation (LDA)5

5(Blei, Ng, & Jordan, 2003)
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Hamiltonian Monte Carlo - No U-Turn Sampler (NUTS)

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte
Carlo method (MCMC).

Avoids random walk behaviour, takes series of steps
informed by first-order gradient information (of log posterior
density).
Use when direct sampling is difficult (approximation to the
posterior).
Two tuning parameters: step size and number of steps.
HMC - NUTS method: user does not need to specify the
above two tuning parameters.

Use rstan R/Stan (probabilistic programming language for
statistical inference) package.
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Results on subset of data

Chose one patient from CyTOF (Live cells: immune panel)
Chose one patient from MIBI-TOF. Ideal is to use
MIBI-TOF data from the same patient.
Kept 10% cells from MIBI-TOF for the test data to choose
number of topics based on the posterior log-likelihood.
Model assessment: simulate data from the fitted model and
plot the distribution of the median of protein expression.
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Choosing number of topics

pjeganat@stanford.edu 16 / 25



Motivation Single-cell proteomics data Topic modeling Results Conclusion References

Estimated topic distribution

pjeganat@stanford.edu 17 / 25



Motivation Single-cell proteomics data Topic modeling Results Conclusion References

Estimated marker distribution in each topic
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Model assessment
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Infer spatial co-location of CyTOF cells
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Predict spatial pattern of proteins not measured in the MIBI-TOF
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Conclusion

Goal 1: Integrate partial-overlapping proteomic data using
MultiAssayExperiment.
Goal 2: Leverage topic modeling to infer spatial co-location
of cells of CyTOF data.
Goal 3: Leverage topic modeling to predict spatial
expression pattern of proteins not measured in the
MIBI-TOF data.
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Challenges and future work

Transformation.
Units of measurements are different across platforms.
Different subjects in different platforms.
Topic modeling

Expensive computational cost for four chain and 2000
iterations with 1000 warmup iterations.
Computational cost for fixing label switching
Recompute R̂, effective sample size (ESS), posterior log
likelihood on train data.
Identify best range for the number of topics.

Infer spatial polygons.
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Thank You!
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